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Abstract - MVP is a general-purpose Monte Carlo code for neutron and photon transport calculations based
on the continuous-energy method. To speed up the MVP code, hybrid parallelization is applied with a message
passing interface library MPI and a shared-memory multiprocessing library OpenMP. The performance tests
have been done for an eigenvalue calculation of a fast reactor subassembly, a fixed-source calculation of a
neutron/photon coupled problem and a PWR full core model. Performance comparisons have been made for
MPI, OpenMP and hybrid parallelisms. It has been found that the hybrid parallelization of MVP can achieve a
reasonable speedup and can save required memories in comparison with MPI parallel calculations.

I. INTRODUCTION

MVP[1] is a general-purpose Monte Carlo code for neu-
tron and photon transport calculations based on the continuous-
energy method. The code has been widely used in Japan for nu-
clear reactor applications such as reactor core design/analysis,
criticality safety and reactor shielding.

The MVP code has been designed for efficient and large-
scale Monte Carlo calculations since the early stage of the
code development. The vectorized algorithm is thus adopted
in the code[2]; in addition the distributed memory paral-
lelism is possible with the algorithm (so-called vector-parallel
processing)[3, 4]. Such an advantage enabled one to use MVP
for a full core analysis of a PWR[5] and for a part of innovative
reactor core designs[6, 7, 8].

In recent years, the needs for the Monte Carlo method are
increasing in the field of reactor core design. The realistic full
core modeling for PWR was proposed[9] for a grand challenge
against the Monte Carlo method[10]. In addition, there are
many recent works for Monte Carlo neutronics calculations
coupled with thermal-hydraulics codes and Monte Carlo bur-
nup calculations. This background urges us to speed up Monte
Carlo calculations.

The objective of the present work is to speed up the MVP
code with a message passing interface library MPI[11] and a
shared-memory multiprocessing library OpenMP[12]. This
work is the first step of the MPI/OpenMP hybrid parallelism
with MVP. The performance tests are thus carried out for three
benchmark problems; comparisons are made for computing
time and used memories.

II. PARALLELIZATION METHOD

The MVP code employs the stack-driven zone-selection
algorithm which is a variant of the event-based algorithm; it
is suitable for vector computers while the history-based algo-
rithm is suitable for scalar computers. The code was developed
on vector supercomputers such as Fujitsu VPP series, NEC
SX series and Cray XMP series. Though vector platforms
are rarely available nowadays, the code still retains the event-
based algorithm and works on scalar computers without any
problems. However the code has no longer been tuned for

vector processing.
Considering the event-based algorithm employed in MVP,

a hybrid parallelism style similar to the vector parallel one
is adopted in the present study. Namely particle histories
are divided by MPI processes (coarse-grained parallelism)
and the events during random walk of particles are processed
with OpenMP multithreads in each MPI process (fine-grained
parallelism). The MVP code has been already parallelized
with MPI; thus parallelization with OpenMP is newly done for
hybrid parallelism.

Figure 1 shows the parallel calculation flow of MVP with
MPI. The first step is to set the number of MPI processing
elements (PEs) and then input data is read. The number of
batches per PE is determined for fixed-source problems or
the batch size (the number of histories per batch) per PE is
determined for eigenvalue problems; the batch size and the
number of batches are equally divided by the number of used
PEs set by the user in the current implementation. After a
seed of an initial random number is generated for each PE
and the data is sent to the PE, random walk starts. When all
histories are terminated, the main process receives the results
and performs statistical analysis.

The parallelization method differs for eigenvalue and
fixed-source calculations. For fixed-source calculations, each
PE can process each batch independently since all batches are
independent. Thus each PE processes Nb/n batches (Nb is the
number of batches, n is the number of PEs). For eigenvalue
calculations, it is impossible to process each batch indepen-
dently because of the source iteration. MVP thus divides the
batch size by the number of PEs, solves the divided eigenvalue
problems independently and finally collects tally results from
PEs to perform the statistical processing as shown in Fig. 2.

The OpenMP multithread parallelization is applied to the
random walk events of particles. The events are classified into
7 tasks in the MVP code: source particle generation (Source),
free flight (Flight), collision analysis (Collision), next zone
search (Search), boundary reflection (Reflection), repeated ge-
ometry (Lattice), particle destruction (Leakage/Kill) as shown
in Fig. 3. The double-boxed tasks in Fig. 3 have their own
stack for queuing particle pointers. The task processing or-
der depends on the number of queued particles in the stacks.
Particle descriptors addressed with the pointers are stored in
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Fig. 1. Parallel calculation flow of MVP.

a large bank; they are retrieved out of and stored back to the
bank for vector processing. References [2, 13, 14] should be
consulted for the details of the algorithm.

Since the MVP code adopts the event-based algorithm
as mentioned above, many Fortran DO-loops are implicitly
and explicitly vectorizable with Fortran compilers and vec-
torization directives, respectively. It should be noted that
current vectorization directives are useless because they are
directives such as “*VOCL LOOP,NOVREC” for Fujitsu VP For-
tran and are treated as comment lines. In the present work,
the basic strategy is to implement the OpenMP directives for
the DO-loops. DO-loops to be multithreaded are determined
with a performance analysis tool PerfSuite[15]; DO-loops
that spend more than 1% of total execution time are multi-
threaded. DO-loops with recursive dependencies that cannot
be multithreaded without modifying the algorithm are not
multithreaded.

III. PERFORMANCE TESTS

The performance tests have been carried out for follow-
ing 3 benchmark problems to examine the speedup of MVP
by the hybrid parallelization. All test calculations have been
performed on a node of SGI ICE X: 2 CPUs of Intel Xeon
E5-2680 v3 (2.5 GHz, 30 Mbyte cache) with 12 cores per
CPU and memories of 64 Gbytes. The MVP source codes
have been compiled by using Intel Fortran compiler with the
optimization option of “-O2”; the SGI message passing toolkit
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Fig. 2. Parallel processing for eigenvalue problems.

Source Flight 

Search 

Reflection 

Lattice 

Leakage/
Kill 

Collision : Task with stack 

Fig. 3. Tasks of Monte Carlo random walk in the MVP code.

(MPT) and the Intel OpenMP library have been used for MPI
and OpenMP, respectively. All the calculations have occupied
a single node even if all 24 cores have not been used because
sharing resource in the node with other jobs deteriorates com-
putation performance; namely unused cores have been left
idle.

1. Fast Reactor Subassembly

The first performance test is for an eigenvalue calcula-
tion of a fast reactor subassembly; the infinite multiplication
factor (k∞) is calculated for the two-dimensional geometry
with reflective boundary conditions. MVP calculations have
been done for 8 million histories; the number of histories per
batch (batch size) is 32,000, the number of active and inactive
batches are 200 and 50, respectively.

Table I shows the comparison of elapsed time and used
memories for the fast reactor subassembly problem. The
speedup factor is defined as the ratio of the elapsed time in a
single-process calculation to that in a parallel calculation. The
parallelization efficiency is defined as the ratio of the speedup
factor to the number of used cores. The MPI results show
almost ideal performance: speedup factors of 4.5 and 12.4
for 4- and 12-process calculations, respectively. The hybrid
parallelism with 4 processes × 3 threads yields the speedup
factor of 6.1; the parallelization efficiency is however almost
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50%. This is caused by the low parallelization efficiency with
OpenMP. Figure 4 shows the speedup by individual paralleliza-
tion with MPI and OpenMP. MPI parallelism shows an ideal
scalability with the number of processes; OpenMP parallelism
yields a speedup factor of 2 at most. The MPI results are
slightly better than the ideal scalability. The reason is unclear;
one of the possible reasons is the effect of cache memories.

From the viewpoint of used memories, the hybrid par-
allelism shows a good performance. The 12-process MPI
calculation requires 5.6 Gbytes but the hybrid one with 4 pro-
cesses × 3 threads does 1.7 Gbytes. The required memory
size is almost the same as for the 4-process MPI calculation.
The memory saving will be useful for actual large-scale full-
reactor-core calculations because huge memories are required
for cross section data, tally data, etc.

Case Elapsed
time (sec)

Speedup
factor

Memories
(Gbytes)

Single (1 process) 7,349 1 0.3

MPI (4 processes) 1,625 4.5(1.13)† 1.8

MPI (12 processes) 592 12.4(1.03) 5.6
Hybrid (4×3)∗ 1,213 6.1(0.50) 1.8
OpenMP (12 threads) 3,197 2.3(0.19) 0.3
∗ processes × threads, † The value in parentheses indicates the paral-
lelization efficiency.

TABLE I. Comparison of elapsed time and used memories for
the fast reactor subassembly problem.
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Fig. 4. Speedup by individual parallelization with MPI and
OpenMP for the fast reactor subassembly problem.

2. Experimental Analysis for Fusion Neutronics Source

The second performance test is for a fixed-source and a
neutron/photon coupled problem with an experimental analy-

sis for Fusion Neutronics Source (FNS)[16] installed at JAEA.
Both neutron and photon fluxes are calculated at detector re-
gions in this benchmark problem. MVP calculations have
been done for 12,000,000 histories; the number of histories
per batch (batch size) is 10,000 and the number of batches is
1,200. The computing platform and the calculation condition
are the same as the previous problem.

Table II shows the comparison of elapsed time and used
memories for the FNS problem. Figure 5 shows the the
speedup by individual parallelization with MPI and OpenMP
for the problem. MPI parallelism yield the parallel efficiency
of about 50% at most. This is because the problem scale is rel-
atively small; namely 1,200 batches are processed in parallel
with the number of MPI processes. In this case, 4×3 hybrid
parallel calculation yields almost the same speed up as the
4-process MPI parallel calculation. This is because OpenMP
parallelism is not effective as shown in Fig. 5.

Case Elapsed
time (sec)

Speedup
factor

Memories
(Gbytes)

Single (1 process) 3,420 1 0.2

MPI (4 processes) 1,372 2.5(0.62)† 1.1

MPI (12 processes) 620 5.5(0.46) 3.6
Hybrid (4×3)∗ 1,174 2.9(0.24) 1.1
OpenMP (12 threads) 3,891 0.9(0.07) 0.2
∗ processes × threads, † The value in parentheses indicates the paral-
lelization efficiency.

TABLE II. Comparison of elapsed time and used memories
for the FNS problem (batch size = 10,000).
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Fig. 5. Speedup by individual parallelization with MPI and
OpenMP for the FNS problem (batch size = 10,000).

To investigate the impact of the batch size for OpenMP
parallelism, MVP calculations have been done for the same
FNS problem with a larger batch size of 40,000. As a re-
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sult, the total number of histories are 48,000,000 histories and
the number of batches is 1,200. Table III and Fig. 6 show
the comparison of elapsed time/used memories and individ-
ual parallelization with MVP/OpenMP, respectively, for the
FNS problem. The parallelization efficiency for MPI becomes
better: 91%, 81% and 68% for 4, 8 and 12 MPI processes,
respectively. It is considered that relatively small overheads
lead to these slightly better efficiencies because the number of
batches is unchanged. The speedups by OpenMP are observed
in Fig. 6: 2.0, 2.4 and 2.5 for 4, 8 and 12 threads, respectively.
The OpenMP speedup results in the better speedup of 6.1 for
the 4×3 hybrid parallel calculation in comparison with the
speedup of 3.6 for the 4-process MPI calculation. The hybrid
result is not as good as the 12-process MPI result in terms of
computation time but the memory saving of 68% is achieved.

Case Elapsed
time (sec)

Speedup
factor

Memories
(Gbytes)

Single (1 process) 24,968 1 0.2

MPI (4 processes) 6,863 3.6(0.91)† 1.3

MPI (12 processes) 3,057 8.2(0.68) 4.1
Hybrid (4×3)∗ 4,076 6.1(0.51) 1.3
OpenMP (12 threads) 10,010 2.5(0.21) 0.2
∗ processes × threads, † The value in parentheses indicates the paral-
lelization efficiency.

TABLE III. Comparison of elapsed time and used memories
for the FNS problem (batch size = 40,000).
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Fig. 6. Speedup by individual parallelization with MPI and
OpenMP for the FNS problem (batch size = 10,000).

3. PWR Full Core

The last performance test is for a large-scale eigenvalue
problem with a PWR full core model. The details of the

model should be consulted for Reference [5]. This model
includes 193 fuel assemblies and 55,777 fuel pins. In the
present work, the pin power distribution has been calculated
in 5 assemblies; each assembly includes 289 fuel pins (tally
regions). MVP calculations have been done for 69,120,000
histories; the number of histories per batch (batch size) is
115,200, the number of active and inactive batches are 500 and
100, respectively. In this test all 24 cores in a node have been
used for various combinations of the number of processes and
threads.

Table IV and Fig. 7 show the comparison of elapsed time,
the speedup factor and used memories for the PWR full core
problem. For the comparison of the results with the same
number of MPI processes, hybrid parallelism gives the better
performance than MPI parallelism by the parallelization with
OpenMP; the speedup factors are 7.4, 10.9 and 12.9 for hybrid
4 (× 6), 8 (× 3) and 12 processes (× 2 threads), respectively,
in Table IV while they are 3.8, 7.7 and 9.0 for MPI 4, 8 and
12 processes, respectively, in Fig. 7. It can also reduce a large
amount of required memories for the same number of used
cores as observed from the comparison with the 24-process
MPI result. It is, however, apparent that speedup by hybrid
parallelism is dominantly achieved by MPI parallelism; the
parallelization efficiency is about 50% at most and it decreases
as the number of threads increases. The larger-scale Monte
Carlo calculations have been done for the PWR problem in
comparison with the fast reactor subassembly problem regard-
ing the total number of histories and the batch size. How-
ever, OpenMP parallelism achieves the speedup of 2.5 at a
maximum for 12 threads as shown in Fig. 7. Optimized im-
plementation for OpenMP parallelism is required for further
speedup.

Case Elapsed
time (sec)

Speedup
factor

Memories
(Gbytes)

Single (1 process) 37,941 1 1.2

MPI (24 processes) 1,846 20.6(0.86)† 34.1
Hybrid (12×2)∗ 2,950 12.9(0.54) 17.0
Hybrid (8×3) 3,492 10.9(0.45) 11.2
Hybrid (6×4) 4,119 9.2(0.38) 8.3
Hybrid (4×6) 5,122 7.4(0.31) 5.5
Hybrid (3×8) 8,336 4.6(0.19) 4.0
Hybrid (2×12) 7,985 4.8(0.20) 2.6
OpenMP (24 threads) 18,202 2.1(0.09) 1.2
∗ processes × threads, † The value in parentheses indicates the paral-
lelization efficiency.

TABLE IV. Comparison of elapsed time and used memories
for the PWR full core problem.

IV. CONCLUSIONS

The MVP code has been parallelized with MPI and
OpenMP. Multithread and hybrid distributed/shared memory
parallel calculations with MVP have become possible through
the present work. The performance test has been also carried
out. The results have unveiled that the speed-up of a Monte
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Fig. 7. Speedup by individual parallelization with MPI and
OpenMP for the PWR full core problem.

Carlo code based on the event-based algorithm is possible with
hybrid parallel processing.

The current OpenMP parallelization of MVP can archive
a speedup of 2.5 at most. The parallelization efficiency with
OpenMP is not as good as that with MPI; it deteriorates
speedup performance for hybrid parallelism in comparison
with ideal scalability expected for the same number of avail-
able cores. Hybrid parallelism can, however, save a great
amount of memories in comparison with MPI parallelism.
Recent hybrid distributed- and shared-memory computers im-
plement a lot of cores but the available memories per core
are usually limited. The required memory size for realistic
full reactor core calculations is often larger than the memory
limitation per core. The current hybrid parallelization would
be one of the solution in such cases.
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