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Abstract - TRIPOLI-4 R© is the first Monte Carlo particle transport code to include the variance reduction
algorithm known as Adaptive Multilevel Splitting (AMS), which aims to help simulate rare events with
Monte Carlo. This work presents a description of the AMS algorithm adapted to the field Monte Carlo
particle transport, some insight on its implementation within TRIPOLI-4 R©, and the results obtained on a
three-dimensional streaming problem.

I. INTRODUCTION

Adaptive Multilevel Splitting (AMS) is a variance reduc-
tion algorithm introduced to the field of applied mathematics
in 2007 by Cérou and Guyader [1]. Originally designed to
help estimate rare events occurrence probabilities in Monte
Carlo simulations of continuous Markov chains, it has been
theoretically extended to the simulation of discrete Markov
chains by Bréhier et al. [2].

Based on those theoretical results, the AMS algorithm
has been adapted to the specificities of Monte Carlo particle
transport [3], and implemented in the CEA transport code
TRIPOLI-4 R©. In this context, it is used to increase the number
of realisations of rare events, thus reducing the variance on
estimated quantities related to these events.

The algorithm mechanism is described in Section II. We
present in Section III. some details concerning the AMS im-
plementation in TRIPOLI-4 R©, and its interactions with the
module generating importance maps. The central part of this
work is the study of a three-dimensional streaming problem,
consisting in the transport of neutrons in a seven-legged air
labyrinth in concrete. The results obtained both with and
without AMS use are presented and discussed in Section IV.

II. THE AMS ALGORITHM

The AMS algorithm is designed to help simulate rare
events in Monte Carlo simulations. In the context of shielding
simulations, it is used to help the simulated particles to reach
an area of interest of the geometry, in order to reduce the
variance on a score (or tally) estimated in that area.

In TRIPOLI-4 R© , the simulated particles are divided into
groups, called batches, which are simulated one after the other.
The AMS algorithm is an iterative method that is applied at
the end of each batch. Each AMS iteration consists in two
steps: First, the simulated particles of the batch are sorted
with regard to their importance (See Section 1.). Then, the
lowest-rated particles are resampled by splitting the other
tracks as described in Section 2. The number of particle that
are resampled at each iteration of the algorithm is defined
before the first iteration and remains constant throughout the
simulation. It has already been proved to have a limited impact
on the variance reduction efficiency, and is usually set to 1%
of the simulated particles [3].

1. The Sorting Step

A. Importance Functions

In order to use the AMS algorithm, one has to be able to
determine which regions of the geometry are of interest to the
simulation. Therefore, the geometry has to be associated to an
importance function, which maps any point of the phase space
to an importance value, related to the probability for a particle
located at a given point P to contribute to the final score. We
denote it by

I(P) = I(X,Ω, E), (1)

where X, Ω and E are the position, direction and energy of
the point P, respectively.

It has to be noted that within AMS, this function is only
used to rank the particles with respect to one another, so that
the value of the importance at a given point does not need to
have a signification on its own. This property is one of the
strengths of the AMS algorithm, as it permits the use of trivial
importance functions for any problem, such as the invert of
the distance to the area of interest.

It is believed (though not theoretically proved), that the
adjoint score of the problem is the more efficient importance
function for AMS. Indeed, the adjoint score at a given point
of the phase space is the average score generated in the area
of interest by a particle emitted from this point, thus giving
the most precise estimation of the interest of this point to the
score.

However, the determination of the adjoint flux is a
problem as complex as the original one. Furthermore, if
one has access to the adjoint score, the solution of the direct
problem is directly available as the value of the adjoint
score at the source point, obviating the need to perform the
simulation in the first place.

Consequently, the best candidate as importance function
for the AMS algorithm is an approximation of the adjoint
score. We present and compare in Section IV. the results
obtained with AMS using two importance functions, one
purely spatial, and the other automatically generated by
TRIPOLI-4 R©.
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B. Particle Tracks Importance

In order to sort the particles, a value of importance has to
be attached to each of them.

When a new particle is simulated, a particle track is cre-
ated. We denote by P0 = (X0,Ω0, E0) the emission point of
a particle and the first point of its track. This particle travels
along straight lines between collisions with the medium, each
collision resulting either in the absorption of the particle or in
a random change of its direction and energy. If the particle
undergoes N collisions before being absorbed or leaking out
of the geometry, we define its track T as follows:

T = (P0, . . . , PN), (2)

where Pi = (Xi,Ωi, Ei) represents the properties of the parti-
cle outgoing its i-th collision with the medium. Using these
notations, we introduce the importance of a particle track as:

I(T ) = max
i∈[0,N]

I(Pi). (3)

C. Definition Of The Splitting Level

Let n be the number of simulated particles, k the number
of tracks to be resampled per iteration and q the number of the
current iteration.

After the n particles have been absorbed or leaked out of
the geometry, the AMS algorithm computes the importance
I(T j), j ∈ [1, n] of each particle track. The splitting level
is then defined as the k-th smallest value in the sample
(I(T1), . . . , I(tn)). Let us denote it by Zq.

Each particle track having an importance less or equal to
Zq is deleted, and the number Kq of suppressed particles at
this iteration is kept in memory. It has to be noted that Kq may
very well be greater than k if multiple tracks have the same
importance. However, Kq can never be strictly less than k.

2. The Splitting Step

A. Resampling Process

Once the sorting step of iteration q is over, the AMS pro-
ceeds to resample the Kq particle tracks that have been deleted
from the simulation, so that n distinct tracks are available for
the next iteration of the algorithm.

For each of the particles to be resampled, one of the
n − Kq remaining tracks is randomly selected. Let us denote it
by T j = (Pi), i ∈ [0,N j]. The emission point Psplit of the new
particle is then defined as:

Psplit = inf
{
i ∈ [0,N j] : I(Pi) > Zq

}
, (4)

which is the first point of the track T j having an importance
greater than Zq.

B. AMS Global Weight

The resampling process splits Kq particle tracks amongst
a set of n − Kq tracks, therefore all particles weights have to

be weighted at the end of iteration q by a factor

Wq =
n − Kq

n

= 1 −
Kq

n
,

to ensure unbiasedness [1].
In practice, the cumulated weight factor due to the AMS

process from iterations 1 to q is the same for every particle,
and is stored in a global weight

wq =

q∏
i=1

Wi

=

q∏
i=1

(1 −
Ki

n
).

3. Scoring Step

The AMS algorithm stops at the end of iteration q if
n−Kq+1 particles have reach the area of interest. An estimator
can be constructed for any score φ in the area of interest. If
we denote by φ̂MC the value estimated using a standard Monte
Carlo estimator, then

φ̂AMS = φ̂MC × wq (5)

is an unbiased estimator of the quantity φ [2].

III. IMPLEMENTATION IN TRIPOLI

This section presents some details of the AMS implemen-
tation within TRIPOLI-4 R©.

1. Importance Functions

A. Spatial Importance Functions

The AMS implementation in TRIPOLI-4 R© allows the use
of purely spatial importance functions. GivenD a point, a line
or a simple 3D-surface (plane, cylinder or sphere) within the
geometry, two separate importance functions are available in
the code: Either the importance increases with the distance to
D, or it decreases. Formally, the spatial importance of a point
(X,Ω, E) is given by either one of the two functions I f rom and
Itowards:

I f rom(X,Ω, E) = dist(X,D), (6)

Itowards(X,Ω, E) =
1

dist(X,D)
. (7)

In order to take into account eventual preferential path-
ways, the AMS can be provided with an ordered sequence of
spatial points, which are used by the code to create a so-called
path. In that case, the importance increases along the path,
and decreases with the distance to the path. Those importance
functions must be used with caution, as they do not take into
account the direction nor the energy of the particles. They also
overlook most of the geometry details. However, these spa-
tial importances are easily set up and do not require extended
knowledge of the system, allowing for an easy parametrization
of the AMS method.
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B. The INIPOND Module

TRIPOLI-4 R© has a module that pre-computes importance
maps, which is extensively discussed in [4-6]. Designed for
the Exponential Transform variance reduction method, the
computed importance map can now be used by the AMS algo-
rithm.

The importance map is computed on a spatial and ener-
getic mesh. Given a spatial detectorD, the underlying impor-
tance function is assumed to be factorized in spatial, angular
and energetic parts:

I(X,Ω, E) = Is(X, g) × Ia(X,Ω, g) × Ie(g), (8)

where g denotes the energy group containing E. The three
parts of the importance are as follows:

Is(X, g) = exp
(
−

∫ dist(X,D)

0
K(X + r.Ω0, g)dr

)
, (9)

Ia(X,Ω, g) =
Σt(X, g)

Σt(X, g) − K(X, g)Ω.Ω0
, (10)

Ie(g) =
1

β + 1

(Eg
sup)β+1 − (Eg

in f )
β+1

Eg
sup − Eg

in f

, (11)

where Σt is the total macroscopic cross section and Ω0 the
direction of interest (related to the slope of the importance
map). The values of K are assumed constant for each material
and each energy group, and are either derived from a Placzek-
like equation as described in [6], or set by the user. Eg

in f and
Eg

sup denote the bounding values for energy group g, and the
β parameter is set by the user in order to adjust the global
strength of the biasing and define the energetic profile of the
importance map at the detector.

C. Volume And Energy Weighting

Regardless of the importance function, each region of the
geometry is attributed an weighting factor. Any point within
the region will see its importance weighted by this factor. It
has a default value of 1 for every volume, but the user can
choose to modify this factor for any of the regions involved in
the simulation.

2. AMS Optimization

A. Crossing Points

Most of the time, the geometries considered are composed
of many regions, each of these regions having specific proper-
ties that impact the particle transport (travel length, collision
probabilities,...). When a particle passes from one region to
another during a flight, it can be stopped as it crosses the inter-
face between the regions, and a new flight length is resampled
from this crossing point, taking into account the properties of
the new region.

In that case, the characteristics of the particle at the cross-
ing point depend only of the state of the particle coming out of
the last collision and the physical properties of the first region.
Similarly, the next collision point can be determined based
solely on the characteristics of the particle at the crossing point

and the physical properties of the second region.
Consequently, if the crossing points are added to the parti-

cle track just as real collision points, the enriched track remains
a Markov chain. The AMS can then be used with the enriched
tracks without modifications [2]. This allows for a more pre-
cise estimation of tracks importances, adding an importance
estimation between some collision points without requiring
additional computing.

B. Track Storage

One of the downsides of the AMS algorithm is that it
requires to keep the particle tracks accessible in memory at all
times. However, it is not mandatory for the algorithm to store
every point of the tracks.

The points composing the tracks are used in two ways
during the AMS iterations:

• To compute the importance of the track they are a part of

• To define the splitting points during the resampling
process

In practice, a value of importance is assigned to each of the
tracks and updated at each collision point, thus obviating the
need to search for the maximum of importance amongst the
track points.

According to (4), the splitting point is defined as the first
point of the track which importance is greater than the current
AMS splitting level. This means that the only points that
may be chosen for resampling are those having an importance
greater than the importance of every previous points of their
track. The importance has to be estimated at every collision
point, but a point is stored in the track only if its importance
is greater than the importance of the track. In that case, the
importance of the track itself is updated.

IV. 3D NEUTRON STREAMING PROBLEM

1. Problem Description

The analysis we propose here is the study of neutrons
streaming through a three-dimensional labyrinth filled with
air, and located in a concrete cube of side 15 m. The concrete
is an ilmenite-limonite concrete of density 2.9g/cm3 and the
air has a density of 0.001293g/cm3. The labyrinth is shown in
Fig. 1, and the elemental composition of both air and concrete
are detailed in Table I.

The neutron source is an 2-MeV isotropic point source
placed at the center of a cubic room of side 4 m, and is repre-
sented by a blue point on Fig. 1. The entrance of the labyrinth
is located at a corner of this room. The labyrinth itself is a
42-meters-long tunnel composed of seven straight sections and
six 90◦ bends, having a rectangle cross section of dimensions
3 m × 50 cm. Two types of tallies are scored in that geome-
try. The first tally consists in estimating the flux on a mesh
covering the entire geometry, using a track length estimator.
The second one is an average surface flux tally, estimated on
surfaces placed at various distances along the tunnel and at
the very end of the labyrinth. The chosen surfaces are the in-
terfaces between the square sections composing the labyrinth,
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Fig. 1. The labyrinth geometry.

Element Air Concrete

Hydrogen - 00.66
Oxygen 21.00 36.45
Sodium 79.00 -
Magnesium - 00.15
Aluminium - 00.80
Silicon - 03.06
Sulfur - 00.08
Calcium - 05.83
Titanium - 16.03
Iron - 36.93

TABLE I. Elemental composition of the simulation materials
as a percentage by weight.

which centers are marked by black points in Fig. 1. In
order for the AMS to simulate particles contributing to all of
these tallies, we chose as detector the surface located at the
end of the tunnel, and will refer to it as such for the remaining
of this work.

2. Spatial Importance

A. Construction Of A Spatial Importance

As stated in Section III., TRIPOLI-4 R© can be provided
with a spatial function to serve as importance for the AMS
algorithm. Given the problem at stakes, it seems highly proba-
ble that the particles contributing to the flux at the detector are
the one that travel along the tunnel. Therefore, we chose in
first approximation an importance function with the following
characteristics:

- In the source room, the importance decreases with the
distance to the labyrinth entrance.

- In the tunnel, the importance increases between the en-
trance of the labyrinth and the end of the tunnel.

- In the concrete, the importance is zero.

In practice, a path is given to TRIPOLI-4 R© as the sequence of
source and black points displayed of Figure 1 (See Section III.
for details), and the weighting factor of the volume corre-
sponding to the concrete is set to 0. The resulting importance
function is shown in Figure 2

Fig. 2. Spatial importance for the labyrinth geometry.

B. Mesh Tally

Figure 3 shows the flux obtained on the mesh tally cover-
ing the labyrinth with the AMS simulation, using the spatial
importance as importance function and running the algorithm
for 90 minutes on a single core. We can see on Fig. 3 that
the AMS algorithm allows TRIPOLI-4 R© to estimate a flux
in every cell of the mesh from the source point to the end of
the labyrinth, despite the 20 orders of magnitude attenuation.
Furthermore, we notice that the estimation of the flux outside
the tunnel is not impaired by the zero-valued importance of
the concrete. This is not surprising, as the AMS algorithm
does not modify the transport of the particles in the geometry,
but merely resample particles selected by the importance map.

C. Surface Flux Tally

In order to validate the results obtained with AMS on the
surface flux tally, an analog TRIPOLI-4 R© simulation was also
performed. Both simulations ran on the same computer for 67
hours, each on a single core.
The neutron flux was estimated at the surfaces defined in Sec-



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

Fig. 3. Neutron flux obtained with AMS on a mesh tally using
the spatial importance function.

tion 1., for both analog and AMS TRIPOLI-4 R© simulations.
The results obtained are shown in Figure 4 with respect to the
distance between the surfaces and the labyrinth entrance. The
dotted vertical lines indicate the locations of the 90◦ bends in
the tunnel. The relative error on the estimation is reported in
Figure 5 for both simulations.
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Fig. 4. Neutron surface flux obtained with AMS and analog
TRIPOLI-4 R© along the labyrinth.

The comparison of the results obtained with the surface
flux tallies puts into light the efficiency of the AMS algorithm.
The analog simulation fails to accurately estimate a flux deeper
than 16 meters into the tunnel. At a lower depth, we can see
that the results of the AMS simulation are in very good agree-
ment with the values obtained from the analog simulation.

The relative standard deviations for each of the surface
flux estimation are reported in Figure 5. It is worth noting
that the errors on the first two surfaces are smaller for the
analog simulation than with AMS. This is a consequence of
the extra computational time required for the AMS simulation
to classify and resample particles, which is penalizing if the
score is too easy to estimate.
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Fig. 5. Percent relative error on the neutron surface flux for
AMS and analog TRIPOLI-4 R© along the labyrinth.

3. Automatically Generated Importance

A. INIPOND Parametrization

In order to have a more refined description of the problem
in the importance map, we wish to take the energy and direc-
tion into account. To that end, we used the INIPOND module
of TRIPOLI-4 R© to build a discretized importance map.

The spatial mesh is composed of 50 × 50 × 50 cells. The
dimensions of the cells are approximately 40cmx10cmx10cm
in the tunnel, and their size increases progressively with the
distance to the labyrinth. The energetic domain of the simula-
tion (20 to 1.E−11MeV) is divided in 6 energy groups, detailed
in Table II. The Placzek coefficients are left to be computed by
INIPOND, and the β parameter is set to 1 (we refer the reader
to Section III. for details).

The importance map obtained for energy group 2 is shown
in Figure 6. We can see that the INIPOND module success-
fully evaluated the importance map for the entire geometry,
also computing an importance for each cell within the con-
crete. The course and variations of the importance function is
the same inside each of the energy groups. The only notable
difference between the groups is the span value of the impor-
tance. We show in Figure 7 the importance of various cells
along the tunnel for each of the energy groups, evaluated in
the direction of the tunnel.

B. Comparison On The Surface Flux Tally

The simulation leading to the results presented in this
sections has been performed at the same time as the AMS with
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Group Maximal Energy Minimal Energy

1 20 MeV 1 MeV
2 1 MeV 100 keV
3 100 keV 5 keV
4 5 keV 0.625 eV
5 0.625 eV 1.E-3 eV
6 1.E-3 eV 1.E-3 eV

TABLE II. Energetic discretization of the importance map.

Fig. 6. Automatically generated importance map for energies
between 2 MeV and 0.1 MeV.

spatial importance and the analog simulation discussed in the
previous section. Every simulation ran on the same computer
for 67 hours, each on a single core. Figure 8 shows the com-
parison between the results obtained with both importance
functions.

The surface flux estimated by the two AMS simulations
are in very good agreement for each of the considered flux.
However, the variance on the estimated values for the AMS
using INIPOND’s importance is overall greater than when the
purely spatial importance function is used, as shown in Fig-
ure 9. The most impacting parameter varying between the two
importance functions is the energy. Therefore, it seems that
the energetic component of the INIPOND importance map is
not correctly taken into account.

A further analysis of the energetic profile of the map,
as displayed in Figure 7, shows that high-energy groups have
an over-estimated importance. Indeed, the importance of a
neutron located near the entrance of the tunnel in an energy
group seems to be greater than the importance of any point
within a lower energy group (at least in the center of the tunnel
and in the right direction). This means that high-energy neu-
trons may be favored over neutrons of lower energy, even if
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Fig. 7. Energetic profile of the importance map along the
tunnel.
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Fig. 8. Comparison of AMS results for the spatial and
INIPOND importance functions.

these low-energy neutrons are much closer to the detector area.
As a consequence, the AMS algorithm using this importance
map will sometimes do unnecessary resampling of interesting
neutrons.

On the other hand, the purely spatial importance lets the
neutrons energy decrease "naturally" while going further into
the tunnel from one iteration to the next. The INIPOND mod-
ule was designed to provide an importance map adapted to
the use of the Exponential Biasing variance reduction method.
This method does not compare particles belonging to different
energy groups, as does the AMS algorithm. Therefore, the
difference of importance between two groups has a specific
meaning for each of the methods.

It must be borne in mind that, though obviously not op-
timal, the INIPOND map does enable the AMS algorithm
to estimate the correct average flux on all considered tallies.
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Fig. 9. Comparison of the percent relative errors on the AMS
results for the spatial and INIPOND importance functions.

Therefore, the use of the INIPOND map for AMS remains a
viable option, and may prove itself very efficient in configura-
tions where mere trivial importance functions are not enough
to describe the problem.

It is also worth noting that the use of the same INIPOND
map for Exponential Transform did not yield any results. We
tried several parametrizations of the module, but were enable
to estimate anything more than the results obtained with an
analog simulation.

4. Construction Of Reference Values

Due to the complexity of the problem considered, we
were unable to get a reference value for the flux using the
Exponential Transform variance reduction method. As
discussed above, an analog calculation, even run on a multiple
processors for several weeks, would not provide a result all
the way to the end of the tunnel.

A deterministic approach was considered, but the size of
the geometry and the low concentration of the air inside the
tunnel are most likely to lead to difficulties calculating the
flux, or strong ray effects on the result.

A. Surface Particle Restart

The adopted strategy uses a two-step feature of TRIPOLI-
4 R©’s. In a first simulation, the characteristics of particles
crossing a list of boundary is stored and dumped into a file.
Then, TRIPOLI-4 R© uses this file to initialize the source parti-
cles in other simulations.

In our case, the geometry was divided in eight parts, the
first one containing the source room, and each of the next parts
encompassing consecutive bits of the tunnel. After restricting
the geometry to its first part, 106 particles were simulated from
the source point (without variance reduction). The particles
states were stored at the interface between the first and the sec-
ond part of the geometry. Then, seven successive simulations
were performed, each of them restricted to a single part of the

geometry. Each time, 106 particles were simulated using the
particle states stored during the previous simulation as source
and the particles going out of the restricted geometry were
stored to be used in the next simulation.

Obviously, less than 106 particles were stored at the end
of each partial simulation. Consequently, the particles has
been massively duplicated, and the flux estimation may suffer
from correlations. Furthermore, the distribution of sources at
the interface between geometry parts is stochastic, and they
may not accurately describe the real distribution of particles
crossing those surfaces. The estimation of the variance on the
estimated scores in this configuration is a complicated prob-
lem, which has not been tackled in this paper. However, this
strategy enabled us to obtain some reference values for the
surface flux along the tunnel.

B. Validation Of AMS Results

Figure 10 shows the surface flux estimated with both AMS
simulations (spatial in blue and INIPOND in green), as well
as the reference values estimated using the surface particle
restart strategy presented above, represented as a dashed gray
line. The three estimations of each surface flux are in perfect
agreement.
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Fig. 10. Comparison of AMS and reference results along the
labyrinth.

V. CONCLUSION

The work presented in this paper revolves around a very
complex 3D-Streaming problem. The geometry presents very
sharp bends in multiple directions. The geometrical properties
of the problem makes the use of analog Monte Carlo unrea-
sonable, and will force most variance reduction schemes to
use very fine tuning in order to get a proper result. Using
Adaptive Multilevel Splitting, TRIPOLI-4 R© was able to es-
timate a neutron flux in the this geometry using two simple
parametrizations.

This work did also put into light the possibility of im-
provement for the automated importance map generator of
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TRIPOLI-4 R©Ṫhe current state of the INIPOND module could
be made more suitable for AMS use, either by changing the
construction of the energetic component, or by adjusting the
importance map during the simulation. In any case, the cur-
rent implementation of AMS in TRIPOLI-4 R© is already a very
efficient tool, both in terms of variance reduction and ease of
use.
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