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Abstract - In this paper, we present an adaptive Woodcock particle tracking method for free path sampling
in Monte Carlo neutron and photon transport problems. The proposed algorithm circumvents the major
drawbacks of Woodcock’s method and provides a low-cost alternative of free path sampling in inhomogeneous
media, while being adjustable to the problem at hand. We discuss variance and efficiency analysis for a
simple transmission problem, concluding that a priori optimization of the algorithm can be achieved if some
information on the cross sections of the problem is known. Comparison of the adaptive and another Woodcock-
type tracking algorithm is given in Section 2., showing that optimization requires small effort on part of our
adaptive method, moreover, the proposed algorithm is superior in terms of efficiency of the simulation. In
Section 3., an application of the adaptive tracking is presented in a brachytherapy setup.

I. INTRODUCTION

Woodcock type particle tracking has been widely used
by Monte Carlo developers since its introduction in neutron
transport by Woodcock et al. [1]. This method is based on von
Neumann’s rejection technique [2], and was independently
developed by Skullerud [3] for the plasma physics community.
Later, it became a popular method in areas like neutron and ion
transport (embedded in SERPENT [4] and MORET [5] codes),
radiative transfer [6], computer graphics [7], and medical
physics [8], depicted by several names, such as delta-tracking,
null-collision algorithm and pseudo scatter. The term "null-
collision" is used throughout this paper referring to the event
when a sampled tentative collision site is rejected (the particle
"scatters" without a change in direction and energy).

The method is intended to overcome difficulties arising
from free path sampling in inhomogeneous media. Path length
selection is usually achieved by inverting the cumulative dis-
tribution function of the path traversed between collisions,
which can be a cumbersome task in a non-homogeneous case,
especially in complex geometries where retrieving ray-surface
intersections are computationally expensive [9]. The princi-
ple of Woodcock tracking is to take a fictitious cross section
Σma j ≥ max(Σt(r)) being the majorant of all cross sections in
the medium, and sample the probability density function (pdf)

f (x) = Σma je−Σma j x (1)

to select path length to a tentative collision. To compensate
for sampling with a fictitious cross section Σma j rather than the
real cross section Σt, the collision is accepted with probability
Σt/Σma j and rejected with probability 1 − Σt/Σma j. Mathemat-
ical verification of unbiasedness was discussed in [10], and
recently generalized to non-constant sampling cross section
by Antyufeev [11].

Applying the above method, a meshless (circumventing
the necessity of surface-to surface tracking) Monte Carlo par-
ticle tracking can be implemented, yet it suffers from a ma-
jor drawback, also mentioned by [12] [4] [13]: a localized
heavy absorber in the medium renders the path length selec-
tion ineffective, since the majorant becomes large, causing
the algorithm to generate null-collisions unnecessarily often

in optically thin regions. Articles addressing the problem
agree that introduction of a weighted scheme is necessary,
where particle weights (representing a fraction or a bundle of
particles) can also become negative, although strategies are
slightly different. Here, a weighted (non-analog) simulation
means that statistical weight modification accounts for the bias
introduced in collision acceptance rate and the distortion of
tentative collision site distribution. Carter et al. [14] suggest
using non-bounding cross section CΣt for sampling (with C
being a positive function) coupled with a separation of two al-
gorithm branches, distinguished by the sign of CΣt −Σt. In the
positive case, the original Woodcock rejection game is played,
but in the negative case, a weight multiplier F is introduced, al-
tering the particle weight to change sign upon a null-collision.
As a consequence, negative contributions (weights) are also
accepted to the final score. In recent articles by Galtier et
al. [15] it is highlighted, that the probability of accepting a
collision site is not constrained, thus altering the probability
of the null collision event is quite possible. This modification
of the algorithm permits the use of non-bounding cross sec-
tion, also leading to the admittance of negative weights. The
article proposes a choice for the acceptance probability which
coincides with the one used by Carter et al. [14], making the
two algorithms identical apart from the generated distribution
of tentative collision sites. Recent research showed [16], that
in applications like a radiotherapy problem, a factor of 200 in
efficiency gain can be observed by using a simulation with neg-
ative weights relative to the standard Woodcock method. Most
of the improvement is due to the reduction of computer time,
while the method remains stable (producing lower variances)
despite the appearance of negative contributions if parameters
are carefully set.

This paper also focuses on possible methods of construct-
ing leakage (or transmission) estimators. The most comprehen-
sive literature of transmittance estimators can be found in the
computer graphics (CG) field. Woodcock type tracking was
introduced in CG community by Raab et al. [17], encouraging
the utilization of unbiased MC estimators instead of biased
quadrature methods like ray marching. Further contributions
were made by Novak et al. [7] by introducing a weighted
scheme (only non-negative weights) to Woodcock-tracking,
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so that the algorithm no longer gives a binary answer for trans-
mittance. It is interesting to note, that the same was concluded
in parallel by the nuclear field [13].

II. THEORY

In this section, we present an adaptive Woodcock type
free path sampling algorithm, that is not limited by a strictly
bounded majorant cross section, thus eliminating the localized
heavy absorber problem, and allows an adaptive sampling via
two arbitrary chosen parameters q and Σsamp. The algorithm
is intended to be a valid alternative for free path sampling
in inhomogeneous media, when a cost effective solution is
needed as a consequence of complex (meshless) geometry, or
procedurally generated media.

The pseudo-code for the proposed method is shown in
Algorithm 1. Similar to the derivation of Galtier et al. [15],
a new probability q is introduced as an acceptance rate of
collisions, however, it remains independently chosen from the
sampling cross section Σsamp. Free path selection is carried
out by sampling the pdf

g(x) = Σsampe−Σsamp x (2)

where Σsamp is not forced to be a strict majorant.

w=1;

while !collided do
sample Σsampe−Σsamp x;

r = r +Ωx

if rand() < q then
collided = true;

w = w Σt(r)
Σsampq ;

r = rand();

i f (r < Σc(r)/Σt(r)) capture();

elsei f (r < Σa(r)/Σt(r) + Σs(r)/Σt(r)) scatter();

else fission();
else

w = w
1− Σt (r)

Σsamp
1−q ;

end

end
Algorithm 1: The adaptive Woodcock tracking algorithm.

The proof of unbiasedness is given in the Appendix.

Parameter q must be restricted to take values from the
interval [0, 1], and Σsamp can either be greater or smaller than
the maximum of cross sections. Note, that the main advantage
of the Woodcock method is thus exploited as the sampling
of distance to collisions becomes exceedingly simple, a sam-
ple from g(x) is drawn by solving Eq. 3 for x (r denotes a
canonically distributed random number).

r = 1 − e−Σsamp x (3)

The major drawback of the original Woodcock algorithm is
also eliminated: it is no longer obligatory to choose a majorant

cross section for Σsamp, one can even set the desired number of
tentative collisions to any level, prior to the calculations. As
emphasized in [15], this is only possible because of altering
the collision acceptance probability (introducing q).

III. RESULTS AND ANALYSIS

1. A priori estimation of relative error and computer time

A simple transmission problem in one dimensional geom-
etry with non-multiplying medium was chosen to demonstrate
a variance analysis of Woodcock type particle tracking. Sup-
pose we have a point source at r0, with particles coming out
in direction Ω. The quantity to be estimated is the uncollided
flux (transmission) at r0 +Ωx, denoted by τ(x,Ω). Particles
can either be absorbed in the medium or scattered out from
the ray, with total cross section Σt. A simplified version of the
original method (Algorithm 1) that estimates the transmittance
is shown in Algorithm 2. With a probabilistic approach (see
Appendix), not only the proof of unbiasedness can be given,
but variance of the estimation and the expected number of null
collisions can also be calculated a priori.

τ̂ = 0;

for i=1...N do
w = 1;

r = r0;

while !collided AND |r − r0| < x do
sample Σsampe−Σsamp s;

r = r +Ωs;

if rand() < q then
w = 0;

collided = true;
else

w = w
1− Σt (r)

Σsamp
1−q ;

end

end

τ̂ = τ̂ + w
N

end
Algorithm 2: Transmission (leakage) estimation

The formulas for the relative variance and the expected
number of null-collisions (V) will be given here, with the
derivation discussed in the Appendix. Let us denote the
squared relative error of estimator τ̂ by r2, and the number of
null-collisions by V . Eq. 4 and 5 hold for the squared relative
error of τ̂ and the expectation of V .

r2 =
1
N

(
exp

[
1

1 − q

∫ x

0
q
(
Σsamp − 2Σt(x′)

)
+

Σ2
t (x′)

Σsamp
dx′

]
− 1

)
(4)

E[V] =
1 − q

q

(
1 − exp

(
−qΣsamp x

))
(5)

As we have emphasized before, the proposed method aims
to be a viable option for free path sampling in cases when
geometry is exceedingly complex or somehow it is compu-
tationally expensive to fetch the cross sections of a certain
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location (e.g. the actual cross section is a function of some
time-dependent calculation). Notice in Algorithm 2, that there
is only one line, where the cross section of the current location
should be retrieved, and that is when a null-collision occurs.
Therefore, the number of null-collisions can be a fair measure
of computation time, i.e.

T ∝
1 − q

q

(
1 − exp

(
−qΣsamp x

))
. (6)

In a more general sense, one may try to find some connec-
tion between parameters (q,Σsamp) and computer time T , then
carry out the optimization accordingly, based on the example
we present in the next section. Now, we only wish to draw
attention to the fact that given enough information about the
problem, the computation time and the relative error of the
estimation can be approximated prior to any particle tracking
calculation. Eq. 4 suggests, that sufficient information is pro-
vided by the knowledge of the first and second moment of the
cross section distribution as the only variables depending on x
are Σt and Σ2

t . Of course, exact calculation of the first moment
solves the original problem itself (transmission is uniquely
determined), however, approximate knowledge may also be
advantageous.

We implemented the above method (Algorithm 2) in a
C++ computer code to check Eq. 4 and 5 against simulation
results. The output of the simulation were the average weights
and squared weights of particles reaching x, and the average
number of null-collisions occured to these particles. Fig. 1
shows the cross sections of the example problem. Note, that
sampling is chosen to be below the majorant cross section,
permitting negative contributions to the final score τ̂. The total
cross section of the problem is given by

Σt(x) = 0.2 + 0.2 sinc [4(x − 3)] (7)

Fig. 1. Cross sections in the example problem

A priori calculation of variance and expected number of
null-collisions are compared with Monte Carlo simulation
results, shown in Fig. 2. The example problem was analyzed
by setting q = 0.3 and Σsamp = 0.2cm−1. During the simulation
105 particle histories were generated.

2. A numerical optimization study

This section shows a numerical optimization of the adap-
tive Woodcock algorithm for a transmission problem. Opti-

Fig. 2. Verification of a priori relative error and computation
time calculation

mization is based on Equations 4 and 5, which implies that the
calculation of the exact optimal choice of parameters requires
more effort, than solving the problem itself. Nevertheless, it
will be shown that optimal parameters can indeed be found,
thus if an approximation on the cross sections is available, it
may improve the efficiency of the algorithm greatly.

An interesting version of the Woodcock-type tracking al-
gorithms is compared to our adaptive tracking in this section.
The reference algorithm developed by Carter et al. [14] pro-
poses a different sampling than our method, as it does not take
a constant sampling cross section, but uses the pdf of

C(x)Σ(x)e−C(x)Σ(x) (8)

to select path length to a tentative collision. Note, that in
this case the distances between collisions are not independent,
identically distributed random variables (although they are
still exponentially distributed). Thus, the generated stochastic
process is not a Poisson process, and the reasoning shown
in the Appendix can not be applied here. In fact, the proof
of unbiasedness can still be formulated elegantly as in [14],
but calculation of relative error and number of null-collisions
requires numerical evaluation of many convolutions. The
computational cost is suspected to be large compared to the
complexity of the problem, which might be the reason why
the authors did not discuss analytical formulas for predicting
variance and computer time. There is an optimization shown
in [14] that uses simulation results of runs with different C
constants. This investigation is only shown for a collision
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estimator, the optimum is found at around C = 3.625. As
we are to compare transmission (leakage) estimators, we will
reconstruct the optimization of Carter’s algorithm as well.

Introduce the efficiency of the simulation by the usual
definition:

FoM =
1

r2T
, (9)

i.e. the Figure of Merit (FoM) being inversely proportional to
the squared relative error of the estimation and the time spent
on calculating the estimation. Two simulation scheme may
be compared by their FoM values: greater FoM means that
the same precision (r2) may be realized with less effort, or
by spending the same amount of time the simulation achieves
smaller relative error.

Again, consider the computation time proportional to the
number of cross section fetches, in other words, let us assume,
that most of the computer time is spent on retrieving the cross
section of the location (executing the "where am I?" routine).
Looking at Equations 4 and 5, the Figure of Merit of the
adaptive Woodcock method can be calculated as a function of
Σsamp and q:

FoM(q,Σsamp) ={
1
N

(
exp

[
1

1 − q

∫ x

0
q
(
Σsamp − 2Σ(x′)

)
+

Σ2(x′)
Σsamp

dx′
]
− 1

)
·

·
1 − q

q

(
1 − exp

(
−qΣsamp x

)) }−1

(10)

Unfortunately, global extrema of FoM can not be expressed
analytically as ∂FoM

∂q = 0 and ∂FoM
∂Σsamp

= 0 lead to transcendent
equations. Therefore, we must turn to some numerical method.
To illustrate that optimal parameters can indeed be found, Fig.
3 shows how the efficiency of the calculation depend on the
choice of parameters Σsamp and q.

Fig. 3. Figure of Merit as a function of parameters Σsamp

and q. Optimization of the adaptive Woodcock algorithm can
be carried out numerically, the maximum of FoM found at
Σsamp = 0.236 cm−1 and q = 0.868

Fig. 3 also shows, that with larger q than optimal, FoM quickly
drops in the region around the optimal Σsamp, FoM value is also
very sensitive of altering Σsamp in the vicinity of the optimum.
As a consequence, q must be chosen with caution, in real
applications we suggest it to be an underestimation of the
suspected optimal value. Then, some uncertainty of the initial
information can not cause too much trouble, as our guess for
the optimum is farther from the region of large gradients.

In order to find a fair comparison, Carter’s algorithm [14]
should also be optimized to transmission estimation. Fig. 4
shows how an optimum is found in this case. The top two
graphs contain simulation results for the relative error of the
estimation and the expected number of cross section fetches
required to achieve this error at different C settings. The
bottom graph shows calculated FoM values according to Eq.
9, with maximum located at around C = 2. Table I suggests

Fig. 4. Optimization of Carter’s Woodcock tracking for trans-
mission estimation
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that with C between 1.5-2-5, variation of FoM is less than
10%, therefore C = 2 will be used as an optimum.

C FoM

0.5 89

0.75 606

1.25 2554

1.5 4505

1.75 4949

2 5054

2.25 4891

2.5 4547

3 4066

5 2704

10 1415

TABLE I. Efficiency as a function of parameter C in Carter’s
algorithm [14] for transmission estimator

As Table II shows, the main difference between the two
methods is that our adaptive Woodcock tracking uses the origi-
nal cross sections very rarely, which was the original intention
of the algorithm design. Notice, that Carter’s algorithm must
retrieve the cross section of the current position whenever a
free path is sampled regardless of the outcome of the collision
(being a real or virtual(null-) collision). With the same number
of particle histories generated, the achieved relative error is a
bit greater, but the save in computer time can compensate for
it, if it is indeed proportional to the number of cross section
fetches. In this case, efficiency increase is almost an order of
magnitude relative to Carter’s method.

r2
Average

number of cross
section fetches

FoM

Carter’s algorithm
C = 2

7.24·10−5 2.73 5054

Adaptive Woodcock
q = 0.868

Σsamp = 0.236 cm−1
1.93·10−4 0.13 39857

TABLE II. Comparison of two Woodcock type tracking al-
gorithm for transmission estimation. The proposed adaptive
algorithm outperforms the optimally set reference algorithm
almost an order of magnitude in efficiency measure.

3. Application in radiotherapy

In Section 2. we showed how a numerical optimization
could be carried out for a simple transmission problem when
analytic solution is available. Based on Equations 4 and 5, an
approximation of the optimal parameters may also be obtained
even when the information on the distribution of cross sec-

tions is incomplete, e.g. only the approximate average or the
maximum/minimum of cross sections are known in advance.
Regarding more complex problems, finding an optimum is not
so easy, it can very well be as cumbersome task as finding a
solution to the problem itself.

We analyzed the behavior of our adaptive Woodcock al-
gorithm in a brachytherapy setup, fully described in [16].
Brachytherapy is a form of radiotherapy, when cancer cells
are targeted by radiation from brachytherapic seeds, placed
near the tumor. At the treatment planning phase, distribution
of absorbed dose in the target volume and in healthy tissues
is of interest, which may be calculated via Monte Carlo simu-
lation. Using a Woodcock maximum cross section technique
for free path sampling would degrade the efficiency of the
simulation, as particle tracking would take impractically small
steps following the distribution determined by the maximum
of cross sections, i.e. the source material. Our investigation
[16] showed, that indeed, a factor of 200 can be found in effi-
ciency increase by using the adaptive scheme, mostly due to
the save in computation time.

We found that the efficiency measure (Figure of Merit -
FoM) strongly depends on parameter q as the absorbed dose
is of question, and FoM seems to slowly vary with sampling
cross section Σsamp at lower collision acceptance rates (q <
0.1). However, choosing the optimal parameters require Σsamp
to be lower than the maximum cross section as optimal q
parameter is in the region where efficiency dependence on
Σsamp is stronger. Recall, that this in line with the conclusions
of the 1D example problem, thus it may not be unexpected
at all. As an illustration, let us consider the absorbed dose at
position x = 0.5 cm (with a point source at the origin, and the
problem fully described in [16]). Fig. 5 shows the Figure of
Merit of the absorbed dose estimation as a function of collision
acceptance probability q.

Fig. 5. Efficiency as a function of collision acceptance rate

Fig. 5 points out, that with q → 0 efficiency rapidly
declines due to the infrequent sampling of real collisions,
when energy transfer may occur (contribution to the absorbed
dose is made). Increasing q may therefore be beneficial, but as
the chosen collision acceptance rate gets larger, the majority
of real collisions tends to happen nearer the source and as a
consequence, contribution to the absorbed dose come from
fewer particles and with greater variance. At x = 0.5 cm,
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Fig. 5 shows that an optimal q is reached at q ≈ 0.3. As shown
in [16], at different positions, different optimal values can
be determined, thus position dependent setting of parameters
must be considered. Future research should focus on energy
dependent problems as well.

IV. CONCLUSIONS

In this paper, an adaptive Woodcock tracking algorithm
was presented. The method is constructed to be a fast and reli-
able option for free path sampling in inhomogeneous media.
The presented algorithm does not suffer from the drawback
of the standard Woodcock method and provides an adaptive
sampling that can be tailored to the Monte Carlo problem via
two sampling parameters. Variance analysis was shown for a
transmission problem, highlighting the fact that a priori opti-
mization of parameters is possible, when some information
on the cross sections is known. Verification of the variance
calculation was presented by comparing to simulation results,
with the derivation of formulas in the Appendix. A compari-
son of Carter’s delta tracking algorithm [14] and the adaptive
Woodcock method showed that our algorithm can be especially
favorable in cases when retrieving the cross section at a certain
position is associated with high computational cost. Investiga-
tions on the behavior of the method in a brachytherapy setup
pointed out, that efficiency increase may be vast even in real
problems, a factor of 200 has been found as an improvement
of FoM relative to the standard Woodcock tracking.

V. FUTURE WORK

Variants of Woodcock’s original particle tracking method
have been developed by several disciplines in the Monte Carlo
community, focusing on the applicability of the algorithm to
special problems where the standard tracking would be oth-
erwise inefficient. These publications offer unique choice of
parameters that can be traced back to q (the collision accep-
tance probability) and Σsamp (sampling cross section). It can
be shown, that in general, none of the suggested parameters
are optimal to a problem. It turns out that one could construct
a generalized algorithm that includes all of these special cases,
which is in fact partly covered by the adaptive method pre-
sented in this paper. Some additional effort should be made
however to develop a truly general scheme, consider for exam-
ple position dependent parameters q(x) and Σsamp(x). Some
preliminary results show that sampling with a varying cross
section may improve efficiency even further. Future research
may include zero variance schemes and variance analysis of
other type estimators e.g. collision estimators.

APPENDIX

The Appendix presents derivations of Eq. 4 and 5. The
reasoning is based on previous work published in [16].

Proof for inhomogeneous media

Let us introduce the statistical w weight of a particle, and
the K number of collisions occurred throughout its history.
Both can be interpreted as a random variable mapping the set

of possible outcomes to R and N respectively. According to
the rule of total expectation (tower rule), the expected value of
the statistical weight can be written

E[w] =

∞∑
k=0

E[w | K = k] fK(k). (A.1)

As the distance between collisions is sampled from an ex-
ponential distribution, it is trivial, that K follows a Poisson
distribution with mean ΣsampL, where L is the total distance
traveled in the medium. fK denotes the probability mass func-
tion of K. Furthermore, we can apply the tower rule again,
conditioning for whether or not a real collision happened. In-
troducing the number of virtual collisions V , we obtain:

E[w] =

∞∑
k=0

E[w | K = k,V = k]P(V = k)

+ E[w | K = k,V < k]P(V < k) fK(k). (A.2)

When a real collision occurs in our simulation, the weight
is set to zero, meaning that it would not count to the probability
of a free path before a collision anymore, therefore the second
expectation gives 0. The probability that no real collision
occurs out of k is (1 − q)k, and the final weight of the particle
at the end of the path is the product of

1 − Σ(xi)
Σsamp

1 − q
(A.3)

for every i:

E[w] =

∞∑
k=0

E

 k∏
i=1

1 − Σ(xi)
Σsamp

1 − q

 (1 − q)k fK(k). (A.4)

Weight-factors 1 −
Σ(xi)
Σsamp

are independent, therefore the

product and the expectation are interchangeable. As long as
the number of collisions (k) is fixed on the interval [0, L], the
joint probability density function of x1, x2, , xk is a pdf of a
uniform distribution (for proof, see [18]). In our case, it means
that Σ(x) is sampled uniformly on the interval [0, L]. Thus the
weight expectation simplifies to

E[w] =

∞∑
k=0

 k∏
i=1

1 −
Σ

Σsamp

 fK(k) =

∞∑
k=0

1 − Σ

Σsamp

k

fK(k) (A.5)

where Σ =
1
L

∫ L

0
Σ(x)dx. To shorten further calculations we

recognize that this formula is very similar to the probability
generating function (PGF) of the Poisson distribution, more

precisely the expected weight equals the PGF at 1 −
Σ

Σsamp
.

Exploiting the PGF it is apparent that

E[w] =

∞∑
k=0

1 − Σ

Σsamp

k

fK(k) = G
1 − Σ

Σsamp

 =

= eΣsampL
(
1− Σ

Σsamp
−1

)
= e−ΣL. (A.6)
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Our estimate is unbiased. The proof discussed above shows
that our method is a correct way to sample a particle’s free
path by demonstrating that the expected transmittance is in
line with the law of exponential attenuation. As we do not
modify the nature of the distribution (we only manipulate with
sampling frequency, thus altering the variance), it is sufficient
to prove that our estimator is unbiased to justify correctness.

Relative error of a transmission estimator with Woodcock
tracking

In the case of estimating transmittance we need to calcu-
late the number of transmitted particles M, simulating N total
histories. In a Monte Carlo scheme with statistical weights,
the transmittance is estimated by the summation of transmitted
particle weights over N histories:

M =

N∑
n=1

w(n). (A.7)

The squared relative error of our estimate of M is

r2[M] =
1
N

 E
[
w2

]
(E[w])2 − 1

 . (A.8)

Relative error for inhomogeneous medium

Let us consider a purely absorbing one dimensional
medium with cross section Σ(x). Since our estimate is un-
biased, the expectation (first moment) is:

E[w] = e−ΣL. (A.9)

To calculate the second moment we recall the proof for unbi-
asedness. One can apply the same reasoning for the expecta-
tion of w2 as for the first moment of w.

E
[
w2

]
=

∞∑
k=0

E

 k∏
i=1

(
1 −

Σ(xi)
Σsamp

)2 1
(1 − q)k fK(k). (A.10)

With the expansion of the square we get:

E
[
w2

]
=

∞∑
k=0

k∏
i=1

E
[
1 − 2

Σ(xi)
Σsamp

+
Σ2(xi)
Σ2

samp

]
1

(1 − q)k fK(k). (A.11)

As before, the expectation is taken according to a uniform
distribution:

E
[
w2

]
=

∞∑
k=0

1 − 2
Σ

Σsamp
+

Σ2

Σ2
samp

k
1

(1 − q)k fK(k) (A.12)

where Σ and Σ2 denote the first and second moment of the
cross section distribution. Let us recognize again, that the
formula is the PGF of the Poisson distributed variable K, at a
certain point, thus:

E
[
w2

]
= G

1 − 2
Σ

Σsamp
+

Σ2

Σ2
samp

 1
1 − q

 =

= e
(

1
1−q −1

)
ΣsampL− 2ΣL

1−q + Σ2L
Σsamp (1−q) . (A.13)

For the squared relative error we get:

r2[M] =
1
N

 E
[
w2

]
(E[w])2 − 1

 =
1
N

(
e

q
1−q (Σsamp−2Σ)L+ Σ2L

Σsamp (1−q) − 1
)
.

(A.14)

Estimating the runtime of the calculation

As for the simulation time, we assume that it is propor-
tional to the expected number of virtual collisions (denoted by
V), which can be written:

E[V] =

∞∑
k=0

E [V |K = k] fK(k) =

=

∞∑
k=0

 k−1∑
v=0

(1 − q)vqv + (1 − q)kk

 fK(k) =

=

∞∑
k=0

q(1 − q)
k−1∑
v=0

(1 − q)v−1v + k(1 − q)k

 fK(k). (A.15)

First, we applied the tower rule in order to fix the number of
collisions in the expectation. Once the number of collisions
is fixed (k), our problem reduces to the question: What is the
average number of virtual collisions in a row if a maximum
of k collisions are allowed to happen. The chance of getting
an exactly v long run of success (virtual collision) out of k
Bernoulli trials is (1 − q)vq if v < k and (1 − q)k if v = k. The
trick, what we use in the next step is the same one which is
usually applied to calculate the expected value of a geometric
distribution. The reason we factor (1-q) out of the summation
is that the remaining expression is the derivative of −(1 − q)v

with respect to q:

E[V] =

∞∑
k=0

q(1 − q)

 k−1∑
v=0

d
dq
− (1 − q)v

 + k(1 − q)k

 fK(k).

(A.16)
Executing the summation of a geometric series and calculating
the derivative we get:

E[V] = −

∞∑
k=0

1 − q
q

(1 − q)k fK(k) +

∞∑
k=0

1 − q
q

fK(k) =

=
1 − q

q

 ∞∑
k=0

fK(k) −
∞∑

k=0

(1 − q)k fK(k)

 . (A.17)

The first sum is easy as it gives 1, due to fK being a probability
mass function. The second sum can be directly connected to
the probability generating function, the same way as shown
before. The desired expectation then simplifies to:

E[V] =
1 − q

q
(1 −G(1 − q)) =

1 − q
q

(
1 − e−qΣsampL

)
. (A.18)

In case of straightforward simulation structures it is safe to
assume that the time necessary to execute the calculations
(transmit the particles through) is proportional to the average
number of virtual collisions. Thus:

T ∝ E[V] =
1 − q

q

(
1 − e−qΣsampL

)
. (A.19)
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