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Abstract – The large-scale application of Monte Carlo (MC) to fixed-source problems has recently 
become possible with new hybrid methods that automate obtaining parameters for variance reduction 
techniques. Two common variance reduction techniques, which are the weight window and source biasing, 
have been automated and popularized by the consistent adjoint-driven importance sampling (CADIS) 
method. This method uses the adjoint solution from an inexpensive deterministic calculation to define a 
consistent set of weight windows and source particles for a subsequent MC calculation. One of the 
motivations for source consistency is to avoid the splitting or rouletting of particles at birth, which requires 
computational resources. However, it is not always possible or desirable to implement such consistency, 
which results in inconsistent source biasing. This paper develops an original framework that 
mathematically expresses the coupling of the weight window and source biasing techniques, allowing the 
authors to explore the impact of inconsistent source sampling on the variance of MC results. A numerical 
experiment supports this new framework and suggests that certain classes of problems may be relatively 
insensitive to inconsistent source sampling schemes with moderate levels of splitting and rouletting.     

 
 

 
I.  INTRODUCTION 

 
Many common Monte Carlo (MC) variance reduction 

techniques rely on weight windows to control the statistical 
weight of particles during transport in order to minimize the 
variance of flux or reaction rate tallies in a specified region 
of phase space (i.e., position, energy, direction).  For these 
techniques, it is well-known that the optimal particle weight 
at each phase location in a problem is given by the 
objective-driven adjoint flux for that location [1].  Particles 
with weight outside of a predefined window about the 
optimal weight are subjected to rouletting or splitting 
(which adjust the weight in a fair manner) in order to 
maintain the weight within the weight window.  This weight 
adjustment applies at particle events where the weight 
changes (e.g., birth, collisions) as well as when particles 
move between regions of phase space with different weight-
window parameters. 

In early implementations of weight-window variance 
reduction methods, inconsistencies between the radiation 
source distribution and the weight window parameters for 
the simulation resulted in source particles produced with 
weights that lie outside of the weight window for the 
corresponding birth state of the particle.  Source particles 
produced with an inconsistent birth weight are immediately 
subjected to weight adjustment (splitting or roulette), which 
is widely believed to decrease the overall effectiveness of 
the weight-window variance reduction scheme. 

In 1998, Wagner and Haghighat introduced the 
consistent adjoint-driven importance sampling (CADIS) 
method for creating adjoint-based sets of weight-window 

parameters based off of a deterministic estimate for the 
adjoint flux [2].  In addition, Wagner and Haghighat showed 
that the deterministic estimate of the adjoint flux can also be 
used to define a biased source definition that is consistent 
with the weight-window parameters.  Here, consistent 
means that source particles from the biased source are born 
with a weight that lies at the center point of the weight 
window corresponding to the initial (birth) phase state of the 
particle.  The development of a method for simultaneously 
creating a consistent source along with the weight-window 
parameters was a significant advancement and is a major 
advantage of the CADIS method.  The same consistency is 
also found in the forward-weighted CADIS (FW-CADIS) 
method used to calculate global MC solutions [3].  
However, even with the advancement of the CADIS 
method, there are some situations where it can be difficult to 
ensure a completely consistent source distribution, and, 
therefore, the CADIS method cannot be applied as intended. 

For example, the biased source produced by CADIS is 
based on an estimate of the adjoint flux distribution 
produced from a deterministic solution method, typically the 
discrete ordinates (SN) method.  As a result, the adjoint flux, 
and the resulting biased source distribution, are discretized 
over space, energy, and direction.  In order to reduce the 
amount of time required to generate weight-window 
parameters, a relatively coarse discretization may be used to 
estimate the adjoint flux [3].  While the discretized biased 
source produced from CADIS is guaranteed to be consistent 
with the corresponding weight-window parameters, the 
CADIS source does not preserve higher-order information 
about the source distribution, which causes discretization 
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error within the sampled MC source.  In practice, many MC 
codes that use CADIS simply assume that source particles 
are uniformly distributed within each discretized “bin” of 
the CADIS source.  However, this assumption may still lead 
to a bias in the results from the MC transport simulation, 
especially for cases where there is detailed structure in the 
true source distribution, such as the energy spectrum of a 
decay source.  Any modification of the source distribution 
to reduce this bias may lead to inconsistencies between the 
adjusted source and the original weight-window parameters. 

In other situations, the radiation source may be “pre-
sampled” from a preceding calculation and stored as a 
census file containing detailed state information about the 
source particles.  This scenario is common when generating 
secondary radiations during MC transport (e.g., (n,γ) or (γ,n) 
reactions), exchanging information between MC eigenvalue 
and fixed source calculations, or in SN/MC or MC/MC 
splice calculations where particles that reach a pre-defined 
“trapping surface” are stored for use in a subsequent MC 
simulation [4].  In these cases, it is straightforward to 
collapse the particle census into a discretized source 
representation for use in CADIS.  However, replacing the 
census source by the discretized representation would 
eliminate valuable information stored in the census, such as 
the correlations between the position, energy, and direction 
of each particle, and is not a practical solution for many 
splice calculations.  Therefore, retaining the particle census 
introduces inconsistent source sampling into the subsequent 
MC calculation. 

In addition, for some types of analyses, it is desirable to 
generate a single set of weight-window parameters that can 
be used with a range of similar model configurations, often 
representing source, geometry, or composition perturbations 
with respect to a single reference scenario.  In these cases, 
the CADIS method is well-suited for determining the 
weight-window parameters and a consistent source for the 
reference configuration, but it can become expensive if the 
weight-window parameters and/or the consistent biased 
source must be regenerated for every model perturbation.  In 
practice, a single set of weight-window parameters is often 
used for all of the model perturbations, regardless of 
whether each source distribution is actually consistent with 
the weight-window parameters. 

Finally, we note that, although the CADIS method has 
proven to be extremely successful, there are still weight-
window variance reduction techniques in use [5,6], and 
under development, that do not produce a consistent biased 
source distribution, for a variety of reasons. 

For any situation where an inconsistent source 
distribution may be used with weight-window variance 
reduction, it is important to have a clear understanding of 
the effects of weight adjustment via splitting or rouletting 
immediately following particle birth.  Although the 
conventional wisdom maintains that any weight adjustment 

at birth will reduce the effectiveness of the weight-window 
variance reduction, no systematic, formal investigation of 
this conjecture has ever been performed to our knowledge.  
Although it appears self-evident that frequently adjusting 
the initial weight of source particles is counterproductive, it 
seems reasonable that a small amount of weight adjustment 
for source particles may be acceptable for many 
applications.  However, such a conclusion requires a 
thorough characterization of the effect of inconsistent source 
sampling based on the degree of inconsistency. 

In this paper, we develop a mathematical framework for 
quantifying the impact of inconsistent source sampling on 
the variance of tallied quantities in a MC simulation.  The 
derived relationships are supported with results from 
numerical experiments and provide a foundation for 
additional analyses tailored to a variety of specific 
applications. 

  
II.  EXPECTED VARIANCE BY SAMPLE SCHEME 

 
In this section, we derive the expected variance in 

estimated response for several different source sampling 
schemes.  Before proceeding it is useful to define notation 
and significant statistical relationships that will be used 
throughout the remainder of the paper. 
 
1.  Notation and Basic Relationships 
 

In MC transport methods, each history can be viewed as 
the combination of two separate realizations: the initial 
(birth) state of the source particle, denoted x, and the 
response of the history as measured against some 
predetermined objective, denoted r.  In this context, we have 
assumed that the initial particle state, x, is a vector that 
includes properties such as the birth energy, position, and 
direction of the particle, and that the response, r, is a scalar 
value.  Note that these are arbitrary assumptions and may be 
changed without loss of generality. 

To an external observer, ignorant of the inner workings 
of the MC transport algorithm, it appears that each history 
produces a realization (x,r) from the joint probability 
density function (PDF) p(x,r).  Based on the properties of 
joint probability distributions it follows that the expected 
value and variance of any function f(x,r) applied to a 
realization of the joint PDF is given by, 
 
      E , , ,f r f r p r d dr



 
    x x x x  (1) 

 
and 
 
       22Var , E , E , ,f r f r f r         x x x  (2) 
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where Γ is the domain for the birth state of the particle. 
Note that the joint PDF p(x,r) can be written as the 

product of conditional and marginal probability 
distributions, p(x,r) = p(r|x) p(x).  In this case, the expected 
value of the function f(x,r) can be expressed as 

 
        E , E E , | E , | ,r rf r f r f r p d


              xx x x x x x x  (3) 

 
where 
 
      E , | , | ,r f r f r p r dr




   x x x x  (4) 

 
and subscripts have been included on the expectation 
operators to clarify which variable the expectation is taken 
with respect to.  The relationship in Eq. (3) is commonly 
referred to as the fundamental property of conditional 
expected values, the law of total expectation, or the law of 
iterated expectation. 

Similarly, the law of total variance can be used to 
express the variance of f(x,r) in terms of the conditional 
probability, 
 
      Var , E Var , | Var E , | ,rf r f r f r                 xx x x x x (5) 

 
where 
 
       2

Var , | E , E , | | .r rf r f r f r          
x x x x x x  (6) 

 
Note that Eq. (5) demonstrates that the total variance of 

f(x,r) includes two components: the variance due only to the 
randomness of r for a fixed value of x, referred to as the 
transport variance, and the variance due to the effect of the 
randomness of x on the conditional distribution p(r|x), 
referred to as the source variance.  The use of the 
conditional probability is often used for analysis of MC 
radiation transport algorithms because it explicitly shows 
the dependence of the response on the initial state of a 
particle. 

Now that the notation and relevant statistical 
relationships have been established, we will consider the 
variance of the estimated response for several different 
source sampling schemes. 

   
2.  Unbiased Sampling Scheme 
 

Consider a fair MC transport process where each 
particle history i begins with an initial particle state 

ix  
sampled from the distribution p(x) and produces a 
corresponding response 

ir  according to the probability 
distribution p(r|x).  As described in the previous section, the 
initial state and corresponding response can be viewed as 

either sequential (conditional) realizations, or as a single 
realization of the ordered pair ( , )i irx   from the joint PDF 
p(x,r). 

For a simulation with N independent particle histories, 
an estimate for the expected response can be computed with 
the unbiased sample statistic 
    

 
1

1
ˆ = .

N

r i
i

r
N



   (7) 

 
The variance of the response can be estimated using the 

sample variance statistic 
     

  22

1

1
ˆ ˆ ,

1

N

r i r
i

s r
N




 
    (8) 

 
which is an unbiased estimator for the variance of the 
response r, 
 
      Var E Var | Var E |rr r r       x x x  (9) 

 
by the law of total variance (Eq. (5)). 

In this context, the first term in Eq. (9) has the physical 
interpretation as the variance due to the randomness of the 
transport process (transport variance), while the second term 
is the variance due to the randomness of the initial birth 
state of each source particle (source variance). 

Finally, we note that the variance of the sum of 
uncorrelated variables is equal to the sum of the variance of 
the individual random variables (a relationship referred to in 
some texts as the Bienaymé formula), which allows the 
variance of the estimator for the mean response ˆr  to be 
written as 
 

    
2

1 1

Var1 1
Var Var Var .

N N

r
i i

r
r r

N N N


 

        
   
   (10) 

 
Substituting Eq. (9) into Eq. (10) yields the final expression 
 

      E Var | Var E |
Var .r

r

r r

N N


       x x x  (11) 

 
3.  Importance Sampling Scheme 
 

The previous section established the basic estimators 
for the expected response and associated variance using 
only unbiased realizations from the joint distribution p(x,r).  
However, it is well-known that the variance of the expected 
response can be reduced via importance sampling [7].  In 
adjoint-driven importance sampling the underlying source 
distribution (in this case p(x)) is altered so that the initial 
particle state is drawn from a distribution that is 
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proportional to the corresponding response of the source.  In 
order to preserve the original source distribution, the 
observed response of the particles is weighted in proportion 
to the ratio of the probabilities of the initial state in the 
original and modified probability distributions. 

For the MC radiation transport process let us define a 
biased source distribution p′(x) such that 
 
      , | .p r p r p x x x  (12) 

 
The corresponding weighting factor for each state point is 
given by 
 

    
 .

p
w

p
 

x
x

x
 (13) 

 
With importance sampling the unbiased statistic for 

estimating the expected response is 
 

  imp

1

1
ˆ = ,

N

r i i
i

w r
N




 x   (14) 

 
where 

ix  denotes a source state realization sampled from 
the modified distribution p′(x′). 

Similarly, the sample variance statistic 
     

   22 imp
,imp

1

1
ˆ ˆ ,

1

N

r i i r
i

s w r
N




 
  x   (15) 

 
is an unbiased estimator for Var[w(x′)r], where 
 
      Var E Var | Var E | .rw r w r w r                      xx x x x x (16) 

 
Recognizing that the weight factor w(x′) is a constant with 
respect to the variance of r | x′, the first term on the right 
hand side of Eq. (16) can be rewritten as 
 
      2E Var | Var | .w r E w r           x xx x x x  (17) 

 
Applying the definition for the expectation operator Ex′ to 
Eq. (17) yields 
 
        2E Var | Var | .w r r w p d 

           x x x x x x x  (18) 

 
Using Eq. (13) to relate p(x′) = w(x′) p′(x′) and switching 
the dummy variable of integration from x′ to x allows Eq. 
(18) to be rewritten as  
 
        E Var | Var | ,w r w r p d 

       x x x x x x x  (19) 

 
which can be written in expectation notation as 

      E Var | E Var | .w r w r          x xx x x x  (20) 

 
Substituting Eq. (18) into Eq. (16) gives and expression for 
the response variance under importance sampling. 
 
          Var E Var | Var E | .rw r w r w r            xx x x x x (21) 

 
Note that the first term on the right hand side of Eq. (21) is 
expressed in terms of the expectation and variance with 
respect to the original source distribution, p(x), rather than 
the modified distribution p′(x). 

Finally, applying the Bienaymé formula for the 
variance of the sum of uncorrelated variables to Eq. (14) and 
using the result for Var[w(x′) r] gives the final variance for 
the statistic impˆr  
 

        imp
E Var | Var E |

Var .r

r

w r w r

N N


           
x x x x x  (22) 

  
Comparing Eqs. (22) and (11) illustrates the effect of 

importance sampling via the presence of the weight 
parameter w(x) in each term.  It is particularly interesting to 
note that the weighting parameter affects both the transport 
variance and source variance terms.  The effect on the 
transport variance term is somewhat surprising, as it 
suggests that importance sampling schemes that emphasize 
initial birth states with above-average response (transport) 
variance may diminish the effectiveness of importance 
sampling for reducing total variance. 

The objective of the importance sampling scheme 
described in this section is to reduce the total variance of the 
response by altering the distribution of source states in an 
unbiased way.  When importance sampling is applied to a 
process that involves a probability distribution of only one 
variable, say p(x), it is known that the optimal weighting 
function for calculating the expected value of any response 
function f(x) is given by w(x) = E[f(x)]/f(x).  In fact, this 
optimal weight gives Var[w(x)f(x)] = 0 by ensuring that 
each sample gives a response that is exactly equal to the 
expected response E[f(x)]. 

However, the identification of an optimal weighting 
function for importance sampling is not as straightforward 
when dealing with a joint probability distribution.  By 
analogy with the single-variable case it seems reasonable to 
assume that the weight should be defined as 
 

  
   

 
E |

,
E |

r

r

r p d
w

r
 

x x x
x

x
 (23) 

 
which is the ratio of the mean total response to the mean 
response conditioned on the initial state x.  In fact, it can be 
immediately shown that the weighting function defined in 
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Eq. (23) optimizes the variance associated with the selection 
of an initial source state by eliminating the source variance 
term (Var[Er[w(x′) r | x′] = 0).  Again, this is due to the fact 
that the weighting function ensures that each source state 
contributes exactly the same expected response. 

Applying the weight function in Eq. (23) to the 
equation for total variance of the response, Eq. (21), yields 
 

  
 

 
   

Var Var |
,

E E |r

w r r
p d

r r

        
 


x x
x x

x
 (24) 

 
which shows that the relative variance of the total response 
is equal to the average of the relative variance for all of the 
conditional responses taken with respect to the true source 
distribution p(x). 

Note that the use of importance sampling for the source 
state does not eliminate the variability in observed response 
due to the transport process (transport variance).  In order to 
achieve a true zero-variance process it is necessary to also 
adjust the transport process so that each initial state has the 
same observed response, not just the same expected 
response as shown above. 

In consistent-source variance reduction methods, the 
source weighting function is chosen based on Eq. (23), in 
order to minimize (or eliminate) the source variance term.  It 
follows that this importance weighting function does not 
necessarily minimize the total variance of the response, as 
demonstrated by the example problem described in the 
results section of this summary.  For simplified problems, it 
is possible to show that weighting function obtained by 
minimizing both the transport and source variance terms in 
Eq. (21) produces a lower total variance.  Generalized 
conditions for the optimum weighting function have not 
been derived.  However, it should be noted that results from 
preliminary testing covering a range of possible model 
conditions suggest that the zero-source-variance weighting 
function given in Eq. (23) produces responses within a few 
percent of the optimal variance for realistic situations. 

 
4.  Source Splitting Scheme 
 

Next, let us consider a generalization of the expected 
response estimator in which source particles are split at birth 
and multiple independent realizations are generated for each 
initial state point. 

For a Monte Carlo simulation with N′ independently-
sampled state points and M independent realizations for 
each initial state point, the unbiased importance sampling 
statistic for estimating the expected response is 
    

   split split
,

1 1 1

1 1 1
ˆ = | ,

N M N

r i j i M i
i j i

w r
N M N

 
 

  

  
   x x    (25) 

 

where  |j ir x   is a realization from the conditional 
distribution p(r|x′i), and split

,M i  is a realization of the random 
variable obtained by taking the sample mean of the 
responses due to transporting M replicates of initial source 
state .ix   Note that the variable split

M  is actually a function 
of a realization taken from the joint probability distribution 

 1, , , Mp r rx  .  Such a realization is not physically realistic, 
because it implies that a single source site will induce M 
response realizations.  However, the joint realization is an 
accurate representation of MC particle transport with source 
particle splitting.  Furthermore, we note that the response 
variables r1,…,rM are conditionally independent, which 
means that each variable is conditionally dependent on the 
random variable x, but independent from all of the other 
response variables.  The property of conditional 
independence allows the joint PDF for the birth state and M 
responses to be written as 
 
          1 1

1

, , , , , | | .
M

M M j
j

p r r p r r p p p r


  x x x x x   (26) 

 
Further recognizing that all of the response realizations are 
taken from a common conditional PDF, p(rj | x) = p(r | x) 
for all rj , allows the joint PDF in Eq. (26) to be written as 
 
       1, , , | .

M

Mp r r p p rx x x  (27) 

 
Returning to the expected response estimator, splitˆr  

defined in Eq. (25), it follows that the corresponding sample 
variance statistic 
     

   
2

2 split
,split

1 1

1 1
ˆ ˆ| ,

1

N M

r i j i r
i j

s w r
N M




 

 
      

  x x   (28) 

 
is an unbiased estimator for split

,Var M i   , where 
 
 split split split

, , ,Var E Var | Var E | .M i M i r M i                     x x x  (29) 

 
Fortunately, Eq. (29) can be recast into a more 

meaningful form.  We begin by expanding the first term 
(transport variance) on the right-hand side of Eq. (29) 
 

    split
,

1

1
E Var | E Var | .

M

M i j
j

w r
M

 


  
                

x xx x x x  (30) 

 
Recognizing that the number of replicates, M, and the 
weight factor w(x) are independent of the replicate number 
and response variance allows Eq. (30) to be rewritten as  
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x
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Because the realizations of (rj | x) are conditionally 
independent, it is possible to apply the Bienaymé formula to 
write 
 

    2

split
,

E Var |
E Var | .M i

w r

M
 



        
x

x

x x
x  (32) 

  
Finally, we apply the procedure outlined in Eqs. (18) – (20) 
to write Eq. (32) in terms of the expected value with respect 
to the unbiased source distribution, p(x) 
 

    split
,

E Var |
E Var | .M i

w r

M


       
x

x

x x
x  (33) 

 
Returning to the second term (source variance) in Eq. 

(29), we can again expand this term and factor out constants 
to give 
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M

r M i r j
j

w
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
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               


x
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Applying the definition of the conditional expected value 
for the response, Eq. (4), gives 
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, 0

1
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M

r M i j j j
j

w
r p r dr

M



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

x
x x  (35) 

 
Because the random variables rj are conditionally 
independent and drawn from the same probability 
distribution p(r | x), it follows that 
 

    

   

split
, 0

Var E | Var |

                             Var E | .

r M i

r

w r p r dr
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
           
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x x x
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 (36) 

 
Substituting Eqs. (33) and (36) into Eq. (29), gives the 

final simplified expression for the variance of split
M  

 

    split
,

E ( )Var |
Var Var ( )E | .M i r

w r
w r

M


           
x x x

x x  (37) 

 
Inspection of Eq. (37) indicates that source splitting 

only affects the transport variance term, and that the total 
response variance per source sample will decrease as the 
splitting factor M increases. 

Equation (37) gives the variance for the mean response 
of M replicates for a single source state.  The variance for 
the mean response over N′ independent trials, splitˆr , can be 
determined by applying the Bienaymé formula to Eq. (25), 
then substituting the expression in Eq. (37), to yield 
 

    split
E Var ( ) | Var ( )E |

ˆVar .r

r

w r w r

M N N


             
x x x x x  (38) 

 
A comparison of Eq. (38) with the variance for 

importance sampling without splitting (Eq. (22)) shows that 
the only difference between the expressions is the presence 
of the 1/M factor in the first term of Eq. (38).    Note that if 
the number of source samples are held constant between 
importance sampling with and without source splitting (e.g., 
N′ = N), source splitting will cause the overall response 
variance to go down, due to a decrease in the transport 
variance term.  This makes sense, as the source replicates 
are reducing the statistical uncertainty in the response 
associated with transporting radiation from each sampled 
initial particle state. 

However, if N′ and M are constrained such that the total 
amount of transport work is held constant (M N′ = N), a 
question arises regarding optimal allocation of resources 
between M and N′.  In cases where the source variance is 
larger than the transport variance the optimal allocation is to 
maximize the number of source particles, N′ = N, and use 
only one replicate for each source.  However, as the 
magnitude of the source variance becomes small relative to 
the transport variance, the penalty (i.e., increase in total 
variance) associated with source splitting decreases.  In the 
limiting case, when the source variance is equal to zero (i.e., 
all weighted source sites produce the same expected 
response), the total response variance is not affected by 
source splitting.  

This observation leads to several interesting 
conclusions.  First, this result confirms the long-held 
conventional wisdom that source splitting will increase the 
variance of tallied quantities in simulations for which it is 
used, assuming that total work is held constant.  However, 
the result also shows that the increase in variance due to 
splitting may be small in cases where the source variance is 
small relative to the transport variance.  This second result is 
especially intriguing when recalling that importance 
sampling is used to minimize the source variance term.  
Thus, in this regime, source splitting may be used to correct 
for an inconsistent source distribution without a significant 
increase in total response variance. 

 
5.  Source Rouletting Scheme 
 

Let us now consider an expected response estimator in 
which source particles are subjected to Russian roulette at 
birth.  For a Monte Carlo simulation with N′ independently-
sampled state points the unbiased importance sampling 
statistic for estimating the expected response with Russian 
roulette is  
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  roulette roulette
,

1 1

1 1
ˆ = ,

N N
i i i

r M i
i i

b w r

N M N
 

 

 




  
x     (39) 

 
where 

ir  and 
ix are realizations from the joint distribution  

p′(x′ ,r), and 
ib  is a realization from a Bernoulli distribution 

with probability of success given by M (for M ≤ 1), and 
roulette

,M i  is a realization of the random variable obtained by 
setting the response equal to zero with probability (1-M).  
Note that the random variable b determines whether each 
particle will survive the roulette process, and is completely 
independent from the random variables x and r.  

In this case, the sample variance statistic 
     

  
2

2 roulette
,roulette

1

1
ˆ ˆ ,

1

N
i i i

r r
i

b w r
s

N M






 
      


x    (40) 

 
is an unbiased estimator for rouletteVar M   , where 
 

    2 2

rouletteVar E E ,M

b w r b w r

M M


     
              

x x  (41) 

 
which can be factored to yield 
  
       2 22roulette 2

2

1
Var E E ( ) E E ( ) ,M b w r b w r

M
            x x  (42) 

 
because the realizations of (x′,r) are independent from the 
realizations of b.  Recognizing that E[b2] = M and E[b]2 = 
M2 for a Bernoulli distributed random variable enables Eq.  
(42) to be simplified, giving 
  
    2roulette 1 1

Var Var ( ) E .M

M
w r r

M M
      x  (43) 

 
Again, the variance for the mean response over N′ 

independent trials, rouletteˆr , can be determined by applying 
the Bienaymé formula to Eq. (39), then substituting the 
expression in Eq. (43) to yield 
 
    2roulette 1 1

ˆVar Var ( ) E .r

M
w r r

MN MN
       

x  (44) 

 
For comparison with the corresponding variance for 

importance sampling with (Eq. (22)) and without splitting 
(Eq. (38)), the previous result for Var[w(x′) r] given in Eq. 
(21) can be applied to Eq. (44), giving an alternate form 
 

 
   

     

roulette

2

E Var |
ˆVar

Var E | 1
                                E .

r

r

w r

MN

w r M
r

MN MN


      

     
 

x x x

x x

 (45) 

 

From Eq. (44) it is clear that applying Russian roulette 
will always cause the response variance to increase relative 
to importance sampling for a fixed number of source 
samples (N′ = N).  This increase is due both to a decrease in 
the denominator of each term because M < 1, as well as the 
presence of an extra additive term proportional to the square 
of the expected response. 

 If N′ and M are constrained such that the total amount 
of transport work is held constant (M N′ = N), Eq. (44) 
shows that rouletting will always produce an increase in 
response variance relative to a traditional importance 
sampling scheme (Eq.(22)).  Again, this variance penalty 
appears as an additive term, which is proportional to          
(1-M)·E[r]2.  Unlike the splitting scheme considered 
previously, which was dependent on the biased source 
distribution used for importance sampling, the variance 
penalty for rouletting only depends on the roulette survival 
probability and the expected response.  Interestingly, Eq. 
(44) indicates that there is no increase in variance when 
rouletting particles in a system where the expected response 
is zero.  
 
6.  Generalized Weight Adjustment Scheme 
 

In Sections II.4 and II.5, formulations for the response 
variance in the presence of source splitting (for an integer 
split ratio) and source rouletting were presented, 
respectively.  In this section we derive a common response 
estimator that can be used for both source rouletting and 
splitting, including non-integer splitting ratios. 

For a Monte Carlo simulation with N′ independently-
sampled state points the generalized sampling statistic for 
estimating the expected response is 
    

    general general
,

1 1 1

1 1 1
ˆ = | ,

MN N

r j i j i M i
i j i

b w r
N M N

 
   

  

   
   x x     (46) 

 
where  |j ir x   is a realization from the conditional 
distribution p(r|x′i), jb  is a realization from a Bernoulli 
distribution with probability of success given by ,M M    

general
,M i  is a realization of the random variable obtained by 

taking the sample mean of the responses due to transporting 
M    replicates of the initial source site x  , and the symbol 

    denotes a ceiling operation such that M    is the 
smallest integer that is larger than M.  As described in 
Section II.4, the variable general

M  is actually a function of a 
realization taken from the conditionally-independent joint 
probability distribution  1, , , Mp r rx  .  In addition, the 
Bernoulli realizations 

ib  are assumed to be unconditionally 
independent from the random variables x and r. 

Note that in Eq. (46) the parameter M determines how 
the weight adjustment is performed, with M < 1 causing 
source rouletting, M > 1 causing source splitting, and M = 1 
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reverting to standard importance sampling.  It is also 
important to recognize that the estimator defined in Eq. (46) 
automatically accounts for non-integer splitting ratios by 
adjusting the effective splitting ratio upward to the integer 
value M    and then applying rouletting to eliminate the 
excess particles produced during splitting. 

Based on the form of Eq. (46) it follows that the 
corresponding sample variance statistic 
     

    
2

2 general
,general

1 1

1 1
ˆ ˆ| ,

1

MN

r j i j i r
i j

s b w r
N M


   

 

 
        

  x x     (47) 

 
is an unbiased estimator for general

,Var M i   , where 
 
 general general general

, , ,Var E Var | Var E | .M i M i r M i                     x x x  (48) 

 
Again, Eq. (48) can be simplified into a more intuitive form, 
following the same general approach as applied in Section 
II.4. 

As usual, we begin by expanding the first term on the 
right-hand side of Eq. (48) and moving constant factors out 
of the variance operator, which gives 
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x
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 (49) 

 
Recognizing that the realizations from b  are 

independent and the rj variables are conditionally 
independent allows application of the Bienaymé formula to 
Eq. (49), resulting in  
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2

general
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w M
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M
 

            
 

x x

x
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By the definition of variance and the independence of 

the random variables b′ and r, it follows that 
 
       22 2Var | E E | E E | .b r b r b r            x x x  (51) 

 
For a Bernoulli distribution with probability of success 

,M M   it is straightforward to show that the expected 
value of b′ and b′2 are   2E E .b b M M         
Substituting these values and Eq. (51) into Eq. (50) and 
simplifying gives  
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x x

x
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(52) 

Again, we apply the procedure outlined in Eqs. (18) – 
(20) to write Eq. (52) in terms of the expected value with 
respect to the unbiased source distribution, p(x) 
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(53) 

 
Returning Eq. (48), expanding the second term, and 

moving constant factors outside of the expectation operator 
gives 
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Because the random variables b′ and rj are independent 

and all of the rj variables are sampled from a common 
probability distribution it follows that  
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Since  E ,b M M      Eq. (55) reduces to 
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Substituting Eqs. (53) and (55) into Eq. (48), gives the 

final simplified expression for the variance of split
M  
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(57) 

 
Again, the variance for the mean response over N′ 

independent trials, generalˆr , can be determined by applying 
the Bienaymé formula to Eq. (46), then substituting the 
expression in Eq. (57), giving 
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(58) 

 
It is possible to show that the variance for the 

generalized weight adjustment estimator (Eq. (58)) reduces 
to: the variance of the source splitting estimator (Eq. (38)) 
when M is an integer value > 1, the variance of the roulette 
estimator (Eq. (44)) when M < 1, and the variance of the 
original importance sampling estimator (Eq. (22)) when M = 
1, as expected. 
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III.  INCONSISTENT SOURCE SAMPLING 
 
In order to extend the previous results to an inconsistent 

source sampling scheme, consider a MC simulation where 
the desired birth particle distribution and weight is given by 
the functions p′(x) and w(x), respectively, but inconsistent 
importance sampling is used to actually sample the initial 
particle states from an alternate distribution, p*(x), with 
associated particle weights w*(x).  The sampled particle 
states can be converted to the desired weight, w(x), by 
applying an unbiased splitting/rouletting process with 
weight adjustment factor 
 

    
 

 
 

*

*
.

p w
M

p w


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x x
x

x x
 (59) 

 
Recall that the splitting/rouletting process will terminate or 
increase the weight of particles where M(x) < 1 and will 
split and decrease the weight of particles when M(x) > 1. 

Note that the analyses in the previous section assumed 
either all splitting or rouletting (with a constant weight-
adjustment factor M) for source particles, whereas a realistic 
inconsistent source sampling scheme using Eq. (59) will 
involve both splitting and rouletting, with a phase-space-
dependent weight adjustment factor.  However, it is still 
possible to make general observations of the expected 
behavior(s) based on Eqs. (38) and (44) that result from the 
simplified analysis.  

In an inconsistent sampling scheme the 
splitting/rouletting process effectively redistributes the time 
spent on transport for each initial particle by not 
transporting (and recording zero response for) some particle 
states that are oversampled (relative to the target distribution 
p′(x)) and simulating multiple realizations for particle states 
that are undersampled.  It is important to note that the 
expected number of transported particles (including 
replicates) is preserved by the splitting/rouletting process. 

Previous work has noted that inconsistent source 
sampling is computationally inefficient due to the cost of 
rouletting and splitting source particles at birth [2,3]. 
However, the cost of the rouletting and splitting operations 
is typically small when compared to the cost of the transport 
for the redistributed particles.  Thus, the computational 
inefficiency from inconsistent source sampling appears to be 
caused by the increase in the total variance of the response 
generated by the redistributed particles rather than by the 
process of weight adjustment itself.    

Although the total amount of transport work is 
conserved between splitting and rouletting events, Eqs. (38)
and (44) suggest that splitting and rouletting may have very 
different effects on the total variance of the response.  The 
increase in variance due to splitting depends on the variance 
of the response with respect to only the sampled source 

distribution, while the increase in variance due to rouletting 
depends on the expected response for the system. 

Thus splitting is favorable in regions where the sampled 
source particle weight is close to the optimal weight (Eq. 
(23), which causes the source variance term to go to zero) or 
for problems/regions where the source variance term is 
naturally small.  Rouletting is favorable when the expected 
response for the source particle is close to zero.  These 
observations suggest that it may be possible to improve the 
variance for an inconsistent source distribution by uniformly 
rescaling the number of source samples/initial particle 
weights to emphasize either splitting or rouletting as 
appropriate. 

It is also important to note that the conditions where 
splitting/rouletting do not increase variance (zero source 
variance for splitting, and zero response for rouletting) are 
well-aligned with the ideal source distribution for weight 
window variance reduction techniques such as CADIS.  For 
example, applying splitting to particles sampled from a 
nearly-ideal consistent source will not produce a significant 
increase in response variance because the source variance 
term is close to zero.  Similarly, the variance increase for 
rouletting is minimized in regions with the lowest expected 
response, which is exactly where roulette is most likely to 
occur when sampling from an inconsistent source 
distribution. 

Based on these observations and preliminary analytical 
and numerical results, it appears that the penalty (increased 
variance per unit work) associated with using an 
inconsistent source sampling scheme for MC simulations 
with weight window variance reduction is strongly 
dependent on the nature of the problem (e.g., the source 
variance term) as well as the deviation between the sampled 
source distribution and the optimal source distribution. 

Before proceeding, it is worthwhile to discuss the 
context of the theoretical analysis presented in this paper, 
along with the known limitations of the analysis and 
opportunities for future investigations.  By assuming that 
the weight adjustment parameter, M, is constant, the 
analysis presented in this work effectively decouples the 
variance penalty associated with splitting and rouletting 
from the expected weight adjustment associated with a 
particular inconsistent source definition.  That said, the 
systematic and qualitative analysis of the weight adjustment 
variance penalty (parameterized by the factor M) establishes 
a solid foundation for subsequent analyses of particular 
inconsistent source sampling strategies. 

In addition, the characterization of the variance for a 
general importance sampling source method in terms of the 
biased source distribution p′(x) and the associated weighting 
function w(x) (Section II.3) enables a quantitative 
assessment of the variance penalty associated with using 
importance sampling with a non-optimal biased source 
distribution.  This is especially significant because it opens 
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the possibility of analytically determining the effects of 
weight-window discretization (in space and energy) on 
response variance. 

Ideally, the analyses presented in this paper should be 
extended to account for phase-space-dependent weight 
adjustment parameters, M(x), which depend on the 
importance sampling weighting function, w(x), as shown in 
Eq.  (59).   

Alternatively, it is worth noting that the variance of a 
phase-space-dependent weight-adjustment scheme can be 
approximated by discretizing the phase space into a set of 
volumes k, each with a constant weight adjustment 
parameter Mk.  If the set of discretized phase volumes 
partition the entire phase-space then the combined variance 
of a source sample in the problem can be derived from the 
Law of Total Variance, giving 
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 (60) 

 
where the variance and expectation terms on the right-hand 
side of Eq. (60) are conditioned on the initial source site 
being produced in volume k.  Although cumbersome, it is 
possible to expand Eq. (60) using the appropriate variance 
expression from Section II for each volume k in order to 
yield an estimate for the overall variance of the response.  
Note that as the number of partitions K is increased, the 
variation of the weight adjustment parameter in each 
partition will decrease, thus improving the suitability of the 
variance estimates produced in Section II.  

 
IV.  NUMERICAL RESULTS 
 

In order to confirm the analytical results regarding the 
variance for importance sampling, both with and without 
splitting and rouletting, a series of numerical tests were 
conducted using a simplified system. 

The test scenario uses a discrete two-region geometry 
where source particles are born in either region A or B, each 
with source probability 0.5.  For particles born in region A 
the response r is normally distributed with rA = 5 and σA

2 = 
1.  For region B, the response is normally distributed with rB 
= 3 and σB

2 = 1.  For this situation, it can be shown that the 
average response is 3r   and the variance of the response 
is 2 4.r    A simple program was written to sample source 
sites and the corresponding responses using the importance 
sampling schemes described in Section 2 and then compute 
the variance based on the observed population of responses. 

Figure 1 illustrates the dependence of the transport 
variance, source variance, and total variance terms from Eq. 
(21) for importance sampling (without splitting or 

rouletting) as a function of the importance sampling source 
weight for region A, denoted wA.  Also shown is the sample 
variance based on 10,000 independently sampled source 
locations for 100 sample weight wA values.  Note that while 
the source variance term is zero for wA = 0.6, as predicted 
by Eq. (23), the minimum response variance actually occurs 
at a slightly higher value of wA = 0.6287 as a result of the 
interplay between the source and transport variance terms, 
as described in Section 2. 

Figures 2a and b show the response variance as a 
function of sampled weight wA and splitting factor/roulette 
survival probability M.  Both cases (splitting and rouletting) 
show simulations for 100 values of wA for 5 different values 
for M from 1.0 to 10.0 for splitting and 0.1 to 1.0 for 
rouletting.  In each simulation, the total amount of transport 
work was maintained constant by adjusting the number of 
source samples N′ such that N′·M = 10,000.  Inspection of 
the results shows excellent agreement with Eqs. (38) and 
(44), as expected. 

    
V.  CONCLUSIONS 

 
This summary provides a novel analysis of the variance 

associated with importance sampling both with and without 
uniform splitting and rouletting.  In this analysis, the law of 
total variance is used to demonstrate the interplay between 
two separate sources of variance when importance sampling 
schemes are used: variance due to the transport process 
itself and variance due to the effect of the source 
distribution.  Results of the analysis demonstrate that both 
splitting and rouletting tend to increase total response 
variance in proportion to either the source variance term 
(splitting) or the expected response for the system 
(rouletting).  These observations, in turn, can be used to 
predict the potential effects of an inconsistent source 
sampling scheme on total response variance.  Based on the 
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Fig. 1.  Response variance as a function of importance 
sampling weight for region A.  Theoretical results for 
transport, source, and total variance are shown, along 
with experimental results for total variance. 
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analysis of the variance performed for the different weight 
adjustment schemes it appears that the penalty associated 
with inconsistent source sampling is strongly dependent on 
the inherent response variability of the problem itself as well 
as the difference between the source distribution used for 
sampling and the optimal (i.e., adjoint-driven) importance 
sampling source distribution.  Early testing also suggests 
that certain classes of problems may be relatively insensitive 
to inconsistent source sampling schemes with moderate 
levels of splitting and rouletting. 
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Fig. 2.  Response variance as a function of importance sampling weight for region A including source splitting (a) and 
rouletting (b) for various particle split/survival factors. 


