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Abstract - The Monte Carlo method has been used to solve particle transport problems including nuclear 
reactor analysis, radiation shielding, and the others related to the nuclear research field. Generally, the 
Monte Carlo method produces lower efficiency than deterministic methods. To increase the efficiency in the 
Monte Carlo simulation, a lot of variance reduction techniques (VRT) have been developed. In these days, 
the hybrid Monte Carlo methods were introduced to automatically apply VRT parameters. For a single 
response, consistent adjoint driven importance sampling (CADIS) method is well derived. For the multiple 
responses, Forward Weight CADIS (FW-CADIS) presents the best efficiencies among global variance 
reduction method. In this study, Nth-order Multi-Response CADIS (N-CADIS) method was proposed to 
optimize the relative errors for multiple responses using a concept that minimizing the sum of nth order 
weighted relative error for the individual response can achieve uniformly low uncertainty. To evaluate and 
compare the efficiency of the N-CADIS method, a shielding problem was estimated. The mean based and 
tail-based penalty FOMs using N-CADIS method was improved by factor 2.03 and 1.46 compared to FW-
CADIS. However, the computational time for FOM values does not include deterministic calculation time 
to estimate weight map. Therefore, it was concluded that if a deterministic transport code to estimate nth 
order adjoint values is developed, the proposed N-CADIS method can show improved efficiency. 
 

 
I. INTRODUCTION 

 
The Monte Carlo method has been used to solve 

particle transport problems including nuclear reactor 
analysis, radiation shielding, and the others related to the 
nuclear research field. Generally, the Monte Carlo method 
produces lower efficiency than deterministic methods. To 
increase the efficiency in the Monte Carlo simulation, a lot 
of variance reduction techniques (VRT) have been 
developed [1] as controlling the particle transport behaviors. 
Generally, parameters used to apply the VRT in the Monte 
Carlo simulation should be properly determined to 
accelerate the calculation efficiency. In the initial stage of 
VRT, some additional simulations using Monte Carlo 
method were utilized for deciding the parameters of VRTs 
[2]. The computational scheme using the Monte Carlo 
method, however, caused another estimation inefficiency; 
therefore, some other approaches have been studied. Those 
problems were successfully solved by hybrid Monte Carlo 
method to decide the VRT parameters. The consistent 
adjoint driven importance sampling (CADIS) method [3, 4] 
is one of the hybrid methods deriving the zero variance 
Monte Carlo scheme for a single response. However, the 
variances of multiple responses cannot be properly reduced 
by the CADIS method [5]. To achieve the low and uniform 
uncertainties in all multiple responses as well as having high 
efficiency, several methods were introduced [5-9]. The 
forward weighted CADIS (FW-CADIS) method presents 
one of the best efficiencies among global variance reduction 
method. FW-CADIS method uses an assumption that the 

uniform density of Monte Carlo particle in the multiple 
responses can lead to a uniformly low uncertainty of them. 
In our previous study, Multi-Response CADIS (MR-CADIS) 
method [10] was proposed with a concept that the VRT 
parameters are decided to minimize the sum of square 
relative error for multiple responses. In this study, Nth-order 
Multi-Response CADIS (N-CADIS) method was proposed 
to get the uniformly low uncertainty  

 
II. BACKGROUND OF PREVIOUS STUDIES  

 
The CADIS, FW-CADIS, and MR-CADIS methods are 

reviewed in this section to provide background.  
 

1. Optimization for Single Response 
 

A. Overview of CADIS method 
 
In this section, the derivation method of CADIS is 

introduced to provide the background for FW-CADIS, MR-
CADIS and N-CADIS methods.  

The single response in Monte Carlo particle transport 
can be express by following integral equation 

 
𝑅𝑅 = ∫ 𝜎𝜎𝑑𝑑(𝑃𝑃)𝜓𝜓(𝑃𝑃) 𝑑𝑑𝑃𝑃                                   (1) 

 

where 𝜎𝜎𝑑𝑑  is objective function to convert the particle flux 
into a response, 𝜓𝜓  is particle flux and 𝑃𝑃  is phase-space 
including position, angle and energy space. The time 
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independent transport equation with transport operator is 
given by follows:  

 
𝛺𝛺�  ∙ 𝛻𝛻𝜓𝜓(𝑃𝑃) + 𝛴𝛴𝑡𝑡(𝑃𝑃)𝜓𝜓(𝑃𝑃) − ∫ ∫ 𝛴𝛴𝑠𝑠�𝑟𝑟,𝐸𝐸′ → 𝐸𝐸,𝛺𝛺�′ → 𝛺𝛺�� 

 
𝜓𝜓�𝑟𝑟,𝛺𝛺�′,𝐸𝐸′�𝑑𝑑𝛺𝛺�′𝑑𝑑𝐸𝐸′ = 𝐻𝐻𝜓𝜓(𝑃𝑃) = 𝑞𝑞(𝑃𝑃)          (2) 

 
where 𝛴𝛴𝑡𝑡(𝑃𝑃) total macroscopic cross section, 𝛴𝛴𝑠𝑠�𝑟𝑟,𝐸𝐸′ →
𝐸𝐸,𝛺𝛺�′ → 𝛺𝛺�� is scattering cross section from (𝑟𝑟,𝛺𝛺�′,𝐸𝐸′)  to  
(𝑟𝑟,𝐸𝐸,𝛺𝛺�), and 𝑞𝑞(𝑃𝑃) is source. Also, the adjoint form of Eq. 
(2) can be expressed as Eq. (3). 

 
−𝛺𝛺�  ∙ 𝛻𝛻𝜓𝜓+(𝑃𝑃) + 𝛴𝛴𝑡𝑡(𝑃𝑃)𝜓𝜓+(𝑃𝑃)  − ∫ ∫ 𝛴𝛴𝑠𝑠�𝑟𝑟,𝐸𝐸 → 𝐸𝐸′,𝛺𝛺� → 𝛺𝛺�′� 

 
  𝜓𝜓+�𝑟𝑟,𝛺𝛺�′,𝐸𝐸′�𝑑𝑑𝛺𝛺�′𝑑𝑑𝐸𝐸′ = 𝐻𝐻+𝜓𝜓+(𝑃𝑃) = 𝑞𝑞+(𝑃𝑃)    (3) 

 
where  𝜓𝜓+(𝑃𝑃) = adjoint flux and 𝑞𝑞+(𝑃𝑃)  = adjoint source 
corresponding with objective function in Eq. (1). The 
relationship between Eqs. (2) and (3) is not self-adjoint [11]. 
Hence, the forward and adjoint transport equations only 
have following identity with vacuum boundary condition: 

 
< 𝜓𝜓+,𝐻𝐻𝜓𝜓 > = < 𝜓𝜓 ,𝐻𝐻+𝜓𝜓+ >  

 
𝑜𝑜𝑟𝑟 < 𝜓𝜓+, 𝑞𝑞 > = < 𝜓𝜓 , 𝑞𝑞+ >                   (4) 

 
where, < > is an integration operator for phase space. Using 
Eq. (4), the response of Eq. (1) can be expressed as follows:  

 
𝑅𝑅 = ∫ 𝜓𝜓(𝑃𝑃)𝑞𝑞+(𝑃𝑃)𝑑𝑑𝑃𝑃                              

 
𝑜𝑜𝑟𝑟                                    𝑅𝑅 = ∫ 𝜓𝜓+(𝑃𝑃)𝑞𝑞(𝑃𝑃)𝑑𝑑𝑃𝑃                       (5) 

 
In stochastic theory, the variance of response in Eq. (1) 

is obtained by Eq. (6) using integration formulation. 
 

𝑉𝑉𝑉𝑉𝑟𝑟(𝑅𝑅) = ∫ 𝜓𝜓+2(𝑃𝑃)𝑞𝑞(𝑃𝑃)𝑑𝑑𝑃𝑃 − 𝑅𝑅2             (6) 
 

When the biased sampling probability is used in VRTs, 
the variance of response is differently estimated as follows: 

 

𝑉𝑉𝑉𝑉𝑟𝑟(𝑅𝑅) = ��
𝜓𝜓+2(𝑃𝑃)𝑞𝑞2(𝑃𝑃)

𝑞𝑞�2(𝑃𝑃) �  𝑞𝑞�(𝑃𝑃)𝑑𝑑𝑃𝑃 − 𝑅𝑅2    (7) 
 

where 𝑞𝑞�(𝑃𝑃) is a modified sampling probability to supersede 
the 𝑞𝑞(𝑃𝑃) . The modified source, which has a minimum 
variance, is derived by using importance sampling [12] as 
following equation: 

 

𝑞𝑞�(𝑃𝑃) =
𝜓𝜓+(𝑃𝑃)𝑞𝑞(𝑃𝑃)
∫ 𝜓𝜓+𝑞𝑞(𝑃𝑃)𝑑𝑑𝑃𝑃

=
𝜓𝜓+(𝑃𝑃)𝑞𝑞(𝑃𝑃)

𝑅𝑅
               (8) 

 
If this modified source is inserted into Eq. (7), the 

variance, then, becomes zero, formulaically. Therefore, it is 
called zero variance scheme. To apply the modified 

sampling function, the Monte Carlo particle weight is 
converted by the following equation:  

 
𝑤𝑤(𝑃𝑃)𝑞𝑞�(𝑃𝑃) = 𝑤𝑤0𝑞𝑞(𝑃𝑃)                          (9) 

 
where 𝑤𝑤0(𝑃𝑃) is the analog Monte Carlo particle weight and 
𝑤𝑤(𝑃𝑃) is the particle weight converted by a ratio of sampling 
density ( 𝑞𝑞(𝑃𝑃)/𝑞𝑞�(𝑃𝑃) ). The optimized particle weight at 
source sampling is derived by substituting Eq. (8) into Eq. 
(9) as follows: 

 

𝑤𝑤(𝑃𝑃) =
∫ 𝜓𝜓+𝑞𝑞(𝑃𝑃)𝑑𝑑𝑃𝑃

𝜓𝜓+(𝑃𝑃) =
𝑅𝑅

𝜓𝜓+(𝑃𝑃)          (10) 

 
2. Optimization for Multiple Responses 
 
A. Overview of FW-CADIS Method 
 

In the CADIS method, the multiple adjoint sources and 
responses are treated by single value as following equations:  

 

q+(𝑃𝑃) = �𝑞𝑞𝑖𝑖+
𝑁𝑁

𝑖𝑖

(𝑃𝑃)                       (11) 

 

R =  �𝑅𝑅𝑖𝑖

𝑁𝑁

𝑖𝑖

                              (12) 

 
where 𝑞𝑞𝑖𝑖+  is adjoint source for ith response and 𝑅𝑅𝑖𝑖  is ith 
response.  

As a result using Eqs. (11) and (12), only the variance 
of average response is reduced with the CADIS method. 
Thus, some responses having large error among the multiple 
responses cannot be properly considered. To accomplish 
uniformly low relative error for each response, an 
assumption, which is uniform Monte Carlo particle density 
[6] in responses, was applied in the FW-CADIS method. 
Using the concept, the adjoint source can be written as 
follows: 

 

𝑞𝑞+′(𝑃𝑃) = �
𝑞𝑞𝑖𝑖+(𝑃𝑃)
𝑅𝑅𝑖𝑖

𝑁𝑁

𝑖𝑖

                     (13) 

 
The FW-CADIS method uses Eq. (13) to get the 

optimal weights based on the CADIS methodology. Then, 
the adjoint fluxes are expressed as Eq. (14).  

 

𝜓𝜓+(𝑃𝑃) →�
𝜓𝜓𝑖𝑖+(𝑃𝑃)
𝑅𝑅𝑖𝑖

𝑁𝑁

𝑖𝑖=1

                           (14) 

 
where 𝜓𝜓𝑖𝑖+ is adjoint flux generated from ith adjoint source 
and N is the number of responses in a system. Also, the 
response in FW-CADIS method is written as follows:  
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𝑅𝑅 = �𝜓𝜓+(𝑃𝑃)𝑞𝑞(𝑃𝑃)𝑑𝑑𝑃𝑃
𝑃𝑃

 → ��
𝜓𝜓𝑖𝑖+(𝑃𝑃)
𝑅𝑅𝑖𝑖

𝑁𝑁

𝑖𝑖=1

𝑞𝑞(𝑃𝑃) 𝑑𝑑𝑃𝑃
𝑃𝑃

 (15) 

 
Also, the weight at P phase-space was derived by 

substituting Eqs. (13) and (14) into Eq. (10) as follows: 
 

𝑤𝑤(𝑃𝑃) =
� 𝑞𝑞(𝑃𝑃)∑ 𝜓𝜓𝑖𝑖+(𝑃𝑃)

𝑅𝑅𝑖𝑖
𝑁𝑁
𝑖𝑖=1 𝑑𝑑𝑃𝑃

𝑃𝑃

∑ 𝜓𝜓𝑖𝑖+(𝑃𝑃)
𝑅𝑅𝑖𝑖

𝑁𝑁
𝑖𝑖=1

              (16) 

 
B. Overview of MR-CADIS Method 
 

To get the uniform and low uncertainty, a weight to 
minimize the sum of squared relative error was derived in 
MR-CADIS method. The relative error of ith response is 
defined as follows: 

 

𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒(𝑅𝑅𝑖𝑖) =
�𝑉𝑉𝑉𝑉𝑟𝑟[𝑅𝑅𝑖𝑖2]

 𝑅𝑅𝑖𝑖
                     (17) 

 
The modified sampling probability function can be 

obtained by the following function: 
 

𝑀𝑀𝑀𝑀𝑀𝑀 ��𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖
2 �𝑞𝑞�(𝑃𝑃)�

𝑁𝑁

𝑖𝑖=1

�                     (18) 

 
where the function 𝑀𝑀𝑀𝑀𝑀𝑀[𝑓𝑓(𝑥𝑥)] is to get a variable (x) for 
minimizing 𝑓𝑓(𝑥𝑥). Eq. (18) is rewritten by substituting Eqs. 
(7) and (17) into Eq. (18) as follows: 

 

𝑀𝑀𝑀𝑀𝑀𝑀 ���
𝑞𝑞2(𝑃𝑃)𝜓𝜓𝑖𝑖+

2(𝑃𝑃)
𝑞𝑞�(𝑃𝑃)𝑅𝑅𝑖𝑖2

𝑑𝑑𝑃𝑃
𝑃𝑃

𝑁𝑁

𝑖𝑖=1

− 𝑁𝑁� 

 

   =    𝑀𝑀𝑀𝑀𝑀𝑀 ���
𝑞𝑞2(𝑃𝑃)𝜓𝜓𝑖𝑖+

2(𝑃𝑃)
𝑞𝑞�(𝑃𝑃)𝑅𝑅𝑖𝑖2

𝑑𝑑𝑃𝑃
𝑃𝑃

𝑁𝑁

𝑖𝑖=1

�              (19) 

 
N (the number of responses) on the left-hand side of Eq. 

(19) is eliminated because it does not have any meaning for 
finding minimum value. The modified source probability to 
satisfy Eq. (19) is obtained by using Lagrange multiplier 𝜆𝜆 
[13] as follows: 

 
𝐿𝐿�𝑞𝑞�(𝑃𝑃)� 

= ���
𝑞𝑞2(𝑃𝑃)𝜓𝜓+

𝑖𝑖
2(𝑃𝑃)

𝑞𝑞�(𝑃𝑃)𝑅𝑅𝑖𝑖2
𝑑𝑑𝑃𝑃

𝑃𝑃

𝑁𝑁

𝑖𝑖=1

+ 𝜆𝜆�𝑞𝑞�2(𝑃𝑃)
𝑃𝑃

𝑑𝑑𝑃𝑃�     (20) 

 
The desired source probability can be obtained at 

𝜕𝜕𝜕𝜕�𝑞𝑞�(𝑃𝑃)�
𝜕𝜕𝑞𝑞�(𝑃𝑃)

= 0  with following properties: (1) ∫ 𝑞𝑞�(𝑃𝑃)𝑑𝑑𝑃𝑃 = 1, 
and (2) 𝜓𝜓+(𝑃𝑃) > 0. The source probability to satisfy the 
above conditions is derived as following equation: 

 

𝑞𝑞�(𝑃𝑃) =

𝑞𝑞(𝑃𝑃)�∑ 𝜓𝜓𝑖𝑖+
2(𝑃𝑃)
𝑅𝑅𝑖𝑖2

𝑁𝑁
𝑖𝑖=1

�𝑞𝑞(𝑃𝑃)�∑ 𝜓𝜓𝑖𝑖+
2(𝑃𝑃)
𝑅𝑅𝑖𝑖2

𝑁𝑁
𝑖𝑖=1 𝑑𝑑𝑃𝑃

𝑃𝑃

      (21) 

 
The particle weight of MR-CADIS is, then, written by 

substitute Eq. (21) into Eq. (9) as follows:  
 

𝑤𝑤(𝑃𝑃) =

�𝑞𝑞(𝑃𝑃)�∑ 𝜓𝜓𝑖𝑖+
2(𝑃𝑃)
𝑅𝑅𝑖𝑖2

𝑁𝑁
𝑖𝑖=1 𝑑𝑑𝑃𝑃

𝑃𝑃

�∑ 𝜓𝜓𝑖𝑖+
2(𝑃𝑃)
𝑅𝑅𝑖𝑖2

𝑁𝑁
𝑖𝑖=1

      (22) 

 
 
III. Proposal of N-CADIS Method 

 
To optimize the uncertainty for multiple response 

systems, the MR-CADIS methods was deduced by 
assumption, which is minimizing the sum of squared 
relative error as shown Eq. 18. If reducing the relative error 
of a specific responses is very difficult compared with 
others responses, this assumption can make inefficiency 
such as low-flux area because a cost to reducing the relative 
error of low-flux area is higher than that for high flux area. 
In this study, to obtain uniform uncertainty, nth order 
weighted relative error, which was defined in Eq. (23), 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑡𝑡ℎ, 
was used instead of squared relative error in MR-CADIS 
method.  

 

                             𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑡𝑡ℎ  ≡
𝐸𝐸(𝑥𝑥𝑛𝑛) − 𝐸𝐸(𝑥𝑥)𝑛𝑛

𝐸𝐸(𝑥𝑥)𝑛𝑛                      (23) 

 
where 𝐸𝐸(𝑥𝑥) is the expected value of the x and n is not zero 
using this equation, the sum of nth order weighted relative 
error for multiple responses can be express as following 
equation:  
  

�𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖
𝑛𝑛𝑡𝑡ℎ

𝑁𝑁

𝑖𝑖=1

= �
𝐸𝐸𝑖𝑖(𝑥𝑥𝑛𝑛) − 𝐸𝐸𝑖𝑖(𝑥𝑥)𝑛𝑛

𝐸𝐸𝑖𝑖(𝑥𝑥)𝑛𝑛

𝑁𝑁

𝑖𝑖=1

                 (24) 

 
where 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖

𝑛𝑛𝑡𝑡ℎ  is nth order weighted relative error for an ith 
response, 𝐸𝐸(𝑥𝑥)  is the expected value of the 𝑥𝑥  for the ith 
response. The Eq. (24) means that a response having highest 
error has dominant value when n are set high order. Thus, 
uniform relative errors can be obtained by minimizing the 
sum of nth order weighted relative error. Using source 
sampling biasing, the Eq. (24) can be rewritten to Eq. (25)  
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�𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖
𝑛𝑛𝑡𝑡ℎ

𝑁𝑁

𝑖𝑖=1

= �

��𝑞𝑞
𝑛𝑛(𝑃𝑃)𝜓𝜓𝑖𝑖+

𝑛𝑛(𝑃𝑃)
𝑞𝑞�𝑛𝑛(𝑃𝑃) �  𝑞𝑞�(𝑃𝑃)𝑑𝑑𝑃𝑃

𝑃𝑃

− 𝑅𝑅𝑖𝑖𝑛𝑛   

𝑅𝑅𝑖𝑖𝑛𝑛

𝑁𝑁

𝑖𝑖=1

     

or  

�𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖
𝑛𝑛𝑡𝑡ℎ

𝑁𝑁

𝑖𝑖=1

= ���
𝑞𝑞𝑛𝑛(𝑃𝑃)𝜓𝜓𝑖𝑖+

𝑛𝑛(𝑃𝑃)
𝑞𝑞�𝑛𝑛−1(𝑃𝑃)𝑅𝑅𝑖𝑖𝑛𝑛

 𝑑𝑑𝑃𝑃
𝑃𝑃

�
𝑁𝑁

𝑖𝑖=1

− 𝑁𝑁     (25) 

 
In the same manner of Eq. (18-19), the modified PDF 𝑞𝑞� to 
minimize ∑ 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖

𝑛𝑛𝑡𝑡ℎ𝑁𝑁
𝑖𝑖=1  can be calculated by following 

equations: 
 

𝑀𝑀𝑀𝑀𝑀𝑀 ���
𝑞𝑞𝑛𝑛(𝑃𝑃)𝜓𝜓𝑖𝑖+

𝑛𝑛(𝑃𝑃)
𝑞𝑞�𝑛𝑛−1(𝑃𝑃)𝑅𝑅𝑖𝑖𝑛𝑛

𝑑𝑑𝑃𝑃
𝑃𝑃

𝑁𝑁

𝑖𝑖=1

− 𝑁𝑁�        (26a) 

 
where N is constant, which is the number of response. Thus, 
The N does not affect to find the minimum value. Therefore, 
the N in Eq.(26a) can be re-expressed as follows:  

 

       𝑀𝑀𝑀𝑀𝑀𝑀 ���
𝑞𝑞𝑛𝑛(𝑃𝑃)𝜓𝜓𝑖𝑖+

𝑛𝑛(𝑃𝑃)
𝑞𝑞�𝑛𝑛−1(𝑃𝑃)𝑅𝑅𝑖𝑖𝑛𝑛

𝑑𝑑𝑃𝑃
𝑃𝑃

𝑁𝑁

𝑖𝑖=1

�              (26) 

 
To find 𝑞𝑞�  for minimizing Eq. (25), Lagrange multiplier 𝜆𝜆 
was used as following equation:  
 

𝐿𝐿�𝑞𝑞�(𝑃𝑃)� = ���
𝑞𝑞n(𝑃𝑃)𝜓𝜓+

𝑖𝑖
n(𝑃𝑃)

𝑞𝑞�𝑛𝑛−1(𝑃𝑃)𝑅𝑅𝑖𝑖n
𝑑𝑑𝑃𝑃

𝑃𝑃

𝑁𝑁

𝑖𝑖=1

+ 𝜆𝜆�𝑞𝑞�𝑛𝑛(𝑃𝑃)
𝑃𝑃

𝑑𝑑𝑃𝑃� (27) 

 
The desired 𝑞𝑞�  can be found when a partial differential 
equation of Eq. (27) is equal to zero as follows: 
 

∂L(q�)
∂q�  

= 

−(n − 1)Σi=1N ��
𝑞𝑞n(𝑃𝑃)𝜓𝜓+

𝑖𝑖
n(𝑃𝑃)

𝑞𝑞�𝑛𝑛(𝑃𝑃)𝑅𝑅𝑖𝑖n
𝑑𝑑𝑃𝑃

𝑝𝑝
� + 𝜆𝜆∫ 𝑑𝑑𝑃𝑃 = 0 (28a) 

or  

−(𝑀𝑀 − 1)𝛴𝛴𝑖𝑖=1𝑁𝑁 �
𝑞𝑞n(𝑃𝑃)𝜓𝜓+

𝑖𝑖
n(𝑃𝑃)

𝑞𝑞�𝑛𝑛(𝑃𝑃)𝑅𝑅𝑖𝑖n
� + 𝜆𝜆 = 0          (28b) 

or  

𝑞𝑞�(𝑃𝑃) =
(𝑀𝑀 − 1)

1
𝑛𝑛

𝜆𝜆
1
𝑛𝑛

�
𝑞𝑞𝑛𝑛(𝑃𝑃)𝜓𝜓𝑖𝑖+

𝑛𝑛(𝑃𝑃)
𝑅𝑅𝑖𝑖𝑛𝑛

𝑁𝑁

𝑖𝑖=1

          (28c) 

 
The value of 𝜆𝜆

1
𝑛𝑛  can be found by using following 

properties: ∫ 𝑞𝑞�(𝑃𝑃)𝑑𝑑𝑃𝑃 = 1 and 𝜓𝜓+(𝑃𝑃) > 0 
 

𝜆𝜆
1
𝑛𝑛 =  (𝑀𝑀 − 1)

1
𝑛𝑛 ���

𝑞𝑞𝑛𝑛(𝑃𝑃)𝜓𝜓𝑖𝑖+
𝑛𝑛(𝑃𝑃)

𝑅𝑅𝑖𝑖𝑛𝑛

𝑁𝑁

𝑖𝑖=1

𝑑𝑑𝑃𝑃
𝑝𝑝

�

1
𝑛𝑛

        (29) 

 
Then, the modified pdf 𝑞𝑞� can be derived as Eq. (30) by 

substituting Eq. (29) into Eq. (28c) and rearranging 
 

𝑞𝑞�(𝑃𝑃) =
𝑞𝑞(𝑃𝑃) �∑ 𝜓𝜓𝑖𝑖+

𝑛𝑛(𝑃𝑃)
𝑅𝑅𝑖𝑖𝑛𝑛

𝑁𝑁
𝑖𝑖=1 �

1
𝑛𝑛

�𝑞𝑞(𝑃𝑃) �∑ 𝜓𝜓𝑖𝑖+
𝑛𝑛(𝑃𝑃)
𝑅𝑅𝑖𝑖𝑛𝑛

𝑁𝑁
𝑖𝑖=1 �

1
𝑛𝑛
𝑑𝑑𝑃𝑃

𝑝𝑝

             (30) 

 
Finally, the weight function to minimize the sum of nth 

order weighted relative error for multiple responses was 
derived by substituting Eq. (30) into Eq. (9) as shown 
follows: 

 

𝑤𝑤(𝑃𝑃) =

�𝑞𝑞(𝑃𝑃) �∑ 𝜓𝜓𝑖𝑖+
n(𝑃𝑃)
𝑅𝑅𝑖𝑖𝑛𝑛

𝑁𝑁
𝑖𝑖=1 �

1
𝑛𝑛

  𝑑𝑑𝑃𝑃

𝑃𝑃

�∑ 𝜓𝜓𝑖𝑖+
n(𝑃𝑃)
𝑅𝑅𝑖𝑖n

𝑁𝑁
𝑖𝑖=1 �

1
n

          (31) 

 
In Eq. (31), when n' are set by 1, it becomes FW-

CADIS method; and, if n' is set by 2, Eq. it becomes MR-
CADIS method. 

 
IV. EVALUATION AND COMPARISON  

 
The FW-CADIS method is well applicated in SCALE6 

[14] and ADVANTG [15] code. To obtain the weight by the 
FW-CADIS method using those code, only two 
deterministic calculation were required as follows: (1) a 
forward calculation to get values for multiple responses 𝑅𝑅𝑖𝑖 
in Eq. (16); (2) an adjoint calculation using adjoint sources 
devided by forward response. In the case of the MR-CADIS 
and N-CADIS method, the nth order responses 𝑅𝑅𝑖𝑖𝑛𝑛 in Eq. (31) 
can calculated by general deterministic calculation. 
However, n squared adjoint flux 𝜓𝜓𝑖𝑖+

𝑛𝑛 cannot be efficiently 
calculated by existent deterministic transport code. For 
applying the N-CAIDS method in realistic problem, 
deterministic tansport code must be developed to get n 
squared adjoint fluxes. In this time, development of a 
deterministic transport code for the N-CADIS is difficult for 
us to achieve. Thus, in this study, the weight function Eq. 
(31) was modifed to Eq. (32) using weight function of the 
CADIS method to easily apply the proposed method.  
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𝑤𝑤(𝑃𝑃) =

�𝑞𝑞(𝑃𝑃) �∑ 1
𝑤𝑤𝑖𝑖′𝑛𝑛(𝑃𝑃)

𝑁𝑁
𝑖𝑖=1 �

1
𝑛𝑛

  𝑑𝑑𝑃𝑃
𝑃𝑃

�∑ 1
𝑤𝑤𝑖𝑖′𝑛𝑛(𝑃𝑃)

𝑁𝑁
𝑖𝑖=1 �

1
n

          (32) 

 
where 𝑤𝑤𝑖𝑖′(𝑃𝑃) is a weight function for ith response estimated 
by the CADIS method, Eq. (10). To get the adjoint flux and 
response from each response for weight equation, 
DENOVO, which is module to calculate forward and adjoint 
fluxes using SN method in SCALE 6 [14], was used with 5 
cm × 5 cm × 5 cm uniform meshes, 16 quadrature set and 
10-5 tolerance for criterion the flux conversion. The Monte 
Carlo calculation was performed by MCNPX 2.7 [16] using 
weight window VRT. 

 
1. Calculation Model 

 
To understand the performance of N-CADIS method, a 

shielding problem was set as shown in Fig. 1. The concrete 
shielding block having 200 cm × 200 cm × 200 cm with 2.3 
g/cm3 density was used, and isotopic point gamma source 
having 1 MeV energy is located in the center of the concrete 
box. The Response function is set to the flux. It is recorded 
in the 40 cm × 40 cm × 20 cm unit mesh as shown in Fig. 1.  
 

 
          (a) Radial View                             (b) Axial View  
Fig. 1 Schematic Drawing of the Shielding Problem 

 
2. Results Comparison 

 
To compare the efficiency with the methods, two kinds 

of figure of merit (FOM) [17] were used. First, mean based 
FOM is given as follows: 

 

𝐹𝐹𝐹𝐹𝑀𝑀𝑚𝑚𝑚𝑚𝑉𝑉𝑀𝑀 = 1
𝑅𝑅�2𝑇𝑇 

                            (24) 

𝑅𝑅� =
1
𝑁𝑁
�𝑅𝑅𝑖𝑖,𝑒𝑒𝑒𝑒𝑒𝑒

𝑁𝑁

𝑖𝑖

                               (25) 

where T is the computational time and 𝑅𝑅𝑖𝑖,𝑒𝑒𝑒𝑒𝑒𝑒  is the relative 
error for ith response. In this study, computational time does 
not include deterministic transport calculation time. 

therefore, only Monte Carlo simulation time was used.  
Second, tail based penalty FOM is given as follows:  

 

𝐹𝐹𝐹𝐹𝑀𝑀𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡 =
1

[𝑅𝑅�2 + �𝜅𝜅𝑅𝑅3 �
1
4 𝜎𝜎𝑅𝑅]𝑇𝑇 

        (26) 

 
where 𝜅𝜅𝑅𝑅  is kurtosis to express the shape of relative error 
distribution and 𝜎𝜎𝑅𝑅  is relative uncertainty of variance for 
multiple responses. For result of N-CADIS method, order n 
was set to 10 because higher order can make infinite value 
when estimating weight value. The computational time of 
MCNPX simulation was set by 100 min to clearly compare 
the calculation efficiencies. 

Fig. 2 is the maps of total flux and relative error. The 
gamma fluxes calculated by each method show good 
agreement within 2 sigma level. However, the relative errors 
at the corner of mesh tally calculated by the N-CADIS 
method show the lowest value compared to those of other 
methods. Table I is the detail information for the result. The 
FOMmean of the result estimated by the N-CADIS method 
was increased by factor 1.87 and 1.36 compared to those of 
FW-CADIS and MR-CADIS, respectively. Also, the 
FOMtail from N-CADIS was improved by the factor 2.03 
and 1.46, respectively.  
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 (a) Total Flux (B) Relative Error 
Fig.2 Total Flux and Relative Error Distribution using FW-CADIS, 
MR-CADIS and N-CADIS method  
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Table I Relative Error and FOM values From FW-CADIS, MR-CADIS and N-CADIS method 

 FW-CADIS MR-CADIS N-CADIS 
Ratio 

 (N-CADIS  
/FW-CADIS) 

Ratio  
(N-CADIS 

/FW-CADIS) 

Maximum Relative Error 0.96 × 10−2 0.79 × 10−2 0.63 × 10−2 0.66 0.80 

Average Relative Error 0.58 × 10−2 0.49 × 10−2 0.42 × 10−2 0.72 0.86 

FOMmean 301.67 415.59 565.48 1.87 1.36 

FOMtail 203.46 282.50 413.55 2.03 1.46 

 
 
V. CONCLUSION 

 
In this study, the N-CADIS method was proposed to 

optimize the relative errors for multiple responses using a 
concept that minimizing the sum of nth order weighted 
relative error for the individual response can achieve 
uniformly low uncertainty. To evaluate and compare the 
efficiency of the N-CADIS method, a shielding problem 
was estimated. The mean based and tail-based penalty 
FOMs using N-CADIS method was improved by factor 2.03 
and 1.46 compared to FW-CADIS. However, the 
computational time for FOM values does not include 
deterministic calculation time to estimate weight map. 
Therefore, it was concluded that if a deterministic code to 
estimate nth order squared adjoint particle transport is 
developed, the proposed N-CADIS method can create 
improved efficiency.  
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