
M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

Domain Decomposed Parallel Implicit Monte Carlo with the Data Server Model

Alex R. Long,∗

∗CCS-2, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM
along@lanl.gov

Abstract - The large computational cost of IMC for radiative transfer is related to two factors: first, using
an energy-based source strategy makes it difficult to load balance a dynamic problem. Second, domain
decomposed IMC requires a large amount of parallel communication. Currently, that communication is
passing particles as they move between spatial sub-domains. A mini-app, BRANSON, has been developed to
study both the standard method and an alternative parallel algorithm for IMC that passes mesh and physical
information between parallel processes instead of passing particles. This approach handles load balancing by
dividing particles evenly between parallel processes and sending mesh data when required. The two methods
are compared on simple problems. For load balanced problems, the mesh passing method has slightly improved
performance compared to particle passing. For imbalanced problems, the mesh passing method strong scales
with 84% efficiency with 2048 processors and simple particle passing cannot scale.

I. INTRODUCTION

The Implicit Monte Carlo (IMC) method is a standard
method for simulating thermal radiative transfer (TRT) in mul-
tiphysics problems [1]. It is also computationally expensive
and can account for 80% of the runtime in HEDP problems.
IMC is used to solve the thermal radiative transfer equations:

1
c
∂I
∂t

+ Ω · ∇I + σaI = σaB, (1)

∂Um

∂t
=

∞∫
0

4π∫
0

σaI dΩdν −

∞∫
0

σaB dν + S m. (2)

These equations are linearized and then Eq. (1), the transport
equation, is solved by inverting the streaming and collision op-
erator with particle histories. These particle histories represent
the radiative energy in the problem and how that energy moves
through the material. If an energy-based source strategy is
used—which is desirable for variance reduction purposes—all
simulated particles represent the same amount of energy:

Eparticle = Etotal/Ntotal (3)

With emission energy proportional to T 4, small spatial
gradients in temperature can lead to large gradients in IMC
particle density when the energy-based source strategy is used.
Large discrepancies in particle counts across space directly
translate into a load imbalance in parallel, domain decom-
posed IMC simulations. If the load is relatively balanced,
methods exist for efficiently passing particle between parallel
processes [2] [3].

Currently, two approaches exist for dealing with this load
imbalance in parallel Monte Carlo transport. The first ap-
proach replicates load imbalanced sub domains [4]. The sec-
ond approach is to apply a user-specified importance function
to counteract the effect of temperature gradients on IMC par-
ticle density. The first approach relies on an accurate work
estimate and also could potentially be imbalanced when many

Parameter Symbol
Batch size nb

Chunk size csize

Non-local mesh size msize

TABLE I. Parameters in the mesh passing algorithm

high particle densities travel to unreplicated spatial domains.
The second approach is undesirable because it requires prob-
lem specific knowledge and changes a variance reduction tool
(importance sampling) into a crude acceleration technique.

II. THEORY

To simplify the technique for load-balancing, we use
the idea of data servers found in Monte Carlo neutronics [5].
When a particle requires mesh data for transport that is not
local to its parallel process, the parallel process requests that
mesh data from the owner of the mesh data. In contrast, the
standard particle passing method sends particles to2 the paral-
lel process that owns the non-local mesh data. If the data server
model is used, the particle work can be divided up equally be-
tween all parallel process and each process can independently
request the mesh data needed by its particles, wherever they
might be located. We call this method “mesh passing” to dis-
tinguish it from the standard domain decomposed method of
particle passing. Mesh passing performance in IMC requires
effectively communicating and managing non-local mesh data,
having sufficient particle work and selecting algorithm spe-
cific parameters that are appropriate for the problem and the
computer architecture. A full list of parameters used in the
mesh passing method is shown in Table I. Specific parame-
ter settings for optimal performance are not evaluated here,
instead a simple implementation of the method is compared
to the particle passing method for a load balanced and load
imbalanced problem.

The mesh passing method was implemented two ways:
with MPI’s standard two-sided messaging and MPI one-sided
messages using remote memory access (RMA) operations and
MPI shared memory windows [6]. Going forward, the abstract
idea of a “parallel process” will be replaced with “MPI rank.”



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

For all test problems an MPI rank was mapped to a single core
in a multiprocessor.

1. Algorithm Parameters

The parameters that affect both two-sided MPI and one-
sided MPI mesh passing method are related to memory limita-
tions, parallel architecture and asynchronous work. The first
parameter is the batch size, nb. The batch size is the number
of particles to run before processing parallel messages. If the
batch size is too large, particles that need remote data will
wait longer on average. If the batch size is too small the time
spent checking message requests could become large enough
to significantly affect runtime.

The next major parameters is the chunk size, csize. Be-
cause particles that move into a given mesh cell are likely to
move into neighboring mesh cells, mesh cells are grouped into
spatially contiguous and memory contiguous“chunks” within
a domain. When one cell is requested from a chunk of cells,
the whole chunk is sent. A larger chunk size prefetches more
mesh data, decreasing the number of MPI messages but in-
creasing the amount of data sent in those messages (some
prefetched cell data will likely not be used). If the chunk size
it too small and a rank requires a large amount of remote data,
MPI message latency could significantly affect runtime. These
chunks of data are created by calling Metis on local mesh data
and asking for nchunk partitions, where nchunk is:

nchunk =
ncell

csize
(4)

The final major parameter is the non-local mesh size,
msize. When remote mesh data is received, it is placed into an
unordered map object that uses the global cell index as the
key and the cell data as the value. This non-local mesh could
grow to encompass the entire mesh, effectively replicating the
problem geometry. For larger meshes, the non-local mesh
must be limited to avoid running out of memory. Ideally the
non-local mesh would be managed like a computer cache with
a cache replacement policy, thereby saving memory that is
used often (likely mesh data that is geometrically close to
the local mesh). A cache replacement policy is not currently
implemented and simple replacement is used instead.

There are a few minor parameters in the mesh-passing
algorithm that, as yet, have not had a significant effect on
runtime. The number of concurrent sends and receives of
mesh data a rank may have is limited to not overwhelm the
MPI library.

2. Implementation

Mesh passing and particle passing were implemented in
the IMC code Branson. Branson is a small, lightweight IMC
code meant to test parallel methods. It implements both simple
particle passing from [2] and mesh passing. Branson has only
temperature dependent, gray opacities and simple cartesian
meshes. It does not comb census particles or have any acceler-
ation techniques for particles in diffuse regions. The lack of a
multigroup treatment keeps regions from being both optically
thick and thin to different groups. That case would be valuable
to assess and is a weakness in Branson as a proxy application

for IMC. Combing and acceleration schemes simplify load
balance and memory demands in IMC so Branson represents
a more conservative case for these issues.

The two-sided MPI implementation checks for mesh cell
requests after transporting nb particle histories. The rank then
sends all of the requested cells at once to the requesting MPI
rank. It then checks for received cell data needed by its parti-
cles and adds any received data to the non-local mesh. When
new non-local mesh is received, particles that are waiting for
remote data are transported as far as possible. When a rank
completes its particles it sends a completion message up the
binary tree (as in [2]) and continues servicing requests for its
mesh data.

The one-sided messaging implementation allocates mesh
data in an MPI window. This window can then be read by
other ranks. A passive, one-sided request is made by the rank
that requires remote mesh data. These RMA operations are
done at a low level and optimally do not involve the operating
system of the target MPI rank. The requesting rank tests these
requests after running bs particles and upon completion trans-
ports particles that are waiting for mesh data. The mesh data
is requested in size of csize. Because operations are one-sided,
each MPI rank can complete its particle work independently
and does not need to send or check for completion messages.
This makes the parallel algorithm simpler compared to particle
passing and two-sided MPI mesh passing.

Both mesh-passing methods have a copy of the absorbed
energy tally for the entire mesh and an MPI_Allreduce is
called at the end of a timestep to get the correct absorbed
energy tally. This is a known weakness of the mesh passing
method and must be addressed before it can be recommended
for adoption.

3. Load balancing

Load balancing in replicated domain-decomposed Monte
Carlo applications involves finding spatial domains (all the
mesh data on an MPI rank, for instance) with a large amount
of particle work and replicating those domains based on func-
tions that estimates the cost of completing the work in that
domain. In the mesh passing algorithm, load balancing is done
at the particle level—particle work is divided evenly across the
processors. Particle work can be specified as a “work packet”,
which is some number of particles to make in a given cell with
a given energy. Particle work can also be a literal particle,
as in the census. Particle work specified as a work packet
avoids storing and communicating full particle data, which
could easily consume the whole memory of a node in load
imbalanced problems. To limit communication of cell and
particle data, a process with excess work will preferentially
send emission work before census work—emission particles
are born throughout the timestep and thus will likely travel
a shorter distance in a timestep and require less remote data
compared to census particles. To allow for overlap of parallel
and serial work, work from remote ranks is placed at the top
of the particle stack, meaning that requests for remote data
will be made early in the simulation.



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

Parameter Value
particles = 2.0 × 108

∆t = 0.01 ns
t f = 0.1 ns

cells = 403

∆x,∆y,∆z = 1/40 cm
f = 0.154
σa = 100

T 3 cm−1

σs = 0.0 cm−1

cv = 0.1 jk
g keV

ρ = 3.0 g
cm3

Tm,0 = 1.0 keV
Tr,0 = 1.0 keV

TABLE II. Problem description for the load balanced IMC
transport problem

Parameter Value
particles = 1.0 × 109

∆t = 0.01 ns
t f = 0.05 ns

cells = 4002

∆x,∆y = 1/100 cm
hot corner = x ∈ (0, 0.05 cm), y ∈ (0, 0.05 cm)

σa = 50.0 cm−1

σs = 0.0 cm−1

cv = 0.1 jk
g keV

ρ = 1.0 g
cm3

Tm,cold = 0.01 keV
Tm,hot = 1.0 keV

TABLE III. Problem description for the hot corner load imbal-
anced IMC transport problem

III. RESULTS AND ANALYSIS

1. Load Balanced Problem

A strong scaling study was performed for a standard,
load balanced problem, with the setup shown in Table II.
The results are shown in Fig. (1). This problem was run
on the Trinitite machine at Los Alamos National Laboratory.
The particle passing method exhibits strong scaling out to
1024 cores at about 63% efficiency compared to one node
(32 processors). The two sided mesh passing strong scaling
efficiency at 1024 cores is about 91% and the one-sided mesh
passing strong scaling efficiency at 1024 cores is about 86%.
At 1024 cores, there are 2.0×105 particles per MPI rank, which
is a small amount of work and illustrates the difficulty of strong
scaling studies. The mesh-passing method exhibits better
scaling than the particle passing method. This is likely because
there are more ranks for the same amount of mesh data—there
are effectively more servers able to handle requests for the
same data. This benefit eventually fades as the processor
count increases because the domain sizes are smaller and a
greater fraction of particles will need non-local mesh data
during transport.

64 128 256 512 1024
cores

64

128

256

512

1024

sp
e
e
d
u
p

Mesh Passing
Mesh Passing RMA
Particle Passing
Ideal Strong

Fig. 1. Strong scaling for the load balanced problem in Ta-
ble II for the particle passing and mesh passing methods

26 27 28 29 210 211

cores

2627

28

29

210

211

sp
e
e
d
u
p

Mesh Passing
Mesh Passing RMA
Ideal Strong

Fig. 2. Strong scaling for the hot corner problem in Table III
for the one-sided and two-sided mesh passing implementations

2. Load Imbalanced Problem

The hot-corner problem shown in Table III was run with
2048 processors using two-sided and one-sided mesh passing.
This problem setup puts more than 99.99% of the particles on
one MPI rank. The scaling results are shown in Fig. (2) and
the total transport runtimes are shown in Fig. (3). Running
a smaller version of this problem (1.0 × 107 particles and
2002 cells and 20 timesteps) on one node (32 processors) with
the particle passing method takes about 4122.19 seconds and
only a slight improvement is expected as more processors are
added (eventually the hot corner will be spread across several
MPI ranks). The runtime for the particle passing method with
32 processors is about 10% slower than the single processor
runtime with particle passing. This result is expected because
the single rank transporting all the particles no longer has
access to all of the node resources compared to the serial run.

The two-sided mesh passing implementation achieves



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

26 27 28 29 210 211

cores

101

102

103

R
u
n
ti

m
e
 (

s)

Mesh Passing
Mesh Passing RMA

Fig. 3. Total transport runtime for the hot corner problem
in Table III for the one-sided and two-sided mesh passing
implementations

a speedup of about 1737 and about 84% efficiency at 2048
processors (compared to the performance of single node with
32 processors). Both implementations on a single node run in
about 1040 seconds. At 2048 processors, each timestep takes
less than about 4 seconds and there are about 600000 particles
on each MPI rank. The runtime and scaling is slightly better
in the two-sided version for core counts smaller than 1048.
This could because the two-sided implementation sends all
requested mesh chunks at once, as opposed to a single chunk
per message in the one-sided implementation. Above 1048,
the performance and scaling of the two-sided implementation
decrease. This could be because at high core counts mesh
sizes are smaller and can be sent all at once, eliminating the
benefit of aggregating mesh requests. One-sided messaging is
known to have less latency than two-sided messaging—this
could explain the improved scaling compared to two-sided
messaging.

In these results, a range of batch sizes and chunk sizes
were used and the best result for each core count is shown in
the runtime and scaling results. The non-local mesh size was
kept at 5000 cells for all runs. Generally, a chunk size and
batch size that lead to the least number of MPI messages give
the best performance. This result suggests that the network
latency and not the bandwidth is the limiting factor in perfor-
mance. The results were less sensitive to these parameters
are large core counts where the mesh size of each rank was
relatively small.

At 2048 MPI ranks, load balance takes less than 1% of the
total runtime. The current load balancing algorithm in Branson
can be an all to all communication when the work is on one
rank. The load balancing algorithm used by O‘Brien [4],
which is known to be O

(
log(Np)

)
, has also been implemented

in Branson. This algorithm achieves faster load balancing but
it is more difficult to give spatially collocated particle work
to all processes, which incurs more parallel communication
and makes the transport runtime slightly slower. This issue is
being investigated because an O

(
log(Np)

)
algorithm for load

balancing will be essential at very high core counts.

IV. CONCLUSIONS

Initial results for the mesh passing method show signifi-
cant improvement over standard particle passing in both load
balanced and dynamic, load imbalanced IMC problems. More
detailed weak scaling studies are needed to fully evaluate the
mesh passing method as a potential replacement for particle-
passing in parallel IMC.

The mesh passing method has several known deficiencies
that could be addressed in future work. The issue of tallies on
remote mesh must be addressed as replicating and reducing
tally information is not practical for large meshes and high
core counts. This issue could be overcome with one-sided
accumulate operations. A full parameter study is needed to
identify the optimal balance between parallel communication
and computational work in the mesh passing method. If a
multigroup treatment is used for opacities an individual cell
could require much more memory and thus larger MPI mes-
sages when communicating non-local mesh data. The results
point towards MPI latency being the bottleneck, which means
larger messages could be sent without significantly impacting
performance. The relationship between cell memory footprint
and performance should be measured.

V. ACKNOWLEDGMENTS

Gabe Rockefeller provided guidance on the algorithm
and its implementation. Los Alamos National Laboratory
is operated by Los Alamos National Security, LLC for the
U.S. Department of Energy under Contract No. DE-AC52-
06NA25396.

REFERENCES

1. J. A. FLECK and J. D. CUMMINGS, “An Implicit Monte
Carlo scheme for calculating time and frequency dependent
nonlinear radiation transport,” Journal of Computational
Physics, 8, 313–342 (1971).

2. T. A. BRUNNER, T. J. URBATSCH, T. M. EVANS, and
N. A. GENTILE, “Comparison of four parallel algorithms
for domain decomposed implicit Monte Carlo,” Journal of
Computational Physics, 212, 2, 527 – 539 (2006).

3. T. A. BRUNNER and P. S. BRANTLEY, “An efficient,
robust, domain-decomposition algorithm for particle Monte
Carlo,” Journal of Computational Physics, 228, 10, 3882–
3890 (2009).

4. M. J. OŠBRIEN, P. BRANTLEY, K. JOY, and F. GYGI,
Scalable Domain Decomposed Monte Carlo Particle Trans-
port, Ph. D. Dissertation, University of California, Davis
(2014).

5. P. K. ROMANO, B. FORGET, and F. BROWN, “Towards
Scalable Parallelism in Monte Carlo Particle Transport
Codes Using Remote Memory Access,” (2010).

6. “MPI: A Message-Passing Interface Standard Version 3.1,”
(June 2015).


