M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

Delta-tracking in the GPU-accelerated WARP Monte Carlo Neutron Transport Code
Kelly L. Rowland*, Ryan M. Bergmann', R. N. Slaybaugh*, Jasmina L. Vuji¢*

*Department of Nuclear Engineering; University of California, Berkeley; Berkeley, CA, USA
T Paul Scherrer Institute, Villigen, Switzerland
krowland@berkeley.edu, ryanmbergmann @ gmail.com, slaybaugh@ berkeley.edu, vujic @nuc.berkeley.edu

Abstract - Graphics Processing Units (GPUs) have increased in computational power, offering a higher
aggregate memory bandwidth and many more floating-point operations per second (FLOPS) than traditional
central processing units (CPUs). As such, many new supercomputing platforms are being built to incorporate
GPUs to increase computational capacity, and software must be adapted to or developed for these emerging
architectures. WARP (“Weaving All the Random Particles”) is a new code that efficiently performs three-
dimensional (3D) continuous energy Monte Carlo neutron transport code on a GPU. Like traditional Monte
Carlo neutron transport codes, WARP uses ray tracing and distance-to-collision calculations to follow the
random walks of neutrons in a system. Specifically, WARP uses the OptiX ray tracing framework, a highly-
optimized library developed by NVIDIA, to handle the system geometry. This work discusses the addition of
delta-tracking to WARP as an alternative to the distance-to-collision calculation to explore the effects of the
method when used in a Monte Carlo neutron transport code executed on a GPU. The delta-tracking method
allows neutron random walks to continue over different material regions without stopping the particle at each
boundary surface, and the geometry routine is reduced to determining the material at each collision point.
It was found that the delta-tracking version of WARP incurs significantly longer runtimes than the original
version. The figures-of-merit of the calculations performed by the different physics routine range from one
order of magnitude greater than that of the original version of the code for the simplest tested geometry
configuration to one order of magnitude worse than that of the original version of the code for more complex

configurations.

I. INTRODUCTION

Graphics processing units (GPUs) have gradually in-
creased in computational power from small, job-specific
boards to programmable powerhouses. Compared to more
common central processing units (CPUs), GPUs have a higher
aggregate memory bandwidth, much higher floating-point op-
erations per second (FLOPs), and lower energy consumption
per FLOP [1].

WARP, which can stand for “Weaving All the Random
Particles”, is a three-dimensional (3D), continuous energy,
Monte Carlo neutron transport code originally developed by
Dr. Ryan M. Bergmann at UC Berkeley to efficiently exe-
cute on a CPU/GPU platform [1]. The main function of the
code is executed on a CPU, with “kernels” offloaded onto the
GPU. WARP uses a boundary representation geometry based
on surfaces. The impetus for developing GPU-based codes
such as WARP is that many emerging supercomputing plat-
forms are including GPUs as accelerators. To make effective
use of these platforms, nuclear engineering researchers must
either adapt existing codes to these new platforms or begin
developing new Monte Carlo neutron transport software for
efficient use on GPUs. Both routes require substantial effort;
this work discusses a particular venture in developing a new
code specifically for use on GPUs.

In developing codes for new architectures, it is imperative
that we explore algorithms alternative to those traditionally
used in codes written for CPU-based machines. What may
work well on a CPU may not work well on a GPU, and vice
versa. The delta-tracking physics routine has yet to be im-

plemented and tested in a GPU-based Monte Carlo neutron
transport code; the work presented here discusses the imple-
mentation and results of implementing delta-tracking in the
GPU-accelerated WARP code.

In this paper, we start by presenting a foundation for test-
ing the delta-tracking routine on the GPU architecture, the
theory behind delta-tracking, and a brief history of the al-
gorithm in past and present Monte Carlo neutron transport
codes. Results of the algorithm’s implementation are com-
pared against the base version of the WARP code in addition
to results from MCNP 6.1 [2] and Serpent 2.1.21 [3], with
concluding remarks following.

II. THEORY
1. Vector Computing as a Basis for GPU Algorithms

WARP is based on research done in the 1980s and 1990s
for mapping the Monte Carlo and collision probability meth-
ods onto vector computers [1]. These methods on those ma-
chines used an “event-based” algorithm in which neutrons are
organized and processed according to their required operation.
If a neutron is about to undergo inelastic scattering, its data
are put into the inelastic scattering buffer. The same process
is done for all reaction types: neutrons inducing fission are
placed in the fission buffer, and so on. Vector processing
calculations such as these are more generally referred to as
“single instruction multiple data”, or SIMD, processes. Since
GPUs are massively parallel and rely on SIMD, WARP uses a
modified event-based algorithm for GPU-accelerated Monte

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

Carlo neutron transport.

The RACER and VMONT codes were both vectorized
Monte Carlo codes that used delta-tracking for the purpose of
reducing runtime and processing [4, 5]. It follows logically
that, since delta-tracking has been shown to be efficient in
these vector machine codes, it has the potential to be efficient
when used on a GPU-accelerated, vectorized Monte Carlo
code such as WARP.

2. Delta-tracking

In Monte Carlo neutron transport, we track anything that
can happen to neutrons in a system: collisions and their out-
comes, surface crossings, etc. To do that, we need to track
how these particles move in the system. This starts with de-
termining the distance covered between events. Neutron path
lengths, ¢, in random walks of Monte Carlo simulations are
sampled from exponential distributions using

- Iné
Ziotm(E)’

where ¢ is a uniformly-distributed random variable on the unit
interval and X, is the macroscopic total cross section of the
material m in which the neutron is located [6].

The sampled path length is not statistically valid if the
neutron crosses a material boundary; the flight is stopped at
the boundary surface and a new path length is sampled with
the new material total cross section. This is the main principle
of conventional ray tracing [6] and is what is done in WARP
using the OptiX framework.

The idea behind delta-tracking is to effectively homoge-
nize the total cross sections such that sampled path lengths are
valid over the entire geometry. Consider the concept of the
“virtual collision”, a scattering reaction that preserves neutron
energy and direction. Since virtual collisions have no impact
on the final outcome, any number of them can “happen” in
the random walk. Thus, the total cross section of a material
can be adjusted by adding an arbitrary virtual collision cross
section, X, (E) [6]:

¢ (1

Z(m’m(E) = z:tot,m(E) + EO,m(E)~ 2

Because all material cross sections can now be freely and
arbitrarily increased, a majorant cross section can be assigned
to represent the effective total (physical + virtual) collision
probability in all materials:

Zinaj(E) = Zigq (B) = Zigeo(B) = ... = Ty m(E)

3
= max{ztot,l(E)a ztot,Z(E)’ cees Elot,M(E)} . ©)
Path lengths sampled using the global majorant are sta-
tistically valid in all materials, effectively homogenizing the
material total cross sections and eliminating the need to calcu-
late surface intersection distances [6]. Instead, an additional
step is included in the tracking routine for handling virtual
collisions. Rejection sampling is carried out for each collision,
and the collision point is accepted with probability

z:tot,col (E)

Peol(E) = T (E) .
maj

“

If the point is rejected, the collision is considered virtual and
the random walk continues by sampling a new path length.

The inherent advantage of delta-tracking is that the neu-
tron random walk can be continued over material boundaries
without stopping the walk at each surface crossing. The ge-
ometry routine reduces to determining the material in which
the collision point resides, which is computationally less ex-
pensive than calculating the surface distances when running a
simulation on traditional CPU hardware [6]. The simplified ge-
ometry routine is advantageous in that delta-tracking is often
faster than using distance-to-collision calculations in complex
geometries, and complicated objects and surface types are
easier to handle with a delta-tracking algorithm [6].

One shortcoming of the delta-tracking method arises
when material total cross sections differ greatly. A repre-
sentative example of this is a light water reactor (LWR) fuel
assembly that contains localized heavy absorbers (such as con-
trol rods or burnable poison rods) [6]. Although the absorber
itself occupies a relatively small space physically, its large
cross section dominates the majorant at low neutron energies.
This causes the neutron random walk to be cut into many
short tracks, wasting computing time by continually incurring
virtual collisions and resampling.

Additionally, using the delta-tracking method necessi-
tates the use of the collision flux estimator rather than the
track-length flux estimator, which is generally considered a
drawback for implementation in traditional Monte Carlo codes
[6]. The track-length estimation of the reaction rate integral
can be written in simplest analog form as

1
Rie =) Gf: 5)
i=1

where ¢; is the i" neutron track length, f; is the i" response
function, and the summation is over all tracks in the region
of interest. This estimator cannot be used when employing
the delta-tracking method because the sampled neutron paths
may extend over several material regions and the discontinuity
points are not known [6].

An alternative to the track-length flux estimator is the
collision flux estimator:

1

Refe = (6)

—1 Ztol,i '
where X ; is the material total macroscopic cross section at
the i collision site and the summation is over all collisions
within the region of interest [6]. This flux estimator is prob-
lematic in that it often results in poor efficiency for tallies
scored in regions of low volume or with low collision density.
However, the use of the collision flux estimator should not
be considered a disadvantage for the implementation of the
delta-tracking method in WARP; this estimator is already the
code’s only flux tally method [1].

3. Delta-tracking in Existing Monte Carlo Neutron Trans-
port Codes

Over the years, many codes have had delta-tracking avail-
able as at least an option for neutron tracking. We will point

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

out, however, that none of these codes were implemented on
GPUs. For an extended review, please see UCB-NE-5154 [7].

The Serpent Monte Carlo calculation code employs a
unique combination of both the standard distance-to-collision
calculation and delta-tracking in its geometry routine [6]. Ser-
pent switches to using the distance-to-collision calculation
when collision sampling efficiency is low. Selection between
the two methods is done by comparing the neutron mean free
path resulting from the majorant to the physical value of the
mean free path given by the material total cross section at the
neutron’s location [6]. If

fmaj (E) _ z:tot,m(E)
fm(E) Zmaj (E)

>1-c 7

where £, is the material-calculated path length and £y, is
the majorant-calculated path length, the neutron path length
is sampled using the majorant cross section and rejection
sampling is subsequently carried out at the collision point. The
constant c is the predefined cutoff criterion valued between 0
(no delta-tracking) and 1 (no distance-to-collision calculation)
and set to a default fixed value of 0.90 [6], which can be
changed by the user.

Serpent parametric studies compared the flux estimates
in two LWR lattice configurations to demonstrate that the
decrease in runtime from the use of the delta-tracking method
is not outweighed by poor statistics. Comparisons were done
with the figure-of-merit (FOM) metric, defined in Eqn. (8),
which incorporates both the calculation time 7" and the relative
statistical error Ax/x of the result [6].

1
FOM = ——— 8
T(Ax/x)? ®)
In these studies, it was found that, for parameters integrated
over the entire geometry, the accuracy of the two methods is
comparable.

ITI. DELTA-TRACKING IN WARP

To understand what is happening in WARP, what follows
is an explanation of the general delta-tracking algorithm, a
comparison to the distance-to-collision calculation algorithm,
discussion of the specific implementation in WARP, and some
comments about the performance potential of using delta-
tracking on GPUs for the first time.

In WAREP, the delta tracking algorithm executes these
steps:

e get current material using OptiX trace;

e calculate majorant cross section, sample path lengths,
update neutron coordinates;

e update material information using OptiX trace;

e calculate material total cross section and perform rejec-
tion sampling;

e if collision is real (not “virtual”), determine with which
isotope neutron interacts;

e determine neutron interaction.

For direct comparison, tracking particles via distance-to-
collision calculation only in WARP is executed as:

e get current material using OptiX trace;

e calculate macroscopic total cross section and sample path
length;

e determine with which isotope neutron interacts;

e move neutron to collision site or cell boundary, whichever
is closer;

e determine neutron interaction.

From there, with either tracking scheme, neutrons are grouped
based on the interactions that they are about to undergo and
the vectors are subsequently processed.

1. Implementation

In WARP and other Monte Carlo neutron transport codes,
particle positions are updated as:
X +={X,

y+=1£9, z+=1{% 9)

where ¢, the sampled travel distance is defined as:

a {— Iné /X with distance-to-collision calc., (10)

- Iné¢ /Xy, with delta-tracking.

If the distance-to-collision calculation is being used, a
check is performed between the sampled neutron flight dis-
tance and the distance to the nearest boundary crossing on that
trajectory. If the boundary crossing is closer than the sampled
distance, the particle position is instead updated as

X += 5%+ &Xporm» ¥ += P + EVnorm»> 2 += SZ + EZnorm; (11)

where s is the distance to the surface to be crossed. The
epsilon term added to the position is required by the OptiX
framework; the inclusion of this term ensures that the neutron
is sufficiently far into the new cell such that it can be detected
by OptiX and the corresponding material updated accordingly.
The second term uses vector norms rather than the vector di-
rections in Eqn. (9) to move particles away from the surface in
a perpendicular manner rather than potentially along a surface
boundary (which could cause issues with OptiX detection). In
this case of a particle crossing a boundary with the distance-
to-collision calculation, the particle is stopped at the updated
location and the flight path distance must be resampled using
the total macroscopic cross section of the new material.

Although delta-tracking circumvents the above resam-
pling in the case of surface crossings, there is a potential need
to resample at each collision site. The collision site is accepted
as an actual reaction with probability

2"tot,col (E)
z:maj (E)

and rejected as a “virtual” collision otherwise. It is important
to note that this rejection sampling must use the total macro-
scopic cross section of the material in which the collision is
being considered and not the material in which the neutron
was originally located. If the collision is considered virtual,
a new path length is sampled with the majorant cross section
again, and the transport process continues.

Peoi(E) = 12)

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

It should be noted that calculating the majorant cross
section in WARP is done naively:

Zimgj(E) = max{Zio 1 (E), Ziot2(E), - ., Ziopm(E)}, (13)

where M is the number of materials in the entire system. One
potential area of improvement would be to calculate the ma-
jorant cross section along the neutron’s trajectory rather than
this “global” majorant cross section.

With either tracking method, once the neutron has been
determined to undergo an actual collision, the reaction it will
experience is chosen using the microscopic cross sections of
the material in which the particle is located. Following this,
the reaction is processed, and transport continues as above.

2. Performance Potential of Delta-tracking in WARP

Because the OptiX trace is used to determine the proper-
ties of a neutron’s current cell, and this must be done twice in
each iteration of the delta-tracking process, the delta tracking
version uses many more calls to the OptiX ray tracing routine
than the original distance-to-collision calculation method. For
this reason, this implementation of delta-tracking may not be
faster than the standard method for simple geometry and ma-
terial configurations. It has been seen in various other Monte
Carlo neutron transport codes that the bulk of the runtime is
involved with ray tracing, and WARP is not too different from
other codes in that regard. This issue could potentially be
circumvented if a different framework were to be used rather
than OptiX, but this would require a sizable overhaul of the
code and was not considered for this work. Further, the OptiX
framework is optimized for NVIDIA GPUs. A handwritten hy-
brid system of acceleration structures for cell boundaries and
constructive solid geometry for cell surface sense calculation
may perform better for delta-tracking since it would eliminate
the iterative ray tracing.

However, it is expected that, like in other codes, delta-
tracking may be more efficient in WARP when considering
certain geometry configurations. Like Serpent, WARP is in-
tended for calculations in nuclear reactor analysis. Many
reactor configurations consist of lattices composed of many
geometry and material boundaries, causing simulations that
use ray tracing to run slowly because neutron flights stop at
each boundary crossing. Thus, we hope that the time saved in
not stopping neutron flights at boundary crossings may com-
pensate for having to call an additional OptiX trace in the
delta-tracking method implemented in WARP.

IV. COMPUTING PLATFORMS AND TESTS

In this section, we will describe the computing platforms
and various geometry and material configurations used in
testing the delta-tracking version of WARP against other codes.
The CPU and GPU platforms used in testing WARP are those
available on the UC Berkeley Savio computing cluster [8]. For
the CPU platform, a single Savio2 Lenovo NeXtScale nx360
MS node (equipped with two Intel Xeon 12-core Haswell
processors) was used. For the GPU platform, an NVIDIA
Tesla K80 graphics card was used; the GPU nodes on the
machine each include 2 Intel Xeon 4-core 3.0 GHz Haswell

TABLE I: Specifications of computing platforms used in the
benchmark cases [8].

Platform Physical Processor
Processors | Frequency

Lenovo NeXtScale

1x360 M5 24 2.3 GHz

NVIDIA Tesla K80 | 13 823.5 MHz

Platform Local Memory
Memory Frequency

Lenovo NeXtScale

1x360 MS 64 GB 2.133 GHz

NVIDIA Tesla K80 | 12 GB 2.505 GHz

processors. Specifications of the two platforms are listed in
Table I.

The benchmark cases were run with 6.5 x 10° neutrons
per criticality batch with 20 initial batches discarded and 40
batches with statistics accumulated (60 batches total). The
CPU cases were run with the optimal number of MPI processes
and threads per process for the specific node to fairly measure
the performance of the unit as a whole: 4 MPI processes each
running 6 threads were used. The MCNP runs were launched
with one additional MPI process since the master process does
not perform any neutron tracking in MCNP. All codes were set
to not use thermal scattering or unresolved resonance tables
and to use analog capture only; this is because WARP does not
yet include thermal scattering, unresolved resonance tables,
or non-analog capture and the comparisons are intended to be
one-to-one between the codes.

All tests use ENDF/B-VII cross sections that are dis-
tributed with the Serpent 1.1.7 release from RSICC. These
cross sections contain fewer energy grid points than the
ENDEF/B-VII.1 cross sections that are distributed with the
MCNP 6.1 release from RSICC. Since the Serpent 1.1.7 data
require less storage space, using them allows more isotopes to
be used by WARP. Using larger datasets such as those required
for depletion problems is an area of future investigation for
WARP.

1. “Jezebel” Bare Pu Sphere

The “Jezebel” criticality test is a bare plutonium/gallium
sphere with vacuum boundary conditions; it is a standard test
used to validate neutron transport codes and is described in the
International Handbook of Evaluated Criticality Safety Test
Experiments under the name “Pu-MET-FAST-001" [10]. The
geometry and materials are outlined in Table II and a cross-
sectional view of the configuration is shown in Figure 1a. All
cross sections used were processed at 273.5 K [9].

2. Homogenized Fuel Block

The homogenized block criticality test is a bare cuboid
with vacuum boundary conditions. The geometry and materi-
als are outlined in Table IIT and a cross-sectional view of the
configuration is shown in Figure 1b. All cross sections used
were processed at 273.5 K [9].

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

(c) Pin cell.

(a) “Jezebel” test case.

(d) Pebble in FLiBe.

(b) Homogenized fuel block.

(e) Sodium pin cell.

(f) Hexagonal pin lattice.

Fig. 1: Horizontal slices of the geometry configurations of the different test cases. Different colors represent different cell
numbers; black represents space outside the outermost boundary [9].

TABLE 1II: Geometry and materials used in the “Jezebel”
benchmark.

Cells

Isotopes (Atm. %)
Pu-239 (0.7381)
Pu-240 (0.1942)
Pu-241 (0.0299)
Pu-242 (0.0038)
Ga-69 (0.0203)
Ga-71 (0.0135)

Densities

1 sphere,

3
r = 6.6595 cm 1573 gfem

3. Zr-clad UQO; Pin in Heavy Water

This criticality test consists of a UO, cylinder clad in
zirconium surrounded by a large block of heavy water. The
water block has vacuum boundary conditions and the geometry
and materials are outlined in Table IV; a cross-sectional view
of the configuration is shown in Figure 1c. All cross sections
used were processed at 273.5 K [9].

TABLE III: Geometry and materials used in the homogenized
fuel block test case.

Cells

Isotopes (Atm. %) | Densities
U-235 (0.10)
U-238 (0.90)

0-16 (3.0)
H-2 (2.0)

7Zr-90 (0.5145)

7Zr-91 (0.1122)

7r-92 (0.1715)

Zr-94 (0.1738)

Zr-96 (0.0280)

1 cuboid,

3
100x100x50 cm 3.50 g/em

4. Homogenized Fuel Pebble in FLiBe

This criticality test consists of a single sphere of homog-
enized UO, and C surrounded by molten FLiBe (Li;BeFy)
salt. The outer cell is a right hexagonal prism with specular
reflective boundary conditions. The geometry and materials
are outlined in Table V, where “1”” shown for the hexagonal
prism is the length of the apothem. A cross-sectional view
of the configuration is shown in Figure 1d. The FLiBe cross

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

sections used were processed at 900 K and the pebble cross
sections at 1200 K [9].

TABLE IV: Geometry and materials used in the single UO,
pin in D, O test case.

are outlined in Table VII with a cross-sectional view of the
configuration shown in Figure 1f; all cross sections used were
processed at 273.5 K [9].

TABLE VI: Geometry and materials in the steel-clad metallic
uranium single pin test case.

Cells Isotopes (Atm. %) Densities
1 cylinder; U-238 (0.90)
r=2cm, U-235 (0.10) 10.97 g/cm3
z=+20cm 0-16 (2.00)

7Zr-90 (0.5145)
1 cylinder; Zr-91 (0.1122)
r=22cm, Zr-92 (0.1715) 6.52 g/cm3
z=+20.2cm 7Zr-94 (0.1738)

Zr-96 (0.0280)
1 box, H-2 (2.0)
50 x 50 x 50 cm 0-16 (1.0) 111 gfem?

TABLE V: Geometry and materials in the pebble in FLiBe
case.

Cells Isotopes (Atm. %) | Densities
U-238 (0.90)
U-235(0.10)
rlfpshf)ri’m 0-16 (2.00) 8.75 g/cm’
e C-12 (1.978)
C-13 (0.022)
Li-6 (0.15)
1 right hex prism, Li-7 (1.85) 3
r=5.1cm Be-9 (1.00) 1.94 g/em
F-19 (4.00)

5. Stainless Steel-Clad Metallic Uranium Pin in Liquid
Sodium

This test consists of a single cylinder of metallic uranium
surrounded by molten sodium. The outer cell is a right hexag-
onal prism with specular reflective boundary conditions. The
geometry and materials are outlined in Table VI and a cross-
sectional view of the configuration is shown in Figure le. The
fuel and clad cross sections used were processed at 900 K,
and the sodium coolant cross sections were processed at 600
K. In order to keep the specification tenable, only the major
components of 316 stainless steel were included in the clad
material [9].

6. Zr-Clad Hexagonal UO; Pin Cell Lattice in Light Wa-
ter

This criticality test consists of 631 Zr-clad UO, cylinders
laid out in a hexagonal lattice surrounded by light water. The
material compositions, densities, and cylinder dimensions are
similar to the pin cell test case, but, since this test has two
orders of magnitude more objects, it serves to highlight the
effect of introducing many geometric objects into the problem.
The lattice is in the x-y plane, has a pitch-to-diameter ratio of
1.164, and has 15 elements on a side. Geometry and materials

Cells Isotopes (Atm. %) Densities
1 cylinder, U-235 (0.10) 3
r=1.0cm U-238 (0.90) 19.1 gfem
Fe-54 (0.0435) Cr-53(0.0143)
Fe-56 (0.6879) Cr-54 (0.0035)
1 cylinder, Fe-57 (0.0165) Ni-58 (0.0681) 3
r=12cm | Fes8(0.0021) Ni60(0.0262) | /00 &em
Cr-50 (0.0065) Ni-62 (0.0036)
Cr-52 (0.1257) Ni-64 (0.0009)
1 hex prism, 3
r=18cm Na-23 (1.00) 0.927 g/cm

TABLE VII: Geometry and materials used in the Zr-clad UO,
pin hexagonal lattice in light water test case.

Cells Isotopes (Atm. %) Densities
631 cylinders; U-235 (0.10)
r=1.0cm, U-238 (0.90) 10.97 g/cm3
z==+20cm 0-16 (2.00

7Zr-90 (0.5145)
631 cylinders; 7Zr-91 (0.1122)
r=12cm, Zr-92 (0.1715) 6.52 g/cm3
z=+20.2cm 7Zr-94 (0.1738)

Zr-96 (0.0280)
1 box, H-1 (2.0)
48 x 48 x 48 cm 0-16 (1.0) 1.00 g/em’

V. RESULTS AND ANALYSIS

In this section, we will compare the results of the delta-
tracking version of WARP to those calculated by the original
version of WARP in addition to results from MCNP 6.1 and
Serpent 2.1.21.

Results are shown in Table VIII and Figures 2 — 7 [9].
Relative differences versus MCNP and Serpent are in red and
blue for the original and delta-tracking versions of WARP,
respectively. The grey shaded area in the error subplots shows
the space within two standard deviations of the statistical
uncertainty of the production code. It can be seen in Figures
2 — 7 that both versions of WARP compare well to MCNP
but generally have a constant positive offset error compared to
Serpent. Since this offset appears in multiple spectra, it may
indicate a possible normalization discrepancy between MCNP
and Serpent. More significant deviations between WARP
and MCNP occur at large resonances, indicating that some
reaction sampling may not be treated exactly the same way in
WARRP as in Serpent and MCNP. Despite these discrepancies
in the flux spectra, the value of k. calculated by the delta-
tracking version of WARP matches that of the other codes
within statistical uncertainty.

Although the delta-tracking version of WARP incurs

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

TABLE VIII: Multiplication factors, runtimes, and figures-of-merit for the various benchmarks. All runtimes are in minutes.

Jezebel Homogenized Block
Code Kefr Runtime FOM Kefr Runtime FOM
MCNP 6.1 0.9999600 + 7.00x1073 4.95 4.12x107 | 0.5933000 + 4.00x107 44.03 1.42x107
Serpent 2.1.21 | 0.9997840 + 9.50x107> 6.32 1.75%107 | 0.5934090 + 1.20x10~* 24.10 2.88x10°
WARP (orig.) | 0.9999602 + 9.58x1073 1.18 9.23x107 | 0.5932266 + 1.24x10™* 5.79 1.12x107
WARP (DT) 0.9999824 + 5.53x107> 1.43 2.29x10% | 0.5935092 + 1.35x107* 9.27 5.92x10°
Pin Cell FLiBe
Code Kefr Runtime FOM Kefr Runtime FOM
MCNP 6.1 0.2751700 + 7.00x107> 64.18 3.18x10° | 0.8805100 + 6.00x107> 81.03 3.43x10°
Serpent 2.1.21 | 0.2750510 + 1.80x10~* 76.51 4.03x10° | 0.8804900 + 8.70x107> 45.08 2.93x10°
WARP (orig.) | 0.2749884 + 1.56x107* 20.91 1.97x10° | 0.8807546 + 9.58x107> 24.68 4.41x108
WARP (DT) 0.2754006 + 1.75x107* | 191.61 | 1.70x10° | 0.8805805 + 5.53x1073 54.85 5.96x10°
Sodium Pin Hex Assembly

Code Kef Runtime FOM Kef Runtime FOM
MCNP 6.1 1.0987700 + 6.00x107> | 199.15 | 1.39x10° | 1.0506500 + 9.00x10™> | 112.25 | 1.10x10°
Serpent 2.1.21 | 1.0987100 + 2.20x10~* 68.46 3.02x10° | 1.0503300 + 7.20x107> 44.32 4.35x10°
WARP (orig.) | 1.0985898 + 5.53x1073 81.40 4.02x10% | 1.0511035 + 1.24x107* 35.63 1.83x10°
WARP (DT) 1.0984879 + 7.90x107 | 203.42 | 7.88x10° | 1.0511572 +9.58x107> | 754.00 | 1.45x10°

0.0016 : . .

— MCNP6.1 : :
0-0049 — Serpent 2.1.21
00012l = WARP (orig.)
— WARP (DT)

0.0010

0.0008

0.0006

0.0004

Flux/Lethargy per Fission Neutron

0.0002

0.0000 =
10~
0.010

0.005
0.000
—0.005

Rel. Err.

Rel. Err.

vs. Serpent yg. MCNP
s
o
=

Energy (MeV)
Fig. 2: Volume-averaged flux spectra for the “Jezebel” benchmark.

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

0.000025 :
— MCNP 6.1
g — Serpent 2.1.21
g 000001 — WARP (orig) |
Z — WARP (DT)
g 1 : : :
B 0000015 []
= ‘ ‘
g
_ : : :
B3 0.000010 |- vvommmem b TR
5 : : :
=)
=}
Q
E 0.000005 |- oemmee e
=] . :
0.000000
10~
B
& 0.0015
BE 00000
2 —0.0015
> N
10-6
H
B 0.0050 S ——
2 0.0025 T
"5 0.0000 :
30 —0.0025
My —0.0050 LB
> 107°
Energy (MeV)
Fig. 3: Volume-averaged flux spectra inside the homogenized fuel test case.
0.0025 ——————————
— MCNP 6.1
- — Serpent 2.1.21
g 000 — WARP (orig)
Z — WARP (DT)
g : : : : : : : :
B 00015 | R e B SRR EIEREE L ERIRER e S B A SRR R o
'F‘:
.
Q
B 0.0010 oo b b e e e S N
= ‘ :
g
Q
3 oomsf s s P R A— S e Jm——
<3
0.0000 I —
1078 1077 10-¢
EZ 0008 !
H T
28 yooo Wikt 'lll.qr “Tu “
X 0.000 Fysful A |
—052 —0.008 u“l-l_ ml' “
[|
>
=
-
—Q
QU2
Mg
>

Energy (MeV)
Fig. 4: Volume-averaged flux spectra inside the fuel pin in the pin cell test case.

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

= u

Rel. Err.
vs. Serpent V

Rel. Err.
vs. Serpent vs. MCNP

Rel. Err.

Flux/Lethargy per Fission Neutron

0.020

0.015

T

0,010 - -rrvvem e Y | R S EERERTEERERPRR P PRRERIEES REPRRRL I O LT Beeeeo

— MCNP 6.1
— Serpent 2.1.21
— WARP (orig.)

— WARP (DT)

Energy (MeV)
Fig. 5: Volume-averaged flux spectra inside the fuel pebble of the reflective FLiBe test case.

Flux/Lethargy per Fission Neutron

T T —— T T —— T T —— T T —— T

— MCNP6.1 : ‘ : ‘
H — Serpent 2.1.21 [------------------ """"""""""""" """""""""""""" """""
— WARP (orig.)

| — WARPDT) [~ LR RRERRRRMEEE SRR A P

0.00

10~

0.0050
0.0025

0.0000 [/

—0.0025
—0.0050
10
0.0050
0.0025
0.0000

—0.0025
—0.0050
10

Energy (MeV)
Fig. 6: Volume-averaged flux spectra inside the fuel pin of the steel-clad UO, pin in liquid sodium test case.

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

0.00009 ————r—————————— : : - : :
0.00008H MCNP 6.1 | | |
o — Serpent 2.1.21
§ 0.00007 || — WARP (orig.) |-+ i
2 — WARP (DT)
= 0.00006 - ‘
S
%
£ 0.00005 |-
3
2 0.00004 |-
&
= 0.00003 |-
<
Q
? 0.00002 |-
[
0.00001 |-
0.00000
10~
Ay
EZ
B0
.
Q.
aF:
201
Ed o0 ; ISR T 5 PO S
HE (oo GRS Hl"l”l o
Eﬁ —0.05]‘hll.\ua‘ml Ll -JLJH ml ,,,
; —0.10 I
E 1078 T 10 10 10+ 103 102 101 100 10!
Energy (MeV)

Fig. 7: Volume-averaged flux spectra inside the center fuel pin of the hexagonal assembly case.

longer runtimes, the figures-of-merit of the calculations pro-
duced are comparable to those of the other codes (seen in Table
VIII). The delta-tracking version of WARP outperforms all
other codes when comparing figures-of-merit for the Jezebel
test case (the simplest configuration). For the remaining sce-
narios, however, the figure-of-merit from the delta-tracking
version of WARP is either on the same order of magnitude
as the original version of WARP or one order of magnitude
worse. This can be generally explained by the combination
of the delta-tracking version of WARP taking much longer to
run than the original version, with the error in the values of
ks being on the same order of magnitude for both versions
of the code. The only exception to this is the hexagonal as-
sembly case; in this case the delta-tracking version of WARP
produces an error one order of magnitude smaller than that
of the original version of the code, but the dramatic increase
in runtime causes the figure-of-merit for the delta-tracking
version of WARP to be much worse.

It is not surprising that the delta-tracking version of
WARRP is slower than the original version; the delta-tracking
version has an additional OptiX trace compared to the original
code, and ray tracing comprises a large portion of runtime
[1]. Unfortunately, any time saved in not stopping neutron
flights at boundary crossings is not enough to compensate
for the additional OptiX trace calls. In addition to this extra
OptiX trace, the delta-tracking version of WARP incurs a tail
effect caused by resampling. In configurations like the pin cell
and the hexagonal assembly, the last few neutrons in a given

cycle may spend an excess amount of time undergoing virtual
collisions and transport until an actual event occurs.

A question that may arise at this point is the notion of
implementing some sort of threshold similar to that in Ser-
pent’s algorithm. Without a major code overhaul, this is not
possible for the delta-tracking algorithm in WARP. WARP
hinges on the OptiX framework to handle the geometry, ma-
terials, neutron locations, and boundary condition. The two
physics routines are incompatible in WARP in that they each
have OptiX handle the boundary condition in a fundamentally
different way. Using ray tracing and the distance-to-collision
calculation algorithm “turns on” the boundary condition only
when a neutron is in the outermost cell and has a trajectory
pointing outward, while delta-tracking has the boundary con-
dition constantly “on” because neutrons can leak out from any
cell (not just the outermost one). Because of this difference,
a combination of the two methods (like that done in Serpent)
cannot be done without altering how the code relies on OptiX.
Unfortunately, such a substantial overhaul is not the highest
development priority at this time.

VI. CONCLUSIONS

In this work, delta-tracking was implemented as a neutron
tracking routine in a GPU-accelerated Monte Carlo neutron
transport code and the results were compared for accuracy and
speed with respect to the original version of the code as well
as two production level Monte Carlo transport codes.

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

The delta-tracking version of WARP performs calcula-
tions that are sufficiently accurate when compared to the origi-
nal version of the code as well as production-level codes. We
see that, when comparing figures-of-merit, the delta-tracking
version of WARP outperforms all other codes for the simplest
geometry configuration. For more complex scenarios, the
figures-of-merit of the calculations from the delta-tracking
version of WARP are on the same order of magnitude of those
of the original version of WARP at best and one order of mag-
nitude lower at worst. Though the errors achieved by both
versions of the code are comparable, the figures-of-merit of
the delta-tracking version of WARP are brought down by the
excessive runtime incurred. This overall result is not surpris-
ing; the delta-tracking routine requires more OptiX traces than
the original code, and the ray tracing comprises a significant
part of runtime.

This first exploration of using delta-tracking in Monte
Carlo neutron transport on GPUs has shown that it may not be
worthwhile for the current version of WARP. There are some
scenarios in which it might be helpful, such as domain de-
composition when a problem is broken into subsets of simpler
systems. In the long run, moving away from the OptiX frame-
work may change these conclusions. Delta-tracking on GPUs
may prove promising for other Monte Carlo implementations.

VII. ACKNOWLEDGMENTS

This material is based upon work supported by the De-
partment of Energy National Nuclear Security Administration
through the Nuclear Science and Security Consortium under
Award Number(s) DE-NA0003180 and/or DE-NA0000979 as
well as upon work supported under an Integrated University
Program Graduate Fellowship. This research used the Savio
computational cluster resource provided by the Berkeley Re-
search Computing program at the University of California,
Berkeley (supported by the UC Berkeley Chancellor, Vice
Chancellor of Research, and Office of the CIO).

VIII. DISCLAIMER

This report was prepared as an account of work spon-
sored by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, makes any warranty, express or lim-
ited, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, ap-
paratus, product, or process disclosed, or represents that its use
would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not neces-
sarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or any agency
thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

REFERENCES
1. R. M. BERGMANN and J. L. VUJIC, “Algorithmic

10.

. “Savio

choices in WARP-A framework for continuous energy
Monte Carlo neutron transport in general 3D geome-
tries on GPUs,” Annals of Nuclear Energy, 77, 176—193
(2015).

. T. GOORLEY, M. JAMES, T. BOOTH, F. BROWN,

J.BULL, L. COX, J. DURKEE, J. ELSON, M. FENSIN,
R. FORSTER, ET AL., “Initial MCNP6 release overview,”
Nuclear Technology, 180, 3, 298-315 (2012).

. J. LEPPANEN, “Serpent-a continuous-energy Monte

Carlo reactor physics burnup calculation code,” VIT Tech-
nical Research Centre of Finland, 4 (2013).

. T. SUTTON, F. BROWN, F. BISCHOFF, D. MACMIL-

LAN, C. ELLIS, J. WARD, C. BALLINGER, D. KELLY,
and L. SCHINDLER, “The Physical Models and Statisti-
cal Procedures Used in the RACER Monte Carlo Code,”
Tech. rep. (July 1999).

. Y. MORIMOTO, H. MARUYAMA, K. ISHII, and

M. AOYAMA, “Neutronic Analysis Code for Fuel Assem-
bly Using a Vectorized Monte Carlo Method,” Nuclear
Science and Engineering, 358, 351-358 (1989).

. J. LEPPANEN, “Performance of Woodcock delta-tracking

in lattice physics applications using the Serpent Monte
Carlo reactor physics burnup calculation code,” Annals of
Nuclear Energy, 37, 715-722 (2010).

. K. L. ROWLAND, “Delta-tracking in the GPU-

accelerated WARP Monte Carlo Neutron Trans-
port Code,” Master’s report; University of Cal-
ifornia, Berkeley; number UCB-NE-5154 (2015),
https://github.com/kellyrowland/masters.

System Overview,” http://research-
it.berkeley.edu/services/high-performance-
computing/system-overview.

. R.M. BERGMANN, K. L. ROWLAND, N. RADNOVIC,

R. N. SLAYBAUGH, and J. L. VUJIC, “Performance
and Accuracy of Criticality Calculations Performed Using
WARP - A Framework for Continuous Energy Monte
Carlo Neutron Transport in General 3D Geometries on
GPUs,” Annals of Nuclear Energy (Pre-press).

O. N. E. AGENCY, International Handbook of Evalu-
ated Criticality Safety Benchmark Experiments, Nuclear
Energy Agency, OECD (1995).

https://github.com/kellyrowland/masters
http://research-it.berkeley.edu/services/high-performance-computing/system-overview
http://research-it.berkeley.edu/services/high-performance-computing/system-overview
http://research-it.berkeley.edu/services/high-performance-computing/system-overview

	Introduction
	Theory
	Vector Computing as a Basis for GPU Algorithms
	Delta-tracking
	Delta-tracking in Existing Monte Carlo Neutron Transport Codes

	Delta-Tracking in WARP
	Implementation
	Performance Potential of Delta-tracking in WARP

	Computing Platforms and Tests
	``Jezebel'' Bare Pu Sphere
	Homogenized Fuel Block
	Zr-clad UO2 Pin in Heavy Water
	Homogenized Fuel Pebble in FLiBe
	Stainless Steel-Clad Metallic Uranium Pin in Liquid Sodium
	Zr-Clad Hexagonal UO2 Pin Cell Lattice in Light Water

	Results and Analysis
	Conclusions
	Acknowledgments
	Disclaimer

