M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

PATMOS: A prototype Monte Carlo transport code to test high performance architectures

Emeric Brun*, Stéphane Chauveau', Fausto Malvagi*

*Den-Service d’Etudes des Réacteurs et de Mathématiques Appliquées (SERMA), CEA, Université Paris-Saclay, 91191
Gif-sur-Yvette, FRANCE
TNvidia Development France
Corresponding author: emeric.brun@-cea.fr

Abstract - PATMOS is a prototype for Monte Carlo neutron transport under development at CEA. It is
dedicated to the testing of algorithms for high performance computations on several modern architectures. The
final goal is to demonstrate the feasibility of pin-by-pin full core depletion calculations for large nuclear power
reactors with realistic temperature fields. In this paper we show PATMOS hybrid parallelism performances on
Intel Xeon and Xeon Phi recent architectures. We also show the vectorisation of the SIGMAI algorithm for use
in our on-the-fly Doppler broadening and its performances. Results with offloading to GPUs in heterogeneous

architectures are also presented.

I. INTRODUCTION

A new prototype (or mini-app) PATMOS for Monte Carlo
neutron transport is under development at CEA. PATMOS is
complex enough to be representative of a real simulation code
and at the same time conceived to be easy to change and adapt.
This prototype is dedicated to the testing of algorithms for high
performance computations on different modern architectures.
The final goal is to perform pin-by-pin full core depletion
calculations for large nuclear power reactors with realistic
temperature fields.

II. DESCRIPTION OF THE PATMOS PROTOTYPE

PATMOS is entirely written in C++11 but meant to be
used in Python, via a SWIG-generated interface, for all user
accessible objects. It is object oriented and makes heavy use
of polymorphism in order to always allow the choice between
competing algorithms: as an example, in PATMOS one can
mix nuclides with pre-computed Doppler-broadened cross
sections and nuclides with on-the-fly Doppler broadening.

Prototyping of PATMOS is first performed in Python for
agile programming. So there actually are two versions of
PATMOS, one in Python and one in C++. Verification tests
assure that the two versions give the same results.

A. Physics

The physics of PATMOS is still simplified. Two types
of particles are transported: mono-kinetic pseudo-particles
(MKparticles) and neutrons. MKparticles travel at constant
speed and they suffer only three types of collisions: absorp-
tion, scattering and branching. The angular distribution of the
outgoing particles, whether coming from diffusion or branch-
ing is always isotropic. They are mainly used for analytic
benchmarks.

For neutron transport, the Python version of PATMOS im-
plements all reactions except the thermal laws scattering data
and the unresolved resonance range. The results have been
verified by comparisons with TripoL1-4 ® 1] and MCNP5 [2].

In the C++ version, only a subset of physical interactions
has been implemented: elastic scattering (MT=2 in ENDF

terminology), discrete inelastic scattering (MT=51-90), ab-
sorptions (MT=102-117) and fission (MT=18). The cross
sections come from ACE files and the scattering anisotropy
is fully taken into account: this allows for correct simulation
of a number of non-fissile nuclides up to the eventual (n,2n)
threshold. All other nuclides can be uploaded, the simulation
runs but the results will be unphysical. Exiting neutron distri-
butions from fission are limited to a Maxwellian with a fixed
v value.

A number of methods for cross section access has been
tested [3]: binary search, N-ary search, hash tables, fractional
cascading and unified grid.

The SIGMA 1 method of Doppler broadening [4] has been
implemented as an on the fly interrogation at each cross section
request, starting from a user-defined temperature (OK and
300K have been tested). It can be assigned on an isotope-by-
isotope policy.

Geometry is simplified also. Only a slab geometry with
an arbitrary number of heterogeneous regions has been imple-
mented in native mode. However, more complex and realistic
geometries can be dealt with by using the ROOT [5] geom-
etry tracking package which has been linked to PATMOS.
This option has been used to model the Hoogenboom-Martin
benchmark problem [6].

Scoring has been separated from the simulation: a particle
is tracked from birth to death and its history recorded in a
dedicated object. This history is then passed to the scorer for
actual tally computation.

Both fixed-source calculations and criticality calculations
can be performed.

B. Hybrid parallelism

PATMOS has been conceived from the start to support two
levels of parallelism. The first level, corresponding to the dis-
tributed memory parallelism relies on MPI. The second level,
corresponding to the shared memory parallelism has been
implemented with three different technologies: OpenMP [7],
native C++11 threads and Intel TBB [8]. The performances of
the three different libraries are equivalent in the cases tested.

In order to achieve good performances and avoid race
conditions in shared memory, care must be taken in separating

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

non-mutable data in objects that will be shared from mutable
data which is encapsulated in light objects meant to be dupli-
cated for each thread. This has been done in the geometry,
where the non-mutable geometry is separated from the thread-
specific navigator which buffers temporary data like current
point and current volume, which are needed to optimize track-
ing and to keep a generic interface. The same logic has been
applied to the cross sections, where shared objects contain the
data read from the ACE files and duplicated objects contain
temporary data like the current neutron energy, current isotope,
etc.

In our approach, which we have carried over from TripoLI-
4® 3]l simulations are divided in batches (or cycles in critical-
ity calculation), even if in fixed-source simulations all source
particles are independent (for instance, one million histories
are typically simulated as 1000 batches of 1000 particles).
This allows for robust estimation of confidence intervals, since
the batch tally values are averaged values whose distribution
converges to the normal distribution. Because of their size, the
only non duplicated mutable structures are the scores that are
shared objects concurrently modified through OpenMP atomic
adds.

In our first multi-threading implementation, the particles
of the batch/cycle were dispatched in equal number to the avail-
able threads which simulate the particle history and compute
its contribution to the score. This parallelization procedure
is deterministic, thus assuring reproducibility and facilitating
debugging. As an option one can now choose dynamic dis-
patching of particles to the available threads: this assures load
balancing, but in this case the result is non-deterministic. Each
thread has its own random number generator, independently
initialized at the beginning of the simulation.

When distributing the simulation with MPI, each MPI
process executes an independent simulation; at the end of
the run the results of all simulations are aggregated via MPI
reduction operations (a call to MPI All_reduce for computing
the mean followed by a call to MPI Reduce for the variance
calculation).

1. Vectorization

We have chosen the SIGMA1 method for on-the-fly
Doppler Broadening (OTF) because it is the reference method
used in NJOY and also because it has a good potential for
vectorization. Since modern computer architectures heavily
rely on vectorization to achieve performances, it is essential
for simulation codes to exploit the vector units in order to
achieve good performances. Vectorization of the SIGMA1
method has required a few rearrangements of the loops, after
which good gains have been observed (see next section).

II1. NUMERICAL RESULTS ON DIFFERENT ARCHI-
TECTURES

For the numerical results we use two test cases. The first
case, called PointKernel, is a slowing down problem from
a 2 MeV source in an infinite medium composed of all the
390 nuclides of the ENDF-BVII.O library at 900K; the main
components of the mixture are HI and U238 in order to have

a classical Pressurized Water Reactor (PWR) spectrum, the
other nuclides intervening in small amounts. In this case the
computed score is a multigroup flux spectrum with either 10°
or 107 groups. All the times given in the following results
are for an average "cycle", which is the simulation of the full
history of a number of neutrons (usually 10* or 10°, to keep
the simulation time reasonable).

The second test case is the Hoogenboom-Martin bench-
mark [6], an idealized full Pressurized Water Reactor core with
241 identical 17 x 17 assemblies composed of 264 identical
fuel pins. The fuel composition is representative of a fuel bur-
nup of 24GWd/tHN, but only the 34 most important actinides
and fission products have been retained. The objective of the
benchmark is to compute the fission power in each of the 100
axial slices of each fuel pin.

PATMOS can run on either Intel Xeon CPUs (we
have made performance studies on Sandybridge, Ivybridge,
Haswell and Broadwell) and Intel Xeon Phi (MIC) processors
(we tested both Knights Corner KNC and Knights Landing
KNL). For now, the same source code is used for both Intel
lines without platform specific optimizations.

Thanks to a collaboration with Nvidia, a version of PAT-
MOS has been developed where all the neutron simulation
is run on CPU and the on-the-fly Doppler broadening is of-
floaded to one or more GPUs (Nvidia Kepler line K40 and
K80 have been tested).

1. Shared memory parallelism

A. Strong scalability

The shared memory parallelism is tested by performing
a strong scalability study on the PointKernel test case. This
consists in looking at the speedup by keeping constant the
amount of work to be done (in our case the number of simu-
lated particles per cycle) and increasing the number of CPU
cores utilized. The ideal curve is linear in the number of
resources used.

Figure 1 shows the scalability of PATMOS for the PointK-
ernel test case with pre-tabulated cross sections at 900K on
three Intel Xeon Broadwell (BDW) machines:

e Blue curve: Intel Xeon E5-2690v4: 2 x 14 cores at
2.6GHz, Cluster-On-Die not enabled, Turbo mode en-
abled, Hyperthreading enabled.

e Green curve: Intel Xeon E5-2680v4: 2 x 14 cores at
2.4GHz, Cluster-On-Die enabled, Turbo mode disabled,
Hyperthreading disabled.

e Orange curve: Intel Xeon E5-2697v4: 2 X 18 cores at
2.3GHz, Cluster-On-Die enabled, Turbo mode disabled,
Hyperthreading disabled.

We see that the efficiency when all cores are used can
vary from 68% to 85% depending on the machine and its
global settings (turbo mode, Cluster-On-Die, ...). Analyzing
the effect of each setting will require further investigations.
When using pre-tabulated cross sections, the degradation of
the efficiency with the increasing number of cores is due to the

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

—Ideal

E5-2690v4

E5-2680v4

E5-2697v4

Fig. 1. Strong scalability study on several Intel Xeon Broad-
well machines for the PointKernel test case with pre-tabulated
cross sections at temperature.

—s—Ideal

Pre-tabulated X5

Speedup
B

10 20 30 40 50 60

Number of cores

Fig. 2. Strong scalability study on Intel Xeon Phi (KNL) for
the PointKernel test case with pre-tabulated cross sections at
temperature.

fact the simulation is memory latency bound (caches misses
induced by the binary search).

The same study has been performed on an Intel Xeon
Phi KNL 7250 with 68 cores at 1.4GHz with up to 4 threads
per core (see Fig. 2. The 16GB high bandwidth memory,
MCDRAM, is used as a L3 cache and the Quadrant cluster
mode is enabled. In this case, we have an efficiency of 53%
for the pre-tabulated cross sections simulation.

All the results shown in the remainder of this article con-
cerning the BDW architecture have been obtained on the E5-
2690v4 machine.

B. Effect of hyperthreading

The hyperthreading has been enabled on the BDW ma-
chine so that each core can run up to 2 threads. Table I shows
the influence of hyperthreading on the time necessary to run
the same amount of tracked particles. Here, we only show
results for the pre-tabulated cross sections simulations. We
obtain a gain of 1.7 with 2 threads per core.

Table II shows that the hyperthreading is very effective
on the KNL architecture. Indeed, the duration of a cycle is

Nb MPI ranks \ threads/core \ Cycle time (s) ‘

1 1 14.02
1 2 8.37
2 1 13.93
2 2 8.27

TABLE 1. Hyperthreading effects on the Broadwell ES-2690v4
for the PointKernel test case and use of pre-tabulated cross
sections

Nb MPI ranks | threads/core [Cycle time (s) |

1 1 48.22
1 2 30.01
1 3 23.27
1 4 18.44
4 1 48.77
4 2 29.43
4 3 22.75
4 4 17.88

TABLE II. Hyperthreading effects on KNL for the PointKernel
test case and use of pre-tabulated cross sections

divided by a factor 2.7 with 4 threads per core compared to 1
thread per core.

The BDW machine being a bi-socket with 2 NUMA (Non
Uniform Memroy Access) domains and the KNL machine
being in Quadrant mode, we expected an efficiency gain going
from one to two MPI ranks on BDW and a slight gain on KNL
going from one to four MPI ranks. Table I and Table II show
that this is not the case.

C. Dynamic dispatching of particles

Particles of a cycle are dispatched to all the available
threads. This dipatching can be static, all particles are equally
distributed to all the available threads at the beginning of the
cycle, or dynamic, particles are divided in groups. In our
implementation, there are 100 more groups than threads. A
dynamically scheduled OpenMP parallel loop takes care of
the load balance.

Table III shows no strong effects of dynamic scheduling
when using pre-tabulated cross sections.

’ Machine \ Static dispatch. \ Dynamic dispatch. \ Gain ‘
BDW 8.37 7.99 1.05
KNL 18.41 17.88 1.03
TABLE III. Effect of dynamic dispatching of particles on KNL
and BDW for the PointKernel test case and use of the pre-

tabulated cross sections at temperature. Configuration with 1
MPI rank and 48 threads for BDW and 272 threads for KNL.

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

...
&
=}

—#—Curie (TGCC)

®

-
1Y)
[-]

—@—Titan (ORNL)

T
8
S
-]
-
3
T
£
< 1,10
§
8
2
£ 1,00
A
g
=
&
]
-5

262144

)
]

e
2

16 64 256 1024 4096 16384 65536
#cores

Fig. 3. Weak scalability study for the PointKernel test case on
the CURIE machine and the TITAN machine.

2. Distributed memory parallelism

The distributed memory parallelism is tested by looking at
the weak scalability. This is measured by doubling the amount
of work each time one doubles the number of cores used. The
ideal curve is flat versus the number of resources used.

Figure 3 shows the weak scalability for the PointKernel
test case with 10 million scores (representative of a pin-by-
pin power map of PWR core with 100 axial zones). The
simulations have been performed on the CURIE machine (Tres
Grand Centre de Calcul, CEA) and on the Oak Ridge TITAN
machine. The penalty is only 10% when running at 79,200
cores on CURIE and 262,144 cores on TITAN.

We have recently run the Hoogenboom-Martin benchmark
on CURIE up to 65,000 cores with again a 10% penalty (see
Fig. 4).

Power
l 1.103e-07
8.27486-8
| 5516508
2758308

0.0006+00

Fig. 4. Pin-by-pin fission power map for the Hoogenboom-
Martin benchmark.

3. Acceleration of the SIGMA1 method

A. Vectorization

The SIGMA1 method used for on-the-fly Doppler broad-
ening slows down the computing time by a factor of 10 when
compared to simple table look-up on pre-broadened cross sec-

tions. This figure seems high, but we have been able to count
the floating point operations (by analyzing the instruction mix
given by Intel Software Development Emulator) of two simula-
tions with pre-tabulated cross sections and on-the-fly Doppler
broadening with the SIGMA1 algorithm. The number of float-
ing point operations is 150 times higher for on-the-fly Doppler
broadening compared to pretabulated cross sections simula-
tions. This highlights the fact that in the standard tabulated
search, most of the time of the floating point units is spent
waiting for data to come.

In order to vectorize the main loop of the SIGMAI algo-
rithm, we resorted to manual software pipelining. The original
algorithm looks, in a simplified way, like this:

for (i=0; i<n; i++) {

Fa=F(i)
Fb=F(i+1)
H=Fb - Fa
SIGMA += G(i,H)
}

where the function G(i, H) has the interesting property of being
linear in the second variable, that is G(i, X + Y) = G(i, X) +
G(i,Y). The fact that both indexes i and i + 1 are present in the
loop, prevents the compiler from vectorizing it. A standard
technique is to reshuffle the computations by moving the i + 1
part to the next iteration:

Fa=F (0)

SIGMA -= G(0®, Fa)

for (i=0; i<n-1; i++) {
Fb=F(i+1)
SIGMA += G(i,Fb)
Fa=F(i+1)
SIGMA -= G(i+1,Fa)
}

Fb=F(n)

SIGMA += G(n-1, Fb)

A further simplification can be achieved by noting that now
Fa = Fb inside the loop, and so the final version looks like:

Fa=F(0)

SIGMA -= G(0, Fa)

for (i=0; i<n-1; i++) {
Fa=F(i+1)
SIGMA += G(i,Fa) - G(i,Fb)
}

Fb=F (n)

SIGMA += G(n-1, Fb)

One of the F functions mentioned above calls the erfc (com-
plementary error) function. In order to achieve vectorization,
the compiler needs a version of erfc callable in a vectorized
loop. This is the case for Intel compiler via the Short Vec-
tor Math Library (SVML). The loop can then be vectorized
either by resorting to an OpenMP SIMD directive or even
auto-vectorization since Intel 2016.

In order to analyze the performance of the vectorization
on BDW and KNL, three binaries of PATMOS have been
produced with different compiler switches:

BDW (s/cycle) | KNL (s/cycle)
Binary search 8.37 18.41
OTF 213.76 295.01
OTF -Im 106.85 197.82
OTF vectorized 36.39 44.56
Vectorization gain 2.94 4.44

—Ideal

E5-2690v4

E5-2680v4

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

TABLE IV. PointKernel test case on Xeon (Broadwell) and
Xeon Phi (KNL). Results with pre-tabulated cross sections,
non-vectorized SIGMA1 and vectorized SIGMA1. The maxi-
mal theoretical vectorization gain is 4 for Broadwell and 8 for
KNL.

e OTF vectorized : "-O2 -xMIC-AVX512" on KNL and
"-02 -xCORE-AVX2" on BDW

o OTF: vectorization disabled by "-no-vec -no-simd -gqno-
openmp-simd"

e OTF -lm : vectorization disabled and "-Im" compiler
switch to use the GNU Math library instead of the Intel
Math library for the scalar version on the erfc function.
This was done because the Intel erfc function appears to
be four times slower than the GNU version.

Cycle times obtained with these three different version of
the binary are reported in Table IV. The vectorization gain
is the ratio between the vectorized SIGMA1 cycle duration
(OTF vectorized) and the non-vectorized version of SIGMA1
resorting to GNU Math library (OTF -lm). The vectorization
of SIGMA1 main loop has permitted a speed-up of a factor
of 2.9 on the Broadwell machine (out of a maximum of 4)
and of almost 4.5 on the KNL (out of a maximum of 8) (see
Tab. IV). The vectorization gain is limited, especially for the
KNL, by the instructions of the SIGMA1 algorithm which are
not inside the (vectorized) loop.

The penalty for the on-the-fly Doppler broadening is now
a factor of 4 on CPU and a factor of 2 on KNL compared to
the use of pre-tabulated cross sections.

B. Strong scalability

Figures 5 and 6 show the strong scalability results for
the simulation with on-the-fly Doppler broadening on BDW
and KNL, respectively. The efficiency is much higher than
for the pre-tabulated cross sections: we get close to 90% for
the BWD and 97% for the KNL using all the cores (but no
hyperthreading). This is due to the fact that now the simulation
is much more computing intensive, and the cores can perform
more floating points operations with the data in cache.

C. Effect of hyperthreading

Hyperthreading is less effective for simulations with on-
the-fly Doppler broadening. The speedup is now of only 1.47
on BWD with two threads per core, and of 2.2 on KNL with
four threads per core. Those results are consistent with the
fact that the simulation is more computing-intensive, and there
is less to gain by switching thread while waiting for data.

Again, from table V, we do not see NUMA effects on
BDW. On the other hand, table VI shows a 15% improvement

a E5-2697v4

Number of cores

Fig. 5. Strong scalability study on several Intel Xeon Broad-
well machines for the PointKernel test case with on-the-fly
Doppler broadening from OK.

—e—I|deal

OTF DB OK

Speedup

10 20 30 40 50 60

Number of cores

Fig. 6. Strong scalability study on Intel Xeon Phi (KNL) for
the PointKernel test case with on-the-fly Doppler broadening
from OK.

Nb MPI ranks \ threads/core \ Cycle time (s) ‘

1 1 53.70
1 2 36.39
2 1 53.29
2 2 36.11

TABLE V. Hyperthreading effects on Broadwell for the
PointKernel test case and on-the-fly Doppler broadening.

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

Nb MPI ranks \ threads/core \ Cycle time (s) ‘

1 1 98.37
1 2 60.26
1 3 51.43
1 4 44.56
4 1 103.23
4 2 59.75
4 3 45.74
4 4 38.70

TABLE VI. Hyperthreading effects on KNL for the PointKer-
nel test case and use of on-the-fly Doppler broadening.

’ Machine \ No prefecth. \ Prefetch. \ Gain ‘

BDW 36.39 36.12 1.00
KNL 44.56 41.30 1.08
TABLE VII. Effect of memory prefetching on KNL and BDW
for the PointKernel test case and use of on-the-fly Doppler

broadening. Configuration with 1 MPI rank and 48 threads for
BDW and 272 threads for KNL.

when going from one to four MPI rankon the KNL.

D. Memory prefetching

Once the energy grid indexes corresponding to the upper
and lower bounds of the Doppler integral have been computed,
it is possible to prefetch these memory segments in the last
level cache. This can be done while the half fist iteration out-
side of the vectorized loop is computed. results with memory
prefetching are reported in table VII. One can see that there is
no gain on the BDW machine but a 8% on the KNL.

E. Dynamic dispatching of particles

Dynamic dispatching of particles has a bigger effect (10%
on KNL) with on-the fly Doppler broadening, as shown in
table VIII. This is due to the fact that a neutron simulation
time now has a big dispersion, according to how many times
the SIGMA1 routine is called. The source being at 2MeV, but
the Doppler threshold at 20keV, load unbalancing can be large
between neutrons that slow down to low energies and neutrons
that are absorbed at higher energies.

Machine | Static dispatch. | Dynamic dispatch. \ Gain ‘
BDW 36.12 35.07 1.03
KNL 41.30 37.44 1.10

TABLE VIII. Effect of dynamic dispatching of particles on
KNL and BDW for the PointKernel test case and use of on-the-
fly Doppler broadening. Configuration with 1 MPI rank and
48 threads for BDW and 272 threads for KNL. The memory
prefetching is enabled.

’ Configuration \ Time (s/cycle) ‘
CPU ; binary search 18.1
CPU + 1 K80 OTF 324
CPU + 2 K80 OTF 19.8
CPU + 3 K80 OTF 17.9

TABLE IX. PointKernel test case with on-the-fly Doppler
broadening using the GPU as a cross-section server. The
simulation part is run on the CPU with 2x16 threads.

F. GPU version

In this version, realized in the framework of a collabora-
tion with Nvidia, the on-the-fly Doppler broadening has been
ported to GPU by "flattening" the cross sections objects into
C arrays and rewriting the SIGMAI1 kernel in CUDA. Thus
all the particle geometric tracking, collisions, and scoring are
still performed on the CPU, and the GPU essentially works as
a microscopic total cross sections server providing on-the-fly
Doppler broadened cross sections every time the macroscopic
total cross section of the material is computed. The total cross
sections of all the nuclides of the current material are called at
once, to maximize the GPU occupancy.

The GPU version of PATMOS has been tested on a Intel
Xeon Haswell server E5-2698v3 (2 x 16 cores at 2.3GHz)
equipped with 4 Nvidia K80 GPUs. All the cases were run
with 32 threads. We see in Table IX that the optimal perfor-
mance is achieved with 2 GPUs fed by 32 threads. After that
the number of threads per GPU is not enought to have a good
GPU occupancy and the part of work not offloaded becomes
preponderant. The results show that the slow down due to
on-the-fly Doppler broadening is a of 1.7 with one K80 and
roughly equal time is achieved with two K80.

CONCLUSIONS AND PERSPECTIVES

A new prototype for Monte Carlo neutron transport is
under development at CEA mainly devoted to the issues of
High Performance Computing. Its object-oriented architecture
allows easy implementation and testing of different algorith-
mic options and parallel libraries. Simulation results show that
the hybrid parallelism in PATMOS scales well on the latest
Intel architectures of both the Xeon and the Xeon Phi lines.
Further work is planned to improve KNL performances which
is 2 times slower than the Broadwell for pre-tabulated cross
section simulations and 22% slower for on-the-fly Doppler
broadening cross sections simulations. We showed results
with 10% penalty for distributed memory simulations up to
262,144 cores.

The SIGMA1 method for on-the-fly Doppler broadening
has been vectorized on Intel Xeon and Xeon Phi architectures
and now the slow-down is limited to a factor between 2 and 3.

An "heterogeneous" version of Patmos has been devel-
oped which can offload the on-the-fly Doppler broadening to
one or several GPUs. Our results show the SIGMA1 kernel can
be run at no extra cost with respect to standard pre-tabulated
cross sections with the use of two Nvidia K80 GPUs.

All the performances reported in this work need to be
reviewed as new hardware is made available by constructors.

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

We are currently testing PATMOS on OpenPower architecture
made of two Power8 processors each one attached to two
Nvidia Pascal P100 GPU.

From an algorithmic point of view, our next goal concerns
the distribution of the ten billion (10'°) scores, needed for full
core pin-by-pin PWR burn-up computations, across several
nodes of a HPC machine.

ACKNOWLEDGMENTS

Part of this work was performed in the framework of "Cel-
lule de Veille Technologique" of GENCI (Grand Equipenment
National de Calcul Intensif) with the participation of Intel,
Atos/Bull, IBM and Nvidia experts.

REFERENCES

1. E. BRUN, F. DAMIAN, C. DIOP, E. DUMONTEIL, F.-
X. HUGOT, C. JOUANNE, Y.-K. LEE, F. MALVAG]I,
A. MAZZOLO, O. PETIT, J.-C. TRAMA, T. VISON-
NEAU, and A. ZOIA, “TRIPOLI-4, CEA, EDF and
AREVA reference Monte Carlo code,” Annals of Nuclear
Energy, 82, 151-160 (2015).

2. X-5 MONTE CARLO TEAM, “MCNP - A General N-
Particle Transport Code, Version 5,” Tech. rep., LA-UR-03-
1987, Los Alamos National Laboratory (Updated 2005).

3. Y. WANG, E. BRUN, F. MALVAGI, and C. CALVIN,
“Competing Energy Lookup Algorithms in Monte Carlo
Neutron Transport Calculations and Their Optimization on
CPU and Intel MIC Architectures,” Procedia Computer
Science, 80, 484 — 495 (2016), international Conference on
Computational Science 2016, ICCS 2016, 6-8 June 2016,
San Diego, California, USA.

4. D. E. CULLEN and C. R. WEISBIN, “Exact Doppler
Broadening of Tabulated Cross Sections,” Nuclear Science
and Engineering, 60, 3, 199 — 229 (1976).

5. R. BRUN and F. RADEMAKERS, “ROOT - An object
oriented data analysis framework,” Nuclear Instruments
and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, 389,
81 —86 (1997).

6. J. E. HOOGENBOOM, W. R. MARTIN, and B. PETRO-
VIC, “A Proposal for a Benchmark to Monitor the Per-
formance of Detailed Monte Carlo Calculation of Power
Densities in a Full Size Reactor,” in “Core. Proc. Int.
Conf. Mathematics, Computational Methods, and Reac-
tor Physics, Saratoga Springs, N'Y,” (2009).

7. L. DAGUM and R. MENON, “OpenMP: an industry stan-
dard API for shared-memory programming,” IEEE compu-
tational science and engineering, S, 1, 46-55 (1998).

8. A. KUKANOV and M. J. VOSS, “The Foundations for
Scalable Multi-core Software in Intel Threading Building
Blocks.” Intel Technology Journal, 11, 4 (2007).

