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Abstract - We have extended a high-order low-order (HOLO) algorithm for thermal radiative transfer problems
to include Monte Carlo (MC) integration of the time variable. Within each discrete time step, fixed-point
iterations are performed between a high-order (HO) exponentially-convergent Monte Carlo (ECMC) solver
and a low-order (LO) system of equations. The ECMC algorithm integrates the angular intensity over a time
step, and the low-order (LO) radiation equations are closed consistently in the time variable. The time closure
increases accuracy in optically-thin problems compared to a backward Euler discretization. The LO system is
based on spatial and angular moments of the transport equation and a linear-discontinuous finite-element
(LDFE) spatial representation, producing equations similar to the standard S2 equations. The emission source
is fully implicit in time, and Newton iterations efficiently resolve the nonlinear temperature dependence of
the LO equations at each time step. The HO solver computes angular and temporal consistency terms that
preserve the accuracy of the MC integration in the LO equations. We have implemented the ECMC algorithm
with linear and constant, doubly-discontinuous trial spaces. Numerical results demonstrate that the second
discontinuity in the time variable is necessary for sufficient consistency to achieve stable convergence, for
the chosen closure of the LO equations. Results are compared to an implicit Monte Carlo (IMC) code and
the HOLO algorithm with a BE time discretization. One-dimensional, gray test problems were tested for a
range of optical thicknesses. The HOLO algorithm is more efficient and accurate than IMC with sufficient
mesh resolution and number of particle histories.

I. INTRODUCTION

Accurate solutions to the thermal radiative transfer (TRT)
equations are important for simulations in the high-energy,
high-density physics regime, e.g., for inertial confinement
fusion and astrophysics. Computational modeling of TRT
problems features coupling between a photon radiation field
and a high-temperature material, where energy is exchanged
through absorption and emission of photons by the material.
Typical applications often require solution in a mix of stream-
ing and diffusive regions due to absorption-emission physics
and cross sections that are a function of material temperature.
In this work, we improve on the time-integration accuracy of a
high-order low-order (HOLO) method in optically thin regions
where particles stream without undergoing many interactions,
while preserving the computational efficiency of a residual
MC HO solver in optically thick regions.

Moment-based hybrid Monte Carlo (MC) methods have
demonstrated great potential for accelerated solutions to TRT
problems [1, 2, 3]. These nonlinear acceleration methods
iterate between a high-order (HO) transport equation and a
low-order (LO) system formulated with angular moments and
a fixed spatial discretization. Physics operators that are expen-
sive for the HO solver to resolve directly in tightly coupled
problems, e.g., photon absorption and emission, are moved to
the LO system. The lower-rank LO equations can be solved
with Newton methods to allow for nonlinearities in the LO
equations to be efficiently resolved [4, 2]. The high-order (HO)
problem is defined by the radiation transport equation with
isotropic sources computed with the previous LO solution. A
MC transport solution to the HO problem is used to construct

consistency terms that appear in the LO equations. These
consistency terms preserve the accuracy of the HO solution in
the next LO solve, as the two solutions iteratively converge.

Previously, residual MC methods have been used to pro-
vide efficient solution to the HO transport problem [1, 2];
high-fidelity solutions, with minimal statistical noise, have
been achieved for problems with optically-thick, diffusive re-
gions that lead to slowly varying solutions. However, the
algorithms in previous work have used a backward Euler (BE)
discretization for the time variable. The BE discretization can
inaccurately disperse radiation wavefronts in optically thin
problems, leading to inaccuracies.

We have extended the algorithm in [2] to include higher-
accuracy MC treatment of the time variable for the radia-
tion unknowns. The exponentially-convergent Monte Carlo
(ECMC) algorithm was modified to include integration of the
time variable; this includes the introduction of a step, doubly-
discontinuous (SDD) trial space representation in time. We
have also investigated a linear, doubly-discontinuous (LDD)
and a linear-discontinuous (LD) projection in time. The overall
higher-dimensionality of the linear spaces requires develop-
ment of a modified sampling approach that should be useful for
extending the ECMC algorithm to higher spatial dimensions.
A new parametric closure of the LO equations, introducing
additional time-closure consistency terms, was derived to cap-
ture the time accuracy of the HO ECMC simulations. The
LO equations can preserve the accuracy of the ECMC radi-
ation transport treatment in time, with the same numerical
expense as Backward Euler (BE) time-discretized S2 equa-
tions. We have derived the LO equations directly from the
transport equation such that, neglecting spatial discretization
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differences, the HO and LO solutions are consistent upon
convergence, preserving space-angle-time moments. Herein
we briefly describe the algorithm, and we present results for
one-dimensional (1D), grey test problems. We compare our
method to the implicit MC (IMC) method [5] for accuracy and
statistical efficiency for several representative problems.

1. Thermal Radiative Transfer Background and IMC

The continuous 1D, grey TRT equations consist of the
radiation and material energy rate equations, i.e.,

1
c
∂I(x, µ, t)

∂t
+ µ

∂I(x, µ, t)
∂x

+ σaI(x, µ, t) =
1
2
σaacT 4(x, t) (1)

ρcv
∂T (x, t)
∂t

= σaφ(x, t) − σaacT 4(x, t), (2)

with appropriate initial and boundary conditions specified.
In the above equations, x is the position, t is the time, µ is
the x-direction cosine of the angular intensity I(x, µ, t), σa
is the macroscopic absorption cross section (cm−1), and a,
c, ρ, and cv are the radiation constant, speed of light, mass
density, and specific heat, respectively. Physical scattering
could be included in Eq. (1), but it is omitted for brevity
and simplicity. The desired transient unknowns are the ma-
terial temperature T (x, t) and the scalar radiation intensity
φ(x, t) =

∫ 1
−1 I(x, µ, t) dµ. The scalar intensity is related to the

radiation energy density Er by the relation Er = φ/c. The
equations can be strongly coupled through the gray Planck-
ian emission source σaacT 4, which is a nonlinear function of
temperature, and the absorption term σaφ. In optically thin
problems, with small σa, the solution becomes increasingly
linear as the emission source becomes negligible.

We will compare results in this work to the implicit Monte
Carlo (IMC) method. The IMC method [5] is the standard
approach for solution of the TRT equations with Monte Carlo
particle transport [6]. The IMC method partially linearizes
the system of equations over a discrete time step, with mate-
rial properties evaluated at the previous-time-step temperature.
The linearized system produces a transport equation with an
approximate emission source and an effective scattering cross
section representing absorption and re-emission of photons
over a time step [5]. This transport equation is advanced over
a time step via a MC simulation. The MC transport simula-
tion tallies energy absorption over a discretized spatial mesh,
which can be used to directly estimate a spatially discretized
representation of the end of time step material temperature.

For this work, we are primarily interested in comparing
to the time discretization of IMC. The material temperature
and emission source are discretized with an implicit time dis-
cretization, i.e., a BE discretization. However, because the
linearization is approximate, the system is not truly implicit,
and there is a limit on the time step size to produce physi-
cally accurate results in problems that are tightly coupled and
strongly nonlinear [7]. The linearized equations are integrated
over the n-th time step defined for t ∈ [tn−1/2, tn+1/2], with
width ∆t = tn+1/2 − tn−1/2 and center tn = tn−1/2 + ∆t/2. The
radiation equation is solved via MC simulation of particle his-
tories, with the time-averaged energy deposition tallied over
the spatial mesh. The time-integrated radiation equation, in

nonlinear form, is

In+1/2(x, µ) − In−1/2(x, µ) =

∆t
σn−1/2

a I(x, µ) − µ
∂I(x, µ)
∂x

+
1
2
σaac

(
T n+1/2

)4
(x)

 . (3)

The end-of-time-step intensity In+1/2(x, µ) ≡ I(x, µ, tn+1/2) is
stored as “census” particles that have reached tn+1/2, represent-
ing a continuous sample of the phase space at that particular
time [5], to be used in the next time step. In strongly dif-
fusive regions, the accuracy will be limited to first order by
the time discretization of the temperature terms. However,
in optically-thin regions, higher-accuracy for the radiation
terms is achieved. It is noted that the time-averaged effective
scattering source resulting from linearization of the emission
source in IMC is treated approximately in the time variable to
allow the MC simulation to simulate the isotropic scattering
events [6, 5].

2. The High-Order Low-Order Algorithm

Previously, we have developed a HOLO algorithm for
1D TRT problems, based on BE time-discretized HO and LO
equations [2]. In the time-discrete HOLO algorithm, the LO
solver resolves the time-discrete material temperature spatial
distribution T n+1/2(x) over each time step, whereas the HO
solver computes weighted angular integrals of the intensity.
The HOLO formulation has several desirable properties. In
particular, the LO solver can efficiently converge nonlinearities
in diffusive systems, without the need to solve the nonlinear
equations with MC simulation. Because the nonlinearities
are converged, the temperature and emission source have a
truly implicit discretization, preserving the discrete maximum
principle [8]. Additionally, by using the ECMC HO solver,
solutions with minimal statistical noise can be achieved effi-
ciently, preventing instability issues that may be introduced
through noise in the consistency terms.

To achieve temporal accuracy similar to IMC, we com-
pute weighted temporal integrals of the intensity with the HO
solver, used for computing additional consistency terms. We
must assume a time discretization for the temperature field
to produce a linear HO transport problem with closable LO
equations. As in the IMC method, a BE time discretization
is applied to emission source throughout, but the radiation
variables are left in terms of time-averaged and end-of-time-
step unknowns. Currently, our residual formulation requires
a space-angle LDFE projection of the solution in order to
estimate I(x, µ, tn+1), rather than the continuous sample repre-
sented by the census in IMC. This projection can be inaccurate
with insufficient mesh resolution in near-void problems. How-
ever, the LDFE projection of the solution, estimated with MC
inversion of the linear transport operator, will greatly increase
the accuracy over a standard finite-difference discretization
of the radiation equation. The HOLO algorithm should still
demonstrate improvement over IMC in efficiency and accuracy
in problems with intermediate and large optical thickness.

The fully-discrete LO equations are based on space-time-
angle moments of the TRT equations, formed over a spatial
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finite-element (FE) mesh. Angularly, the LO radiation equa-
tions are similar to S2 equations, with element-averaged con-
sistency parameters that are time-averaged, intensity-weighted
averages of µ. The angular treatment is analogous to the hybrid
method in [9]. A lumped LDFE spatial discretization (e.g.,
see [10]) is used to close the system spatially. Additional con-
sistency parameters must be introduced to the LO equations to
eliminate the auxiliary time-unknowns from the LO radiation
equations. The additional time consistency terms are based
on parametric modifications to a standard time discretization.
Once closed, a system of equations is formed for the primary
moment unknowns. If the angular and time consistency pa-
rameters were exact, then the LO equations would produce the
exact moments of the solution, neglecting spatial discretiza-
tion differences between the two systems. The HO consistency
parameters are lagged in each LO solve. The LO equations
always conserve energy, independent of the accuracy of the
consistency terms.

The solution to the LO system is used to construct a spa-
tially LDFE, and temporally constant, representation of the
emission source on the right hand side of Eq. (1). This de-
fines a fixed-source, pure absorber transport problem for the
HO operator. This HO transport problem is solved with the
ECMC algorithm. The HO transport problem can be viewed
as a characteristic method, where we are using ECMC to in-
vert the continuous-streaming, time-derivative, and removal
operators [2]. The ECMC algorithm is an iterative residual
MC method that uses batches of MC histories to estimate
the error in the current trial-space estimate of I(x, µ, t). It
is noted that because we are not using mesh adaptation in
this work, exponential convergence in iterations cannot gen-
erally be maintained, but reduced variance overall can still
be achieved. The initial guess for each solve is based on the
solution from the previous time step, which allows for efficient
reduction of statistical noise in problems with minimal change
over the time step. The output from ECMC is a projection
Ĩ(x, µ, t) of the intensity onto the chosen finite-element trial
space, i.e., the functional representation of the intensity. Once
computed, Ĩ(x, µ) is used to directly evaluate the necessary
LO angular and time-closure consistency parameters. The HO
solution is not used to directly estimate a new temperature at
the end of the time step, which eliminates the need to linearize
the emission source for stability.

Iterations between the HO and LO solves can increase
accuracy in strongly nonlinear problems. However, for the
problems tested here, only a single HO solve is performed
during each time step. Thus, the HOLO algorithm, for the n-th
time step, is

1. Perform a LO solve to produce an initial guess for
T n+1/2

LO (x) and φn+1/2
LO (x), based on angular consistency

terms estimated with Ĩn−1/2(x, µ) and a BE time discretiza-
tion.

2. Solve the HO system for ĨHO(x, µ, t) using ECMC, based
on the current LO estimate of the emission source.

3. Compute LO angular and time-closure consistency pa-
rameters with ĨHO(x, µ, t).

4. Solve the LO system using HO consistency parameters
to produce a new estimate of φn+1/2

LO and T n+1/2
LO .

5. Store Ĩn+1/2(x, µ) → Ĩn−1/2(x, µ), and move to the next
time step.

II. THE LO SYSTEM

We will define the LO equations and closure before detail-
ing the HO solver that is used to compute consistency terms
present in the LO equations. To derive the LO equations, we
reduce the dimensionality of Eq. (1) and Eq. (2) by taking spa-
tial, angular, and temporal integrals. We will then introduce
approximations to close the system, while being as consistent
with the HO solver as possible.

The spatial domain is divided into Nc uniform spatial
cells. The spatial moments are taken over each spatial cell i:
x ∈ [xi−1/2, xi+1/2], weighted with the standard linear FE basis
functions. For example, the left moment operator is defined
by

〈·〉L,i =
2
hi

∫ xi+1/2

xi−1/2

bL,i(x)(·)dx, (4)

where hi = xi+1/2 − xi−1/2 is the width of the spatial ele-
ment and bL,i(x) = (xi+1/2 − x)/hi is the basis function cor-
responding to position xi−1/2. The right moment is defined
with basis function bR,i(x) = (x − xi−1/2)/hi. Angularly, the
equations are integrated over the positive and negative half
ranges. The angular integrals of the intensity are defined as
φ±(x) = ±2π

∫ ±1
0 I(x, µ)dµ. Finally, the equations are inte-

grated over the n-th time step defined for t ∈ [tn−1/2, tn+1/2]
with width ∆t = tn+1/2 − tn−1/2 and center tn.

The L and R moments and + and − half-range integrals
are applied in pair-wise combination to Eq. (1), followed by in-
tegration over the time step. After algebraic manipulation, this
ultimately produces 4 moment equations per spatial element.
The streaming terms in the resulting equations are manipu-
lated to form averages of µ, weighted with basis functions and
the time-averaged intensity, analogous to previous work [2, 9].
The emission source and temperature-dependent cross sections
are approximated with a BE discretization to help close the
system. For example, application of the 〈·〉L,i moment with the
positive half-range integral to Eq. (1) ultimately yields

〈φ〉+,n+1/2
L,i − 〈φ〉+,n−1/2

L,i

c∆t
−2µ+

i−1/2φ
+

i−1/2+{µ}
+

L,i〈φ〉
+
L,i+{µ}

+

R,i〈φ〉
+
R,i

+ σn+1/2
a,i hi〈φ〉

n+1/2,+
L,i =

hi

2
〈σn+1/2

a acT n+1/2,4〉L,i, (5)

where over-barred quantities represent the exact averaging
over the time step. A more thorough derivation and definitions
for all of the moment equations can be found in [11].

At this point, the only approximation has been the BE
time-discretization of the emission source in both governing
equations. The face- and volume-averaged angular consistency
terms, e.g., µ+

i−1.2, were formed only through algebraic manipu-
lation. They are approximated with angular intensity from the
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previous HO solve. For example, the L and + time-averaged
consistency term is

{µ}
+

L,i,HO '

2
hi∆t

tn+1/2∫
tn−1/2

1∫
0

xi+1/2∫
xi−1/2

µ bL,i(x)ĨHO(x, µ, t)dxdµdt

2
hi∆t

tn+1/2∫
tn−1/2

1∫
0

xi+1/2∫
xi−1/2

bL,i(x)ĨHO(x, µ, t)dxdµdt

, (6)

where ĨHO(x, µ, t) is a space-angle-time finite element projec-
tion of the HO intensity, to be later defined. It is noted that
this consistency term contains no division by σa, so these
equations are directly valid in a void.

For simplicity, the face terms φ±i±1/2 are eliminated from
the system using a lumped LDFE spatial approximation, with
standard upwinding [2]. The emission source is also rep-
resented with a lumped LDFE interpolant. There is some
inconsistency introduced in the lumped LDFE spatial approxi-
mations. Assuming iterative convergence of consistency terms,
the LO solution and projection of the HO solution may differ
for any given spatial mesh, but the two solutions will con-
verge as the mesh is refined. This approximation has proven
stable for problems tested and demonstrates preservation of
the equilibrium diffusion limit [11]. Boundary conditions are
incorporated through upwinding and the face term resulting
from integration of the streaming operator.

The material energy equations are similarly integrated in
space and time. The lumped LDFE approximation is introduce
for T (x) and T 4(x) to close the equation spatially, along with
the BE time discretization for the emission source. The L
moment temperature equation is

ρicv,i

∆t

[
T n+1/2

L,i − T n−1/2
L,i

]
+ σn+1/2

a,i

(
〈φ〉+L,i + 〈φ〉−L,i

)
= σn+1/2

a,i ac
(
T n+1/2

L,i

)4
, (7)

where cross sections have been evaluated at tn+1/2 and TL,i and
TR,i are the LD edge values of the temperature, e.g., T (x) =
bL,i(x)TL,i + bR,i(x)TR,i for x ∈ (xi−1/2, xi+1/2).

1. Parametric Time Closure with HO information

At this point, there is still too many unknowns in the
LO equations. Quantities at tn−1/2 are known from the pre-
vious time step or an initial condition, but a a relation is
needed between the time-averaged radiation quantities and
their corresponding values at tn+1/2. The closure of each
LO equation must account for inconsistencies in the time-
discretization of the two solvers. Previous work, applied
to radiation-hydrodynamics problems, has enforced consis-
tency in time by adding a local artificial source to the time-
discretized LO equations in each cell [3]. This source was
based HO estimate of the difference in the integral treatments
of the time derivative between the HO and LO systems. The
advantage of this form is that the LO solver exclusively deals
in time-averaged unknowns for the radiation terms in the equa-
tions. Alternatively, we will use a local, parametric closure to

directly eliminate the auxiliary temporal radiation unknowns,
introducing additional consistency terms.

Equation (5) will only contain time-averaged radiation un-
knowns if 〈φ〉n+1/2

L,i is eliminated from the system. The simplest
closure is a weighted average

〈φ〉+,n+1/2
L,i ≈ γ+

L,i,HO〈φ〉
+
L,i, (8)

where γ+
L,i,HO is a time-closure consistency parameter. The

consistency parameter can be determined from Eq. (8) by
using moments of IHO(x, µ) and In+1/2

HO (x, µ), i.e.,

γ+
L,i,HO =

〈φHO〉
+,n+1/2
L,i

φ
+

L,i,HO

. (9)

Because the time-closures account for the different spatial
moment equations, there is four per spatial cell. For a linear
problem, as long as the HO solution used to compute this clo-
sure satisfies the same moment equations as the LO system, or
is at least an accurate approximation to the moment equations,
then the closure relation will stably provide consistency.

The unknowns of interest are 〈φ〉±L,i, 〈φ〉
+
R,i, T n+1/2

L,i , and
T n+1/2

R,i . The four spatially-closed radiation moment equations
per cell, the HO approximation of the angular consistency
terms, the two temperature moment equations, and the para-
metric time closures (e.g., Eqs. (5), (6), (7), and (8)) provide
sufficient equations to solve for these unknowns. Summa-
tion of the moment equations over all cells and application of
boundary conditions defines a global, nonlinear LO system of
equations. This discrete system of equations is solved using a
hybrid Newton-Picard method, as in previous work [2]. The
linearized equations produce scattering terms that couple the
two directions together, which can be directly inverted in 1D.
The LO system is fully converged within each solve. Once
time-averaged unknowns have been calculated, the local time
closures provide φn+1/2

LO (x) for the next time step.
For the initial LO solve, within a time step, the angular

parameters are calculated based on the Ĩn−1/2
HO (x, µ) and all γ

values are set to unity, producing a BE discretization. Other
closures, e.g., a modified Crank-Nicolson, have been explored.
In optically thin problems, the problem is nearly linear, and the
choice of this closure has minimal effect on results because all
other auxiliary unknowns have been consistently eliminated
from the system with HO information (with the exception of
the spatial closure). However, for optically thick problems
with high statistical noise, the Crank-Nicolson introduced
some instabilities.

III. THE RESIDUAL MC HIGH ORDER SOLVER

1. Trial Space Representation

To apply the ECMC algorithm [12, 2], it is necessary to
have a functional representation of the intensity for all phase
space variables so a residual can be evaluated. A finite ele-
ment representation is formed in x, µ, and t. The domain is
divided into a uniform grid, where the element with the i-th
spatial, j-th angular, and n-th temporal indices spans the do-
mainDi jn : xi−1/2 < x < xi+1/2×µ j−1/2 ≤ µ ≤ µ j+1/2× tn−1/2 <
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t ≤ tn+1/2. We have implemented three different trial space
representations for the intensity in t. However, in x and µ,
the intensity is always represented with an LDFE projection,
which we will denote Ĩ(x, µ). The LDFE projection preserves
the zeroth and first moments in x and µ of the intensity. Stan-
dard upwinding [10, 2] is used to define the solution on faces
for evaluating terms resulting from the spatial derivative in the
streaming term. The LDFE projection is not guaranteed to be
positive. Before computing consistency terms, any detected
negative values for Ĩn+1/2(x, µ) or Ĩn(x, µ) are made positive
by uniformly decreasing the slopes or setting the average to
the floor temperature in some cases (see [11] for more details).
In time, values at tn−1/2 are upwinded from the previous time
step for both trial spaces.

The first time space is a step, doubly-discontinuous (SDD)
trial space, with the time variable illustrated in Fig. 1b. The
SDD trial space representation for I(x, µ, t) is

Ĩ(x, µ, t) =


Ĩn−1/2(x, µ) t = tn−1/2

Ĩn(x, µ) t ∈ (tn−1/2, tn+1/2)
Ĩn+1/2(x, µ) t = tn+1/2

(10)

where we have used Ĩn to denote the time-averaged LDFE
projection in x and µ of the intensity over the interior of the
time step; the LDFE projections at tn−1/2 and tn+1/2 are de-
noted Ĩn−1/2 and Ĩn+1/2, respectively. The SDD trial space
provides a projection for all the desired unknowns that result
from time integration of the transport equation; it provides
sufficient information to close the LO equations and evaluate
the temporal consistency terms. Another benefit of this trial
space is it allows for the residual sampling infrastructure from
the time-discrete formulation of this algorithm to be used with
minor modifications.

The second trial space is the LDD trial space in time, as
illustrated in Fig. 1b, with an LDFE representation in x and µ.
For a particular space-angle-time element, this trial space is
defined as

Ĩ(x, µ, t) =


Ĩn−1/2
i j (x, µ) t = tn−1/2,

Ĩn
i j(x, µ) + 2

∆t I
n
t,i j (t − tn) , t ∈ (tn−1/2, tn+1/2),

Ĩn+1/2
i j (x, µ) t = tn+1/2

(11)

where Ĩn
i j(x, µ) is the time-averaged LDFE projection in x and

µ over Di jn and In
t,i j is the finite-element slope of I(x, µ, t)

averaged overDi jn, i.e.,

In
i j =

6
∆t

$
Di jn

(
t − tn

∆t

)
I(x, µ, t) dxdµdt. (12)

Thus, there is a unique time slope for each element.
We will also test problems for an LD trial space in time.

The only difference from the LDD trial space is that there
is no discontinuity at tn+1/2. To compute consistency terms
and advance to the next time step, the LD approximation of
Ĩ(x, µ, t) is simply evaluated at tn+1/2, extrapolating to the end
of the time step. This introduces an additional approximation
error for In+1/2(x, µ), and leads to a HO solution that does not

Ĩn−1/2
HO (x, µ)

t

tn tn+1

Ĩn
HO(x, µ)

Ĩn+1/2
HO (x, µ)

(a) SDD trial space

Ĩn−1/2
HO (x, µ)

t

tn tn+1

Ĩn
HO(x, µ)

Ĩn+1
HO (x, µ)

(b) LDD trial space

Fig. 1: Illustration of the time variable for ĨHO(x, µ, t) with
two unique trial spaces.

as closely satisfy the exact moment equations (e.g., Eq. (5)),
as accurately as the LDD trial space. This inconsistency can
lead to instabilities in the LO equations for rapidly varying
solutions.

2. The Algorithm

The transport equation to be solved by ECMC is given by
Eq. (1), but with a fixed LDFE Planckian emission source that
is estimated by the previous LO solve. We write the equation
in operator notation as

LI(x, µ, t) = qLO(x) (13)

where qLO = σaac
(
T n+1/2

)4

LO
/2 denotes the latest estimate of

the emission source, and remains constant for the entire HO
solve. The continuous linear transport operator L is

LI(x, µ, t) ≡
[
1
c
∂

∂t
+ µ

∂

∂x
+ σa

]
I(x, µ, t). (14)

The m-th approximate solution to Eq. (13) is Ĩ(m)(x, µ, t),
where m identifies the MC batch. The m-th residual is

r(m) = q − LĨ(m). (15)

Addition of the residual equation to Eq. (13) gives the error
equation

L(I − Ĩ(m)) = Lε(m) = r(m), (16)

where I(x, µ, t) is the exact solution to Eq. (13) (which contains
approximation error from the representation of Ĩn−1/2(x, µ) and
qLO), and ε(m) is the error in Ĩ(m).
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The inverse of L in Eq. (16) is estimated via MC sim-
ulation without discretization error. This is a standard MC
simulation, where particle histories are tracked in space, angle,
and time, e.g., in IMC [5, 6, 11]. Particle histories are sampled
from the source r(m)(x, µ, t), as explained below. Tallies of the
error particles estimate moments of ε(m), which are added to
the moments used to construct the finite-element representa-
tion Ĩ(m). In operator notation, we denote this as ε̃(m) = L−1r(m).
The LDFE projections of the error ε and εn+1/2 are computed
using generalizations of volumetric path-length and particle
density estimators. The estimators are weighted by appropri-
ate basis functions over each element. For the algorithm with
the SDD trial space, particles are allowed to stream without
interaction, and the tallies are adjusted accordingly [2]. The
details of the tallies specific to this work are given in Sec. V.

The ECMC algorithm is

1. Initialize Ĩ(0)(x, µ, t) with Ĩn−1/2(x, µ).

2. Compute r(m).

3. Estimate ε̃(m) = L−1r(m) with N Monte Carlo histories.

4. Compute Ĩ(m+1) = Ĩ(m) + ε̃(m)

5. Optionally repeat 2 – 4 for desired number of batches.

The use of Ĩn−1/2(x, µ) as the initial guess greatly increases
statistical efficiency in regions of the problem where the so-
lution is slowly varying. For the LDD and LD trial spaces,
we also initialize the time slopes with the corresponding val-
ues from the previous time step. If the error is sufficiently
estimated each batch, both statistically and with the projected
trial-space representation, then the overall error in the solution
can converge at an exponential rate. However, eventually the
estimated projection of the error is not sufficiently accurate
and adaptive refinement would be necessary to continue con-
vergence. It is not clear what the best approach to adapt the
solution in time is, or if it is practical. Thus, we are primarily
only gaining the residual benefit for the algorithm in this work,
although in some cases multiple batches can improve overall
efficiency over a single batch.

A drawback of this HO algorithm is that a truncation error
occurs by keeping only the LDFE projection of the intensity be-
tween time steps, which is not present in IMC. Adaptive mesh
refinement is likely necessary to efficiently capture rapidly-
varying solutions, but this was not done here for simplicity.
Adaptive refinement in space and angle could be included in
the iterative algorithm in future work, which has been demon-
strated for the time-discrete algorithm previously in [2]. This
would also help minimize memory requirements.

3. Sampling from the Residual

A. The SDD Trial Space

Computing and sampling from the residual defined by
Eq. (15) is similar to the sampling algorithms for a steady-
state transport equation [12, 13, 2]. The discontinuities in
Eq. (10) introduce δ-function sources at tn−1/2 and tn+1/2 be-
cause of the time derivative. Additionally, the residual has a
spatial δ-function source on the upwind face of each element

(resulting from the spatial derivative in the streaming term),
and a 2D linear, interior volumetric source. The contribu-
tion from the δ-function source at tn+1/2 can be analytically
determined because all particles born immediately reach cen-
sus [11]. Thus, it is never sampled, and the contribution is
added in at the end of the simulation.

Because the residual can be negative, particles can be sam-
pled with both negative and positive weights. The particles are
sampled from |r(x, µ, t)| using rejection sampling over each el-
ement. The weights are modified to be negative if r(x, µ, t) < 0
for the sampled phase-space position. Starting particle weights
are normalized to have a magnitude of unity. The final tallies
are then multiplied by ‖r(x, µ, t)‖1, the L1 norm of the resid-
ual over the entire sampling domain. Because of the choice
of the SDD trial space, the most complex L1 integral is the
two-dimensional integral of a linear function. Thus, the L1
norm over all sampling space can be analytically evaluated, as
in previous work [12]. To reduce variance in optically thick
regions, systematic sampling [14] is performed, with particles
placed proportional to the magnitude of the residual over each
element, as in [2]. Then the choice of a volumetric or either
δ-function source within the element is discretely sampled,
and the corresponding probability distribution function (PDF)
sampled with rejection.

B. The LD and LDD Trial Spaces

Sec. V. provides a definition of the residual for the LDD
trial space. The only difference between the residual for the
LDD and LD trial spaces is the discontinuity source at tn+1/2,
which is analytically treated as for the SDD trial space. Un-
like the SDD trial space, we can not evaluate the L1 norm of
the residual analytically. Additionally, the higher-dimensional
residual terms will generally be less efficient to sample with re-
jection, at least for certain elements. Alternatively, we can use
importance sampling [14] with unnormalized particle weights
to estimate the magnitude of the residual. Previous work
on higher-dimensional residual MC has applied a similar ap-
proach for a continuous global polynomial expansion trial
space [15]. Because the solution is continuous, except for at
the boundary, a uniform sampling can be performed over the
entire domain and boundary, with weights that correct for the
bias and estimate the magnitude of the residual. Because our
finite element space contains spatial and temporal discontinu-
ities for each element, particles should be distributed more
closely to the true residual. Additionally, because Ĩn−1(x, µ, t)
is typically a good approximation to I(x, µ, tn), uniform sam-
pling of the domain is very inefficient for thermal radiative
transfer problems.

To apply the importance sampling algorithm, we sam-
ple from a simpler distribution function that can correctly be
normalized to a PDF. The chosen PDF represents a decent
approximation to the residual. For each element, the new PDF
to be sampled from is a piece-wise constant function, spanning
the same domain as the true residual, i.e., including two δ func-
tions, with their corresponding subsection of the domain, and
the full domainDi jn (for the interior source). The probability
of sampling a particular constant source is proportional to an
approximation of the L1 norm of the residual over that element.
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The L1 norm is approximated with product 2-point Gaussian
quadratures over each piece of the residual domain. Thus, the
PDF for an element becomes

pn
i j(x, µ, t) =

‖r‖n1,i±1/2 j

‖r‖1∆t∆µ
δ∓

(
x − (xi ±

hi

2
)
)

+
‖r‖n−1/2

1,i j
‖r‖1∆x∆µ

δ+
(
t − tn−1/2

)
+

‖r‖n1,i j
‖r‖1∆t∆µ∆x , (x, µ, t) ∈ Di jn,

(17)

where ‖r‖1 is the L1 norm of r(x, µ, t) over the entire domain,
‖r‖n1,i±1/2 j is the norm of the spatial δ-function portion of the
element residual (where the ± sign corresponds to the direction
of µ for the element), ‖r‖n−1/2

1,i j is the norm of the temporal δ-
function portion of the residual, and‖r‖n1,i j is the norm of the
residual over the interior of the element domain; all of these
norms are approximated with quadrature. Particles are trivially
sampled from p(x, µ, t) and particle weights are initialized as

w(x, µ, t) =
r(x, µ, t)
p(x, µ, t)

. (18)

Although the quadrature approximation may be poor in regions
of the domain where zero-crossings of the residual occur, the
overall sampling algorithm is unbiased. We expect that for
reasonably fine meshes the locations of particle origins are
sufficiently proportional to the magnitude of the residual. High
relative variance in weights of particles can also lead to large
variances in the tallies [14]. However, the slope tallies and
extrapolated solution should help produce less noise than the
census tallies of the SDD trial space overall. As before, we
stratify based on p(x, µ, t) to place particles proportional to the
total probability of sampling from each element and adjust the
weights to account for sampling of integer number of histories.

IV. RESULTS AND ANALYSIS

We have simulated three 1D, grey test problems to demon-
strate the efficacy of our HOLO algorithm: a near-void prob-
lem, an optically thin problem, and a standard Marshak wave
problem. We will compare sample statistics and accuracy of so-
lutions to an IMC code with source tilting [16] and the HOLO
algorithm with BE time-discretized equations [2]. Through-
out this section, results that use the BE time discretization
are indicated with HOLO-BE, and results with the MC-based
time closure are indicated with HOLO-LD, HOLO-LDD, or
HOLO-SDD, corresponding to the chosen temporal trial space.
All plotted results depict the LO solution from the HOLO algo-
rithm. Some figures depict an effective radiation temperature
defined as Tr(x) = (φ(x)/ac)1/4

To provide a quantitative measure of statistical efficiency,
a spatially integrated measure of variance in cell-averaged
radiation energy densities En+1/2

r,i was computed, based on the
solution at the simulation end time. To form sample estimates
of the variance in the cell-averaged values, twenty indepen-
dent simulations for each particular result and method were
performed.The sample variance for a particular cell-averaged
En+1/2

r,i is

S 2
i =

20
20 − 1

20∑
l=1

(
En+1/2

i − En+1/2,(l)
r,i

)2
, (19)

where En+1/2,(l)
i is the cell-averaged scalar intensity for cell

i from the l-th of 20 independent simulations, and En+1/2
i is

the corresponding sample mean, from the 20 simulations. To
provide a normalized, spatially-integrated result, we form a
norm over cells as

‖s‖ =



Nc∑
i=1

S 2
i

Nc∑
i=1

(
En+1/2

r,i

)2



1/2

, (20)

where Nc is the number of spatial elements. We use this statis-
tic to form a figure of merit (FOM) to demonstrate how statis-
tical accuracy scales with the number of histories performed.
Our FOM is defined as

FOM =
1

Ntot‖s‖2
(21)

where Ntot is the total number of histories performed during
a particular simulation. A larger value of the FOM indicates
that the method produced less variance in the solution, per
history performed, for a given problem. This form of the FOM
is typically chosen because the variance is expected to reduce
inversely proportional to Ntot, so for standard MC simulations
the FOM becomes, on average, independent of Ntot [14]. The
FOM is not necessarily expected to be independent of Ntot
for the HOLO method because of correlations in the ECMC
solver. It is difficult to compare computational times with
the IMC method because they are implemented in different
code infrastructures. Additionally, the HOLO algorithm is
converging nonlinearities, whereas the IMC method is only
taking a single linearized step, for each time step. Thus, we
only focus on the reduction in overall variance, per particle
history, as a measure of efficiency.

We have also compared against IMC for accuracy for
the optically thin problem. An integral error in cell-averaged
energy densities for the l-th simulation, with N(l)

c spatial cells,
is computed as

‖e‖(l)a,rel =



N(l)
c∑

i=1

(
En+1/2,(l)

r,i − En+1/2,re f
r,i

)2

N(l)
c∑

i=1

(
En+1/2,re f

r,i

)2



1/2

, (22)

where En+1/2,re f
r,i is computed by spatially averaging the refer-

ence IMC solution over the i-th coarse spatial cell, with the
assumption of uniform mesh spacing.

1. Near-Void Problem

For the first problem, the material properties are uniform
throughout a 2.0-cm wide domain with ρcv = 0.01374 GJ
cm−3 keV−1, σa = 10−6 cm−1. The near-void cross section
essentially uncouples the material and radiation. The material
and radiation are initially in equilibrium at a temperature of
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Fig. 2: Comparisons between IMC and the HOLO method with different time discretizations and settings.

0.01 keV. An isotropic incident intensity with Tr = 0.150 keV
is applied at x = 0 for t > 0; the incident intensity on the right
boundary is 0.01 keV. The simulation end time is t = 0.003 sh.

A comparison of the cell-averaged radiation energy den-
sities Er for IMC and the HOLO method with different time
closures is depicted in Fig. 2a; values for the time-averaged
and tn+1/2 energy densities, from the final time step, are given.
The end of time step value for the HOLO method with a BE
discretization is also depicted. Three relatively large time
steps are taken with ∆t = 0.001 sh. For the HOLO results,
three ECMC batches were performed with a total of 3 × 106

histories per time step, and the IMC results were generated
with 3 × 106 histories per time step. The spatial meshes had
100 spatial cells and all HOLO results used 30 µ cells. The
MC treatment of the time variable and the closure of the LO
equations allow the LO results to correctly reconstruct the

wave-front location of IMC, whereas the BE discretization
artificially propagates energy. This problem is nearly linear
due to the small cross sections, so the HO time closures are
stable and correctly reproduce the time-averaged and tn+1/2

HO moments, even for the large time steps of this problem.
This problem represents a limiting case where IMC is more
efficient and accurate. Because the IMC particles are only
streaming, the space of the initial source is all that must be
sampled, whereas the ECMC algorithm must resample the
distribution and residual space each time step.

A comparison of HOLO-SDD solutions with variable
numbers of batches and time step sizes, but the same total
9 × 106 histories for each simulation, is given in Fig. 2b. Re-
sults are depicted as radiation temperatures. By plotting pro-
portional to the fourth-root of the radiation energy density, the
noise at low magnitudes past the wave-front are more apparent
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for the 3 batches and ∆t = 0.001 sh case. This noise is mini-
mal relative to the scale of Er, but it demonstrates a deficiency
of the residual method. The representation over the time step
leads to particles sampled near the wave-front with a time near
tn that travel into the equilibrium region. This is not a bias,
but rather an under-sampling of the phase space; if sufficient
histories were performed there would be negative particles that
canceled out this error. The ECMC iterations can also lead to
small negative averages for the HO solution in the equilibrium
region. In such cells, the average was set to the floor value
and slopes to zero. For the case of a single batch, there is
less noise past the wavefront because the choice of Ĩn−1/2(x, µ)
as an initial guess for Ĩn(x, µ, t) prevents most particles from
traveling past what the physical transport should allow.

The noise in the equilibrium region is significantly re-
duced by taking a smaller time step, although the mesh-
imprinting error is increased. The mesh-imprinting error is a
discretization effect resulting from only storing a projection
between time steps. Fig. 2c illustrates the convergence of this
effect as a function of the number of angular elements used,
for the HOLO-LDD method. At coarser mesh sizes, the im-
printing of the mesh is visible in the location of the wavefront,
although the location of the wavefront is accurate. Smaller
time step sizes can increase the mesh imprinting because a
more difficult to resolve solution is being projected more often.
The error is reduced as the mesh is refined. Generally, the im-
printing is reduced as σa is increased and absorption-emission
events smooth the angular intensity across each time step.

2. Optically-Thin Problem

We modify the near-void problem by increasing the ab-
sorption cross section to 0.2 cm−1; all other problem param-
eters are the same. Radiation temperatures at the end of the
last time step are compared in Fig. 3 for the IMC and vari-
ous HOLO methods. The HOLO results were generated with
30 µ cells, and all spatial meshes used 100 cells. All results
used 3 × 106 histories per time step. There is good agreement
between the HOLO-LDD and HOLO-SDD results with IMC,
except some dispersion past the wavefront. This dispersion
is caused by the spatial discretization inconsistency between
the LDFE HO projection and the lumped LDFE LO equations;
this dispersion is not present in the HO solution. As in the
previous problem, the HOLO-BE results are very inaccurate at
capturing the wavefront location. IMC demonstrates substan-
tial statistical noise in the equilibrium region. The HOLO-LD
method is unstable for this problem. This is caused by incon-
sistency between the HO and LO space-angle-time moment
equations. In particular, the approximation of In+1/2(x, µ) via
extrapolation based on the interior slope leads to an unstable
closure relation. At lower history counts, the other HOLO
methods can become unstable as well.

The value of ‖e‖a,rel was computed by averaging the com-
puted value of Eq. (22) from 20 simulations. The IMC method
and various HOLO methods are compared against a reference
IMC solution. Because the material is loosely coupled in this
problem, we expect IMC to be accurate with sufficient par-
ticle histories. The reference solution is the average of 20
IMC simulations of 20 × 106 histories, each with ∆t = 10−4
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Fig. 3: Comparison of radiation temperatures of IMC and the
HOLO method for different time step sizes and numbers of
batches, for optically thin problem.

sh. The estimated value of ‖s‖ for the reference solution is
0.025%. Sample statistics are also compared via the FOM
from Eq. (21).

Table. I compares values of the FOM and ‖e‖a,rel for ∆t =
10−4 sh. The results in the table are for 200 spatial cells,
computed against a reference solution with 100 spatial cells.
The HOLO results were generated with a single batch per time
step, although similar accuracy was found for the case of two
batches (with the same number of histories per time step). All
FOM values are normalized to the IMC result with 200 x cells
and 30,000 histories.

The HOLO method, with sufficient histories to prevent
instabilities, is more accurate and substantially more efficient.
For reference, statistics were measured for the HOLO-BE
method with two batches of 150,000 histories per time step,
producing ‖e‖a,rel = 10.5% and FOM = 3100, demonstrating
substantial inaccuracy but improved efficiency. For 100 x
cells, the projection error limits accuracy and the IMC method
becomes more accurate.

TABLE I: Comparison of ‖e‖a,rel and FOM values for the end
of time step radiation energy densities, of the last time step,
for the optically thin problem, 200 x cells, and ∆t = 1 × 10−4

sh. The reference IMC result has 100 x cells. Simulation end
time is t = 0.003 sh. Fractional error in all results below 0.01

‖e‖a,rel
hists./step IMC HOLO-SDD HOLO-LDD

30,000 2.93% 14.00% 14.50%
300,000 0.99% 0.37% 0.46%

1,000,000 0.49% 0.18% 0.19%
FOM

hists./step IMC HOLO-SDD HOLO-LDD
30,000 1 0.11 0.10

300,000 0.90 14.24 8.61
1,000,000 1.01 81.71 71.36
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3. Marshak Wave Problem

It is important to demonstrate that the time closures are
stable in a mix of optically-thick and optically-thin regions
and that the ECMC method is still efficient for such problems.
This problem has the same material properties as the optically
thin problem except for a temperature-dependent cross-section
withσa(T ) = 0.001T−3 and the initial temperature is 2.5×10−5

keV. The time step size is linearly increased from 0.001 sh to
a maximum step of 0.01 sh over the first 10 time steps. It was
found for this problem that it was necessary to use more than
one batch for the HOLO-SDD and HOLO-LDD methods and
large numbers of histories to stably converge, as it is difficult
for particles to reach the end of the time step. A second batch
results in a better initial approximation for In+1/2, resulting
from the extrapolated interior solution of the first batch. Thus,
all HOLO results in this section use two batches.
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Fig. 4: Comparison of HOLO-TC, HOLO-BE, and IMC
methods for the Marshak Wave problem, with 106 histories
per time step.

Figure 4 compares the accuracy of IMC and the various
HOLO methods, showing agreement between the solutions.
There were 106 histories per time step for all simulations. This
slowly varying problem can be accurately modeled with the
BE time discretization, but the MC time closures are stable.
Because the problem is slowly-varying, the HOLO-LD method
was found to stably converge, without the need for the second
discontinuity. The HOLO-LD method is sufficiently consistent
because for this problem Ĩn(x, µ) ' In+1/2(x, µ).

Table II compares sample statistics for IMC, the HOLO-
LD, HOLO-SDD, and the HOLO-BE method. The FOM
values are relative to IMC with 300,000 histories per time
step. The HOLO-BE method is significantly more efficient
for comparable accuracy in this problem. The HOLO-LD
method is much more efficient than the HOLO-SDD method
because the LD trial space does not require error estimates at
tn+1. The doubly-discontinuous trial spaces were found to be
exceptionally noisy for this problem, requiring 106 histories
per time step to remove visible noise, although they were
still more efficient than standard IMC, as demonstrated by

the FOM. At 300, 000 histories per time step the SDD trial
space converges, but has large noise and inaccuracies due to
oscillations introduced through noise in the time closure.

TABLE II: Comparison of FOM for the Marshak wave prob-
lem. Simulation end time is t = 3.0 sh.

FOM
hists./step IMC HOLO-SDD HOLO-LD HOLO-BE

50,000 0.92 – 96.2 1708
300,000 1.00 0.43 200 2050

1,000,000 0.94 15.95 201 1806

V. CONCLUSIONS

We have extended a HOLO method to include a residual
MC treatment of the time variable, producing accurate solu-
tions to simplified TRT problems.. Results demonstrate that
the inversion of the transport operator in the residual MC algo-
rithm allows for an accurate projection of the solution across
time steps, increasing accuracy in optically thin regions com-
pared to a BE discretization. For most cases tested, a single
batch simplifies the sampling space and leads to less variance
overall than iterating on the residual. For optically thin prob-
lems, moments of the LO solution were found to agree with
IMC when used with the LDD and SDD HO trial spaces; the
HOLO method was more accurate and efficient than IMC, al-
though sufficient mesh resolution is needed to limit projection
error between time steps. For the Marshak wave problem,
our ECMC algorithm is more statistically efficient than IMC,
although the solution is not guaranteed to converge at lower
particle history counts. We have demonstrated a new approach
to closing the LO equations in time that produces accurate
solutions with a HO solver that is sufficiently consistent. For
the Marshak wave problem, the LD trial space in time is sig-
nificantly more efficient than the doubly-discontinuous trial
spaces, but inconsistencies lead to instabilities for thinner prob-
lems and finer meshes. Overall, each of the trial spaces has
desirable and negative properties for a certain set of problems.

Future investigation of time-integration for this algorithm
should include investigation of convergence in outer iterations
when incorporating a time-averaged projection of the physical
scattering source into the LO solver. Also, adaptive refinement
in space and angle should be used to more accurately capture
transient solutions. Investigation of the practicality and ap-
proach for adapting in time is necessary for obtaining a true
ECMC algorithm with time-dependent transport equations.
Second-order time-integration methods for the temperature
could be incorporated. Although they will require solving a
more difficult set of LO equations, the cost of the HO solver
with the LDD trial space should be unaffected. Long-term, an
ideal algorithm would require no projection of the HO solution
between time steps, as in IMC, which will likely require an
operator split on the radiation time derivative and a method to
map the projected error back on to the census particles. Finally,
the new sampling strategy for the LDD and LD trial spaces
should be applied to higher-dimensional problems. Because
of the difficulties with consistency and exceptionally difficult
to resolve gradients in TRT problems, steady-state neutronics
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problems should be investigated first.

APPENDIX

The Residual for the LDD Trial Space

The LDFE representation for the element with center
(xi, µ j, tn), spanning the interior of the domainDi jn, is

Ĩ(x, µ, t) = In
a,i j+

2
hi

In
x,i j (x − xi)+

2
∆µ

In
µ,i j

(
µ − µ j

)
+

2
∆t

In
t,i j (t − tn)

(A.1)
where ∆µ = µ j+1/2 − µ j−1/2 and In

a,i j, In
x,i j, In

µ,i j, and In
t,i j are

the average, x slope, µ slope, and t slope moments, respec-
tively [11]. We substitute Eq. (A.1) into Eq. (15) and analyt-
ically apply the continuous transport operator to determine
the residual. For each cell, the residual is the sum of four
components. The first is the interior volumetric source:

rn
i j(x, µ, t) = rn

a,i j+
2
hi

rn
x,i j (x − xi)+

2
∆µ

rn
µ,i j

(
µ − µ j

)
+

2
∆t

rn
t,i j (t − tn)

(A.2)
where

rn
a,i j = qa,i − σa,iIn

a,i j −
2

c∆t
In
t,i j − µ j

2
∆µ

In
x,i j, (A.3)

rn
x,i j = qx,i − σa,iIn

x,i j, (A.4)

rn
µ,i j = −σa,iIn

µ,i j −
∆µ

hi
In

x,i j, (A.5)

rn
t,i j = −σa,iIn

t,i j (A.6)

where qa,i and qx,i are the zeroth and first moments of the LO
LDFE emission source over the i-th spatial element (qLO(x)
does not have a first moment in µ or t). The spatial derivative
produces a δ-function source due to the discontinuities in
the trial space. Upwinding is used to define the intensity on
the inflowing face. The face source component, for µ > 0,
becomes

rn
i−1/2 j = δ+(x − xi−1/2)µ

[
rn, f

a,i j

+
2

∆µ
rn, f
µ,i j

(
µ − µ j

)
+

2
∆t

rn, f
t,i j (t − tn)

]
(A.7)

where

rn, f
a,i j =

(
In
a,i−1, j + In

x,i−1, j

)
−

(
In
a,i j − In

x,i j

)
(A.8)

rn, f
µ,i j = In

µ,i−1, j − In
µ,i j, (A.9)

rn, f
t,i j = In

t,i−1, j − In
t,i j. (A.10)

The face sources for elements with µ < 0 are similarly defined.
The time-derivative jump source at tn−1/2 is

rn−1/2
i j = δ+(t − tn−1/2)

1
c

[
rn−1/2

a,i j

+
2
hi

rn−1/2
x,i j (x − xi) +

2
∆µ

rn−1/2
µ,i j

(
µ − µ j

)]
(A.11)

where

rn−1/2
a,i j = In−1/2

a,i j −
(
In
a,i j − In

t,i j

)
, (A.12)

rn−1/2
x,i j = In−1/2

x,i j − In
x,i j, (A.13)

rn−1/2
µ,i j = In−1/2

µ,i j − In
µ,i j. (A.14)

Finally, the time-derivative component at tn+1/2 is

rn−1/2
i j = δ−(t − tn+1/2)

1
c

[
rn−1/2

a,i j

+
2
hi

rn−1/2
x,i j (x − xi) +

2
∆µ

rn−1/2
µ,i j

(
µ − µ j

)]
(A.15)

where

rn+1/2
a,i j =

(
In
a,i j − In

t,i j

)
− In−1/2

a,i j , (A.16)

rn+1/2
x,i j = In−1/2

x,i j In
x,i j, (A.17)

rn+1/2
µ,i j = In−1/2

µ,i j In
µ,i j. (A.18)

Particles sampled from this source would immediately reach
census and terminate, thus there is no need to sample it. The
analytic contribution from this source can be added, as detailed
in [11], reducing variance.

Tallies for the Error

Tallies compute weighted moments of the error, averaged
over the phase-space volume of each element. For both trial
spaces, the time-averaged LDFE projection Ĩn(x, µ) is com-
puted. This requires tallies for the average, x, and µ moments
of the error. The tally for analog path-length sampling and the
x moment of the error is

ε̂n
x,i j =

1
N

6
∆thi

Nscore∑
m=1

sm

hi∆µ
wm

(
xm

c − xi
)
, (A.19)

where xm
c is the center x-coordinate of the path length for the m-

th particle history with length sm and constant weight wm, and
Nscore is the number of particles that have traversed the domain
Di jn.. There are similar definitions for the average and µ
moment. The tallies are derived by integrating the contribution
of a differential path length, to the moment of interest, over
the entire path length [11]. As in previous work, these tallies
can be modified to allow for particles that stream without
absorption and have exponentially attenuated weights [2].

For the SDD and LDD trial spaces, moments of
ε(x, µ, tn+1/2) must be estimated to produce a projection of
the intensity at the end of the time step. For example, the x
moment of the error at the end of time step is

εn+1/2
x,i j =

6
hi∆µ∆t

"
Di j

(
x − xi

hi

)
ε(x, µ, tn+1/2)dxdµ (A.20)

The estimators for these moments are a generalization of the
census tallies used in IMC [6, 5]. The census estimator for the
x moment is

ε̂n+1/2
x,i j =

1
N

6
∆µh2

i

Nscore∑
n=1

cwm (xm − xi) , (A.21)
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where xm is the coordinate of the m-th particle that has reached
the end of the time step. Similar tallies are defined for the
other space-angle moments. These tallies can be exceptionally
noisy in optically thick cells because only particles that reach
the end of the time step contribute.

For the LDD and LD time spaces, it is necessary to tally
the slope of the intensity in t over each element, i.e., estimate
Eq. (12). The estimator, for analog path-length sampling, is

ε̂n
t,i j =

1
N

6
hi∆µ∆t

Nscore∑
m=1

(
tm
c − tn

∆t

)
wmsm (A.22)

where tm
c is the time of the particle at the center of the path

length.

ACKNOWLEDGMENTS

This research was supported with funding received from
the DOE National Nuclear Security Administration, under
Award Number(s) DE-NA0002376.

REFERENCES

1. J. WILLERT and H. PARK, “Residual Monte Carlo High-
order Solver for Moment-Based Accelerated Thermal Ra-
diative Transfer Equations,” Journal of Computational
Physics, 276, 405–421 (2014).

2. S. BOLDING, M. CLEVELAND, and J. MOREL, “A
High-Order Low-Order Algorithm with Exponentially-
Convergent Monte Carlo for Thermal Radiative Transfer,”
Nuclear Science & Engineering: M&C 2015 Special Issue
(Jan. 2017).

3. A. B. WOLLABER, H. PARK, R. LOWRIE, R. RAUEN-
ZAHN, and M. CLEVELAND, “Multigroup Radiation
Hydrodynamics with a High-Order, Low-Order Method,”
Nuclear Science & Engineering: M&C 2015 Special Issue
(Jan. 2017).

4. J. WILLERT, C. KELLY, D. KNOLL, and H. PARK, “A
Hybrid Approach to the Neutron Transport k-Eigenvalue
Problem using NDA-based Algorithms,” M&C. Sun Val-
ley, ID (2013).

5. J. A. FLECK, JR. and J. D. CUMMINGS, JR., “An Im-
plicit Monte Carlo Scheme for Calculating Time and
Frequency Dependent Nonlinear Radiation Transport,” J.
Comput. Phys., 8, 3, 313–342 (Dec. 1971).

6. A. B. WOLLABER, “Four decades of implicit Monte
Carlo,” Journal of Computational and Theoretical Trans-
port, 45, 1-2, 1–70 (2016).

7. A. B. WOLLABER, E. W. LARSEN, and J. D. DENS-
MORE, “A Discrete Maximum Principle for the Implicit
Monte Carlo Equations,” Nuclear Science and Engineer-
ing, 173, 3, 259–275 (2013).

8. E. W. LARSEN, A. KUMAR, and J. E. MOREL, “Proper-
ties of the Implicitly Time-differenced Equations of Ther-
mal Radiation Transport,” J. Comput. Phys., 238, 82–96
(Apr. 2013).

9. E. WOLTERS, Hybrid Monte Carlo - Deterministic Neu-
tron Transport Methods Using Nonlinear Functionals,
Ph.D. thesis, Michigan (2011).

10. J. MOREL, T. WAREING, and K. SMITH, “Linear-
Discontinuous Spatial Differencing Scheme for Sn Ra-
diative Transfer Calculations,” Journal of Computational
Physics, 128, 445–462 (1996).

11. S. BOLDING, A High-Order Low-Order Algorithm with
Exponentially-Convergent Monte Carlo for Thermal Ra-
diative Transfer, Ph.D. thesis, Texas A&M (2017).

12. J. PETERSON, J. MOREL, and J. RAGUSA, “Residual
Monte Carlo for the One-Dimensional Neutron Trans-
port Equation,” SIAM Journal on Scientific Computing,
accepted for publication.

13. J. PETERSON, Exponentially Convergent Monte Carlo
for the 1-D Transport Equation, Master’s thesis, Texas
A&M (2014).

14. J. SHULTIS and W. DUNN, Exploring Monte Carlo Meth-
ods, Academic Press, Burlington, MA 01803 (2012).

15. J. A. FAVORITE and H. LICHTENSTEIN, “Exponential
Monte Carlo convergence of a three-dimensional discrete
ordinates solution,” Tech. rep., Los Alamos National Lab.,
NM (US) (1999).

16. T. URBATSCH and T. EVANS, “Milagro Version 2: An
Implicit Monte Carlo Code for Thermal Radiative Trans-
fer: Capabilities, Development, and Usage,” (2006), los
Alamos National Laboratory Report LA-14195-MS.


