
M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

Limits on the efficiency of event-based algorithms for Monte Carlo neutron transport

Paul K. Romano, Andrew R. Siegel

Argonne National Laboratory, Mathematics and Computer Science Division, 9700 S. Cass Avenue, Lemont, IL 60439, USA
promano@anl.gov, siegela@mcs.anl.gov

Abstract - The traditional form of parallelism in Monte Carlo particle transport simulations, wherein each
individual particle history is considered a unit of work, does not lend itself well to data-level parallelism.
Event-based algorithms, which were originally used for simulations on vector processors, may offer a path
toward better utilizing data-level parallelism in modern computer architectures. In this study, a simple model
is developed for estimating the efficiency of the event-based particle transport algorithm under two sets of
assumptions. Data collected from simulations of four reactor problems using OpenMC was then used in
conjunction with the models to calculate the speedup due to vectorization as a function of two parameters: the
size of the particle bank and the vector width. When each event type is assumed to have constant execution
time, the achievable speedup is directly related to the particle bank size. We observed that the bank size
generally needs to be at least 20 times greater than vector size in order to achieve vector efficiency greater
than 90%. When the execution times for events are allowed to vary, however, the vector speedup is also limited
by differences in execution time for events being carried out in a single event-iteration. For some problems,
this implies that vector efficiencies over 50% may not be attainable. While there are many factors impacting
performance of an event-based algorithm that are not captured by our model, it nevertheless provides insights
into factors that may be limiting in a real implementation.

I. INTRODUCTION

At present, most commodity CPUs feature instruction set
architectures that can utilize vector instructions on multiple
data sets coupled with a vector processing unit (VPU) that can
process instructions in a single clock cycle. This is especially
true of CPUs tailored for numerical computations, such as In-
tel’s Xeon Phi processor, which features a 512-bit wide VPU.
Consequently, programmers must effectively expose data-level
parallelism in their applications in order to maximize perfor-
mance on these architectures. While many scientific codes can
be optimized for such architectures with modest changes (e.g.,
modifying data layout and alignment or reordering loops),
data-level parallelism poses a problem for Monte Carlo (MC)
neutron transport because it is characterized by frequent use of
conditional branching, random memory access patterns, and
performance that is often limited by memory latency due to
high cache miss rates.

Researchers agree that significant changes in algorithms
and data structures will be necessary in order to exploit vec-
torization in MC neutron transport simulations. One approach
that has been attempted is to restructure the transport algo-
rithm from one that is history based, wherein the basic unit of
work is the history of a single particle from birth to death, to
one that is event based, wherein the unit of work is a partic-
ular event within a single particle’s history. What constitutes
an event may differ from one implementation to another, but
generally events can be categorized into actions such as a
collision with a target nuclide, the free flight of a particle be-
tween two spatial locations, or a particle crossing a material
interface. Event-based algorithms were initially proposed and
studied [1, 2] in the 1980s when the largest supercomputers
at the time relied on vector processors. The algorithms were
implemented in several codes, including a general geometry,
continuous-energy MC code [3].

The past few years have seen a resurgence of interest
in event-based algorithms inspired by the higher levels of
data-level parallelism inherent in two products aimed at high-
performance computing—the Intel Xeon Phi processor and the
NVIDIA Tesla GPU. Three recent studies considered vector-
ization of one-dimensional, one-group MC neutron transport
codes [4–6]. Early attempts have also been made at employing
event-based algorithms for more general, continuous-energy
MC codes targeting GPU architectures [7, 8]. In addition to
the efforts in the nuclear engineering community, we note
that similar algorithms are being explored in high-energy
physics [9–11].

As discussed in [1], restructuring a Monte Carlo code
to employ an event-based algorithm is not a trivial change
because all the data structures and loop organization need
to be modified. Often, architecture-specific optimization is
also necessary in order to attain optimal performance. The
goal of the present study is not to look at a specific imple-
mentation of event-based algorithms but rather to study them
from a theoretical standpoint. Specifically, this study seeks
to determine practical limits on the efficiency of event-based
algorithms based on data flow within a hypothetical implemen-
tation. Coupled with data from a full-scale Monte Carlo code,
OpenMC [12], we can quantify limits without the need to im-
plement an event-based algorithm in a real code. We view this
as an easier first step toward understanding the performance
of the event-based algorithm if it were to be implemented in a
vectorized general geometry, continuous-energy Monte Carlo
code.

II. THEORY

Suppose we are simulating N neutrons. Each neutron
history can be viewed as a sequence (or queue) of events. Let
us denote the jth event of the ith particle by χi, j. Thus, we

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

represent the complete history of the ith neutron as a queue of
events that are to be processed,

Xi = (χi,1, χi,2, . . . , χi,M), (1)

where M is the total number of events. We can also view the
entire simulation itself as a queue of particles (event queues)
to be simulated. Let us denote all particles by

X = (X1, X2, . . . , XN). (2)

In the history-based algorithm, the event queue for each
particle is processed in order and parallelization can be
achieved over particles. In the event-based algorithm, a single
parallel task keeps track of multiple particles simultaneously.
N is generally assumed to be sufficiently large that storing
the attributes of every particle simultaneously is not feasible.
Consequently, the number of particles “in flight” at a given
time is limited to at most B particles. We refer to a queue of B
particles that are to be simulated by a single parallel task as a
particle bank. This is directly analogous to the “initial particle
vector” in [2].

As discussed in [1] and [2], there are two main variations
on how particle data is collected in vectors to be processed:
the basic approach and the stack-driven approach. In the
basic approach, the program flow follows the history-based
algorithm wherein the events for each particle are processed
sequentially. At any given point during the simulation, the
particles within a bank are executing the same event, although
some may be masked because they either do not participate or
have already been killed off. In the stack-driven approach, a
stack is created for each event type, and particles are pushed
onto or popped off of the stacks as the event in each particle
queue changes. Let T (χ) be the type of event χ and τ(χ) be
the execution time for event χ. Let Γ be the set of all particle
stacks. We denote the length of a queue or stack by | · |.

The stack-driven event-based algorithm is prototyped in
Algorithm 1. The algorithm begins by distributing B particle
event queues to the three stacks based on the type of the
next event to be processed for each particle. Following this
is an iteration where the events for particles in the longest
stack are processed. As each event is processed, particles
are redistributed to the stacks based on the next event type.
The event iteration continues until each of the three stacks
is empty. At this point, new event queues are distributed
to the three stacks, and the event iteration starts over. The
whole process repeats until no event queues remain. Note that
the Pop/Push and Enqueue/Dequeue operations on stacks and
queues, respectively, follow textbook definitions.

The objective of our analysis is to estimate the time to so-
lution for the stack-driven event-based algorithm relative to
the history-based algorithm. In the event-based algorithm, the
time to solution may be reduced because events from multiple
queues can be processed simultaneously. Let us assume that
the computer architecture we are simulating on has a VPU
capable of performing V floating-point operations simultane-
ously. In the history-based method, there are no vectorization
gains, and thus the time to solution is

tH =

K∑
k=1

Lk∑
`=1

|Γk,` |∑
h=1

τ(χk,`,h), (3)

Algorithm 1 Stack-driven event-based algorithm
while |X| > 0 do . While particles remain

Distribute(X,Γ, B)
while |ΓE | > 0 for at least one event E do

Determine longest particle stack ΓE

ProcessEvents(Γ, E)
end while

end while

function Distribute(X,Γ, B)
for i← 1 to B do

Xk ← Dequeue(X)
E ← T (χk,1) . Get type of first event
Push(ΓE , Xk) . Push particle to appropriate stack

end for
end function

function Process(Γ, E)
for i← 1 to |ΓE | do

Xk ← Pop(ΓE)
χ← Dequeue(Xk)
Process event χ
if |Xk | > 0 then

E′ ← T (χk,1) . Determine type of next event
Push(ΓE′ , Xk)

end if
end for

end function

where k corresponds to the outer loop in Algorithm 1, ` corre-
sponds to the inner loop in Algorithm 1, Lk is the total number
of inner iterations for outer iteration k, Γk,` is the stack for a
given outer/inner iteration, and χk,`,h is the event at the front of
the hth event queue. Eq. 3 simply states that the total execution
time when using the history-based method is the sum of the
execution times for all events. To estimate the execution time
for the event-based algorithm, we will consider two sets of
assumptions:

• Assume that all events of a given type execute in exactly
the same amount of time. We will refer to this as case 1.
If the stack length at a given stage is an exact multiple
of V , then that stage can be completed V times faster
than when using the history-based method. At any given
stage, however, the stack length may not be an exact
multiple; thus, there will be a so-called remainder loop
wherein some number of events less than V are processed
simultaneously.

• Assume that V events can be processed simultaneously
but that the execution time is limited by the time to ex-
ecute the longest event within those V events. We will
refer to this as case 2. In this case, the speedup from
vectorization is limited both by remainder loops and the
distribution of event execution times.

In the first case, we can express the time to solution of the

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

event-based algorithm as

t1 =

K∑
k=1

Lk∑
`=1

⌈
|Γk,` |

V

⌉
τE , (4)

where E is the event type for the `th event iteration in outer
iteration k and τE is the average time to process event type
E. In the second case, the expression becomes slightly more
complicated:

t2 =

K∑
k=1

Lk∑
`=1

d|Γk,` |/Ve∑
g=1

max
(
τ(χk,`,h)

)
, (5)

where the maximum is taken over values of τ(χk,`,h) such that
h ∈ [(g − 1)V + 1,min(gV, |Γk,` |)]. For example, if V = 4
and |Γk,` | = 8, the total time to process the 8 events within
the stack would be the sum of the maximum execution time
for the first four events and the maximum execution time for
the last four events. Under the first set of assumptions, the
effective speedup due to vectorization is

η1 ≡
tH

t1
=

K∑
k=1

Lk∑̀
=1

|Γk,` |∑
h=1

τ(χk,`,h)

K∑
k=1

Lk∑̀
=1

⌈
|Γk,` |

V

⌉
τE

=

K∑
k=1

Lk∑̀
=1
|Γk,` |τE

K∑
k=1

Lk∑̀
=1

⌈
|Γk,` |

V

⌉
τE

. (6)

If Γk,` mod V = 0 for all k and `, then η1 = V , which repre-
sents the maximum speedup possible. Under the second set of
assumptions, the effective speedup is

η2 ≡
tH

t2
=

K∑
k=1

Lk∑̀
=1

|Γk,` |∑
h=1

τ(χk,`,h)

K∑
k=1

Lk∑̀
=1

d|Γk,` |/Ve∑
g=1

max
(
τ(χk,`,h)

) . (7)

Because η2 accounts for both remainder loops and differences
in event times whereas η1 accounts only for remainder loops,
we have that η2 ≤ η1 ≤ V .

Note that we have made a few crude approximations in the
development of Eqs. 6 and 7. We assumed that the differences
in event times directly relate to the ability to vectorize the
events. In reality, the ability to vectorize an event may not be
well characterized by differences in event times for a serial
(history-based) code. Nevertheless, evaluating the efficiency
in this manner can give us an idea of how the efficiency might
change if a particular event is not perfectly vectorizable. We
have also assumed that there is no cost to data movement
in the event-based algorithm and that there is no latency for
performing vector operations. While these assumptions do not
hold for a realistic simulation, they allow us to establish an
upper bound on the efficiency of the algorithm since removing
the assumptions would serve only to reduce the efficiency.

III. RESULTS AND ANALYSIS

To evaluate the two estimates for the vector speedup of the
event-based algorithm, η1 and η2, we used a modified version
of OpenMC to collect event queues, X. For each event within

a queue, we store the type of the event and the execution time
of that event during the simulation. Following the work of
Martin and Brown [2], we consider three types of events: free
flight (F), collision (C), and boundary crossing (B). Of course,
the event times and list of events will strongly depend on the
model being simulated. Thus, we consider four reactor models
for this study:

1. The BEAVRS light-water reactor (LWR) benchmark [13],
which represents an application (LWR simulation) with
formidable computational requirements that could benefit
from high-performance computing architectures.

2. The BEAVRS model with the fuel composition modified
to include about 250 nuclides. This model has compu-
tational requirements more representative of a depletion
simulation.

3. A sodium fast reactor (SFR) benchmark problem based
on the prototype Generation-IV SFR concept [14, 15].
An SFR model was chosen so that both fast and thermal
spectra were covered.

4. A very high temperature reactor (VHTR) prismatic as-
sembly based on a benchmark problem developed at Ar-
gonne National Laboratory [15]. A VHTR model was
chosen because the inclusion of a graphite moderator
changes the neutron physics considerably; that is, the av-
erage neutron suffers many more collisions in a graphite-
moderated system than for other moderators.

Figs. 1 to 3 show the geometry of the BEAVRS, SFR, and
VHTR models, respectively.

Fig. 1. BEAVRS model geometry.

The event and timing data that results from each simula-
tion was then read by a Python script that implements Algo-
rithm 1 and keeps track of the estimated time to solution of
the event-based and history-based algorithms via Eqs. 3 to 5.
At each event iteration, it calculates the relative time of the

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

Fig. 2. Sodium fast reactor model geometry.

Fig. 3. Very high temperature reactor prismatic assembly
geometry.

event-based and history-based algorithms as

η1,` =
tH,` − tH,`−1

t1,` − t1,`−1
(8)

η2,` =
tH,` − tH,`−1

t2,` − t2,`−1
, (9)

where tH,`, t1,`, and t2,` are the accumulated values of tH , t1,
and t2, respectively, at the `th event iteration. The script allows
any arbitrary choice of V and B. All the results for this study
are for V ∈ {2, 4, 8, 16} and B ∈ {16, 32, 64, 128}.

1. BEAVRS Results

To develop an intuition for how the performance might
behave with different choices of the parameters, we present in
Fig. 4 the average length of the longest stack relative to the
vector size at each event iteration in Algorithm 1 for V = 8
and each choice of B. We see that regardless of the particle
bank size, the average number of events to finish simulating

all B particles is about the same. This reflects the fact that the
average number of events is directly related to the physical
properties of the system rather than the arrangement in which
we process them. The vector efficiency of any given iteration is
effectively S/dS e, where S = |Γ` |/V . Thus, the best situation
occurs if |Γ` | is exactly a multiple of V . The worst efficiency
generally occurs where S < 1. We see in Fig. 4 that the
longest stack length begins to dip below V after 400 iterations
when B = 16. When the bank size is increased to B = 128, it
takes nearly 1,000 event iterations to reach the same condition.
Clearly, then, increasing the bank size should increase the
overall vector efficiency because there are fewer iterations
with S < 1.

0 500 1000 1500 2000
`

0

2

4

6

8

10

12

14

16

|Γ `
|/V

B=16
B=32
B=64
B=128

Fig. 4. Average stack size as a function of event iteration for
V=8 using the BEAVRS model.

When all events of a given type are assumed to execute in
exactly the same amount of time (case 1), the overall vector
efficiency would be solely a function of the stack length shown
in Fig. 4. However, when we explicitly account for differences
in event times for the same event type (case 2), the vector
efficiency depends not only on the stack length but also on
the differences in event times, as captured by Eq. 5. Fig. 5
shows the average speedup at a given event iteration for the
two cases, η1,` and η2,`, again for V = 8. We see that for case 1,
increasing the bank size brings the initial speedup close to the
maximum value possible (V) and allows it to stay high for
more event iterations. In case 2, however, no matter how large
the bank size is, the average speedup at each event iteration is
limited by differences in event times. One can infer then that
for this particular model an infinitely large particle bank would
result in a vector speedup of no more than about 4 under the
assumptions of case 2.

The final results for the vector speedup as a function of
V and B for the BEAVRS model are shown in Fig. 6. For
case 1 (solid lines), one can see that as B increases, the vector
speedup approaches the vector length. For case 2, however,
the vector speedup asymptotically approaches some value less
than V . This makes sense in light of the speedup at each
individual event iteration shown in Fig. 5. We also see that
as V increases, the difference between the maximum speedup
and the asymptotic speedup for case 2 grows larger.

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

0 500 1000 1500 2000
`

0

1

2

3

4

5

6

7

8

η
x,
`

B=16, x=1
B=16, x=2
B=32, x=1
B=32, x=2
B=64, x=1
B=64, x=2
B=128, x=1
B=128, x=2

Fig. 5. Average speedup over history-based method as a func-
tion of event iteration for V=8 using the BEAVRS model.

16 32 64 128
B

1

2

4

8

16

η
x

V=2, x=1
V=2, x=2
V=4, x=1
V=4, x=2
V=8, x=1
V=8, x=2
V=16, x=1
V=16, x=2

Fig. 6. Effective speedup of event-based algorithm as a func-
tion of bank size and vector size using the BEAVRS model.

Fig. 6 shows that that for V = 2, the vector speedup for
case 1 is almost exactly 2 for a bank of 128 particles. As the
vector size is increased, the bank size also needs to be larger
in order to obtain good efficiency. This can be seen more
clearly in Fig. 7, which displays the vector efficiency η/V as a
function of the bank-to-stack size ratio. For both case 1 and
case 2, the initial bank size needs to be at least 30 times the
vector size in order to reach the asymptotic speedup.

10 20 30 40 50 60
B/V

0.3

0.4

0.5

0.6

0.7

0.8

0.9

η
x/

V

V=2, x=1
V=2, x=2
V=4, x=1
V=4, x=2
V=8, x=1
V=8, x=2
V=16, x=1
V=16, x=2

Fig. 7. Overall vector efficiency as a function of the bank to
vector size ratio using the BEAVRS model.

Fig. 8 shows the calculated vector speedup for the
BEAVRS model with large fuel nuclide inventory. The pri-
mary difference in this model is that free-flight events, which
include the lookup of cross sections, have the longest average
execution time of the three events. Furthermore, the distribu-
tion of free-flight event execution times has a large variance
due to considerable differences in the number of nuclides in
different materials. The overall effect is that while the vector
speedup for case 1 is nearly the same as that observed for the
original BEAVRS model, the speedup is much lower for case
2 where differences in event execution times are accounted
for.

16 32 64 128
B

1

2

4

8

16

η
x

V=2, x=1
V=2, x=2
V=4, x=1
V=4, x=2
V=8, x=1
V=8, x=2
V=16, x=1
V=16, x=2

Fig. 8. Effective speedup of event-based algorithm as a func-
tion of bank size and vector size using the BEAVRS model
with large fuel nuclide inventory.

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

2. SFR Results

We turn our attention now to the SFR model. The primary
difference between the SFR and the BEAVRS model is that
the neutron spectrum is fast rather than thermal. Consequently,
the mean free path of neutrons is longer, resulting in more
boundary crossing and free flight events as opposed to colli-
sions. Nevertheless, this doesn’t appear to have much of an
impact on the achievable vector speedup based on our models.
Fig. 9 shows the vector speedup as a function of V and B for
this model; we see that it is almost identical to the results in
Fig. 6.

16 32 64 128
B

1

2

4

8

16

η
x

V=2, x=1
V=2, x=2
V=4, x=1
V=4, x=2
V=8, x=1
V=8, x=2
V=16, x=1
V=16, x=2

Fig. 9. Effective speedup of event-based algorithm as a func-
tion of bank size and vector size using the SFR model.

3. VHTR Results

The last model analyzed was the VHTR prismatic assem-
bly. The presence of a graphite moderator results in neutrons
having many more collisions on average than for an LWR
or an SFR. In the context of the event-based algorithm, this
means that a higher proportion of time is spent simulating col-
lision events. In all reactor types, collisions tend to have high
variability in their execution time because many different rep-
resentations exist for secondary angle and energy distributions
in the continuous-energy nuclear data. We therefore observe
that the average speedup obtained for a single event iteration
for case 2, shown in Fig. 10 for V = 8, tends to be lower
for the VHTR model than for the BEAVRS or SFR models.
The overall vector speedup for the VHTR as a function of V
and B is shown in Fig. 11. Not only is the overall speedup
low for case 2, but the speedup does not change as much as
a function of B. The reason is that the high average number
of collisions per particle ensures that the stack length remains
high for many event iterations, as shown in Fig. 10.

0 5000 10000 15000 20000
`

1

2

3

4

5

6

7

8

η
x,
`

B=16, x=1
B=16, x=2
B=32, x=1
B=32, x=2
B=64, x=1
B=64, x=2
B=128, x=1
B=128, x=2

Fig. 10. Average speedup over history-based method as a
function of event iteration for V=8 using the VHTR model.

16 32 64 128
B

1

2

4

8

16

η
x

V=2, x=1
V=2, x=2
V=4, x=1
V=4, x=2
V=8, x=1
V=8, x=2
V=16, x=1
V=16, x=2

Fig. 11. Effective speedup of event-based algorithm as a func-
tion of bank size and vector size using the VHTR model.

IV. CONCLUSIONS

We have developed a simple model for estimating the
speedup from vectorization in the event-based particle trans-
port algorithm under two sets of assumptions. First, we as-
sumed that each event type has constant execution time. We
then relaxed that assumption and allowed each event type to
have a distribution of event times. These assumptions result in
two different models for the vector speedup in Eqs. 4 and 5.
Data collected from simulations of four reactor problems us-
ing OpenMC was then used in conjunction with the models to
calculate the vector speedup as a function of two parameters:
the size of the particle bank and the vector width. The results
demonstrate that when events are assumed to have constant
execution time, increasing the bank size is sufficient to obtain a
speedup close to the maximum possible. We observed that the
bank size generally needs to be at least 20 times greater than
vector size in order to achieve vector efficiency greater than
90%. When the execution times for events are allowed to vary,
however, the vector speedup is also limited by differences in
execution time for events being carried out in a single event

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

iteration. For some problems (for example, the VHTR and the
BEAVRS model with many nuclides in fuel), this implies that
vector efficiencies over 50% may not be attainable.

We emphasize that this study is only a first step toward
understanding the performance of event-based algorithms. A
number of assumptions were made to arrive at simple expres-
sions for the time to solution and would not hold for a realistic
simulation. For example, we have assumed that there is no
cost to data movement inherent in the event-based algorithm
through the use of particle stacks. This aspect may be difficult
to capture in a theoretical model. We have also completely
neglected tallies. For large-scale simulations, tallying physical
quantities can consume a significant fraction of the execution
time, so any successful model or analysis must account for
this. This aspect is sufficiently complicated that a focused
study on tallies would be worthwhile.

Another limitation of our study is that we have looked
at only one choice for how to divide particle histories into
events; namely, we considered only three events: free flight,
collision, and boundary crossing. In reality, each of these
events is sufficiently complicated that it may make sense to
use finer-grained events. When using coarse-grained events,
not all the logic will be vectorizable, especially for collision
events in a continuous-energy code because of the inherently
deep branching logic. Our assumption that the execution time
of an event iteration is limited by the maximum serial time of
an individual event is perhaps not realistic. Notwithstanding,
it does provide a means for modeling the fact that the entire
event is not vectorizable. Our analysis points to this being a
limiting factor in the achievable speedup.

One must keep in mind that data-level parallelism is only
one aspect of achieving performance on modern computer
architectures. While achieving good use of vectorization is
often important in maximizing performance, other optimiza-
tions may be more crucial, especially for codes that tend to
be limited by memory latency and bandwidth. MC neutron
transport is one such application that has been characterized as
being limited by the memory subsystem [16, 17]. In practice,
the use of event-based algorithms could yield better perfor-
mance than the history-based algorithm by virtue of better
cache utilization. Capturing such an effect in a theoretical
model is notoriously difficult, however.

ACKNOWLEDGMENTS

This material is based upon work supported by Laboratory
Directed Research and Development (LDRD) funding from
Argonne National Laboratory, provided by the Director, Office
of Science, of the U.S. Department of Energy under Contract
No. DE-AC02-06CH11357.

REFERENCES

1. F. B. BROWN and W. R. MARTIN, “Monte Carlo meth-
ods for radiation transport analysis on vector computers,”
Prog. Nucl. Energy, 14, 3, 269–299 (1984).

2. W. R. MARTIN and F. B. BROWN, “Status of vector-
ized Monte Carlo for particle transport analysis,” Int. J.
Supercomput. Appl., 1, 2, 11–32 (1987).

3. F. B. BROWN, “Vectorization of three-dimensional
general-geometry Monte Carlo,” Trans. Am. Nucl. Soc.,
53, 283–285 (1986).

4. X. DU, T. LIU, W. JI, X. G. XU, and F. B. BROWN, “Eval-
uation of vectorized Monte Carlo algorithms on GPUs for
a neutron eigenvalue problem,” in “M&C,” Sun Valley,
Idaho (May 5–9, 2013).

5. T. LIU, X. DU, W. JI, X. G. XU, and F. B. BROWN,
“A comparitive study of history-based versus vectorized
Monte Carlo methods in the GPU/CUDA environment for
a simple neutron eigenvalue problem,” in “SNA + MC,”
Paris, France (2014).

6. P. S. BRANTLEY, S. A. DAWSON, M. S. MCKINLEY,
M. J. O’BRIEN, D. E. STEVENS, B. R. BECK, and I. EU-
GENE D BROOKS, “Advanced computing architecture
challenges for the Mercury Monte Carlo particle transport
project,” in “Joint Int. Conf. on Mathematics and Compu-
tation, Supercomputing in Nuclear Applications, and the
Monte Carlo Method,” Nashville, Tennessee (Apr. 19–23,
2015).

7. R. M. BERGMANN and J. L. VUJIĆ, “Algorithmic
choices in WARP – A framework for continuous energy
Monte Carlo neutron transport in general 3D geometries
on GPUs,” Ann. Nucl. Energy, 77, 176–193 (2015).

8. S. P. HAMILTON, T. M. EVANS, and S. R. SLATTERY,
“GPU Acceleration of History-Based Multigroup Monte
Carlo,” Trans. Am. Nucl. Soc., 115, 527–530 (2016).

9. J. APOSTOLAKIS, R. BRUN, F. CARMINATI,
A. GHEATA, and S. WENZEL, “A concurrent vector-
based steering framework for particle transport,” J. Phys.:
Conf. Ser., 523, 012004 (2014).

10. J. APOSTOLAKIS, M. BANDIERAMONTE,
G. BITZES, R. BRUN, P. CANAL, F. CARMI-
NATI, J. C. DE FINE LICHT, L. DUHEM, V. D.
ELVIRA, A. GHEATA, S. Y. JUN, G. LIMA, M. NO-
VAK, R. SEHGAL, O. SHADURA, and S. WENZEL,
“Adaptive track scheduling to optimize concurrency and
vectorization in Geant V,” J. Phys.: Conf. Ser., 608,
012003 (2015).

11. G. AMADIO, J. APOSTOLAKIS, M. BANDIERA-
MONTE, C. BIANCHINI, G. BITZES, R. BRUN,
P. CANAL, F. CARMINATI, J. DE FINE LICHT,
L. DUHEM, D. ELVIRA, A. GHEATA, S. Y.
JUN, G. LIMA, M. NOVAK, M. PRESBYTERIAN,
O. SHADURA, R. SEGHAL, and S. WENZEL, “First
experience of vectorizing electromagnetic physics models
for detector simulation,” J. Phys.: Conf. Ser., 664, 092013
(2015).

12. P. K. ROMANO, N. E. HORELIK, B. R. HERMAN, A. G.
NELSON, and B. FORGET, “OpenMC: A state-of-the-art
Monte Carlo code for research and development,” Ann.
Nucl. Energy, 82, 90–97 (2015).

13. N. HORELIK, B. HERMAN, B. FORGET, and
K. SMITH, “Benchmark for Evaluation and Validation of
Reactor Simulations (BEAVRS),” in “Int. Conf. Mathe-
matics and Computational Methods Applied to Nuclear
Science and Engineering,” Sun Valley, Idaho (May 5–9,
2013).

14. J.-Y. LEE, S. R. CHOI, and S. J. KIM, “PGSFR Core De-

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

sign and Performance Characteristics,” Trans. Am. Nucl.
Soc., 114, 700–703 (2016).

15. N. E. STAUFF, C. LEE, P. K. ROMANO, and T. K. KIM,
“Verification of mixed stochastic/deterministic approach
for fast and thermal reactor analysis,” in “International
Congress on Advances in Nuclear Power Plants,” Fukui
and Kyoto, Japan (Apr. 24–28, 2017).

16. J. R. TRAMM and A. R. SIEGEL, “Memory bottlenecks
and memory contention in multi-core Monte Carlo trans-
port codes,” Ann. Nucl. Energy, 82, 195–202 (2015).

17. P. K. ROMANO, A. R. SIEGEL, and R. O. RAHAMAN,
“Influence of the memory subsystem on Monte Carlo code
performance,” in “Joint Int. Conf. Mathematics and Com-
putation, Supercomputing in Nuclear Applications, and
the Monte Carlo method,” Knoxville, Tennessee (Apr.
19–23, 2015).

	Introduction
	Theory
	Results and Analysis
	BEAVRS Results
	SFR Results
	VHTR Results

	Conclusions

