M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

LLNL Monte Carlo Transport Research Efforts for Advanced Computing Architectures

Patrick S. Brantley, Ryan C. Bleile, Shawn A. Dawson, N. A. Gentile, M. Scott McKinley, Matthew J. O’Brien,
Michael M. Pozulp, David F. Richards, David E. Stevens, Jonathan A. Walsh, Hank Childs*

Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551
*Department of Computer and Information Science, University of Oregon, Eugene, OR 97403
{brantleyl, bleilel, dawson6, gentilel, mckinley9, obrien20, pozulpl, richardsl2, stevens9, walsh23}@lInl.gov,
hank@oregon.edu

Abstract - This paper presents ongoing research efforts at Lawrence Livermore National Laboratory to
enable the Mercury Monte Carlo particle transport code to run efficiently on current and upcoming advanced
computing architectures. We briefly describe the Quicksilver proxy application that we have developed to
enable more rapid prototyping of new algorithms and to engage the external computer vendor communities.
We present research and development efforts with Quicksilver and Mercury focused toward the Trinity machine
at Los Alamos National Laboratory that uses both Intel Xeon Haswell processors and Intel Xeon Phi Knights
Landing many integrated core processors. Finally, we describe research into Monte Carlo event-based and
history-based algorithms for the Lawrence Livermore National Laboratory Sierra machine that will use IBM
Power processors along with Nvidia Volta graphics processing unit architecture accelerators.

I. INTRODUCTION

Power consumption considerations are driving future high
performance computing platforms toward advanced comput-
ing architectures. The computing landscape for the advanced
architecture machines being procured through the National
Nuclear Security Administration (NNSA) Advanced Simu-
lation and Computing (ASC) Program is depicted in Fig. 1.
The current Sequoia machine at Lawrence Livermore National
Laboratory (LLNL) is an IBM machine with 16 PowerPC A2
1.6 GHz cores per node (with four hardware threads per core).
The Trinity machine that arrived at Los Alamos National Lab-
oratory (LANL) starting in 2015 uses both Intel Xeon Haswell
processors and Intel Xeon Phi Knights Landing (KNL) many
integrated core (MIC) architecture processors. The Sierra ma-
chine started arriving at LLNL in late 2016 and will use IBM
Power processors along with Nvidia Volta graphics process-
ing unit (GPU) architecture accelerators. As a result of these
different advanced architectures, the computing landscape for
the upcoming years is complex and includes heterogeneity
both within and across computing platforms. Simultaneously
supporting efficient versions of codes for both the current gen-
eration and advanced computing architectures within a single
source code base is a significant challenge.

I —

| 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021

Fig. 1. Computing platform time line

Mercury is a Monte Carlo particle transport code under
development at LLNL [1]. Mercury can transport neutrons,
photons, and light element (hydrogen and helium) charged
particles. Both fixed source and criticality problems are treated.
Mercury is parallelized via domain decomposition and domain
replication [2] with load balancing [3, 4, 5] and uses MPI
parallelism across compute nodes and (optionally) OpenMP
threading on-node. Mercury is written in C++ with a python
user interface and runs efficiently on the current generation of
massively parallel computing platforms.

Mercury is required to run efficiently on the advanced
architecture machines being procured through the NNSA ASC
Program. We have several Monte Carlo transport research
efforts underway to help prepare for this diversity of comput-
ing architectures. We previously reported on parallel scaling
efforts targeted at the Sequoia machine [6]. More recently,
we have developed an open source proxy application for the
Mercury Monte Carlo particle transport code [1] called Quick-
silver [7] that we are using in engagements with computer
vendors through the Trinity and Sierra Centers of Excellence.
To prepare for Trinity, we are working to characterize and
improve the efficiency of the MPI + OpenMP parallel imple-
mentation in Quicksilver and Mercury for the Intel Knights
Landing architecture. We have also integrated the Scalable
Checkpoint/Restart Library [8] into Mercury to access the
DataWarp burst buffer technology available on Trinity. To pre-
pare for Sierra, we are researching event-based Monte Carlo
transport algorithms for use on GPU architectures and are
also investigating the use of a big-kernel history-based Monte
Carlo transport approach for GPU architectures.

The remainder of this paper is organized as follows. We
briefly describe the Quicksilver proxy application in Section II.
We then describe research focused toward the Trinity machine
in Section III. We next describe research focused toward the
Sierra machine in Section IV. We provide conclusions and
ideas for future work in Section V.

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

II. QUICKSILVER PROXY APPLICATION

A proxy application [9] is a simplification of characteris-
tics of a real application (algorithms, data structures, memory
layout, parallelism, etc.) into a smaller, distributable code
base that can serve as proxy for the larger application. We
have developed an initial version of an open source proxy
application for the Mercury Monte Carlo particle transport
code [1] called Quicksilver [7] to enable more rapid prototyp-
ing of new algorithms and to engage the external computer
vendor communities through the Trinity and Sierra Centers of
Excellence. Quicksilver solves a time-dependent fixed source
particle transport problem with significantly simplified and ap-
proximate physics, artificial multigroup cross sections, and a
simple mesh-based geometric representation. Quicksilver uses
both MPI and OpenMP parallelism, is written in C++, and is
approximately 7,000 lines of source code. Because Quicksil-
ver serves as a proxy for Mercury, similarity in computational
performance, parallel scaling, etc. is desirable. We have per-
formed initial studies investigating the correspondence of the
performance of Quicksilver to Mercury, although more work is
required to fully assess how accurately Quicksilver represents
the performance of Mercury as a proxy application. We are
currently using Quicksilver in collaborations through the Trin-
ity and Sierra Centers of Excellence and in early investigations
of the high-level big-kernel history-based GPU approach.

ITI. TRINITY-RELATED RESEARCH

The Trinity machine at LANL uses both Intel Xeon
Haswell E5-2670 2.6 GHz processors and Intel Xeon Phi
Knights Landing 7250 many integrated core architecture pro-
cessors. Each Knights Landing processor has 68 1.4 GHz
cores with four hyperthreads per core. Optimal use of the Intel
Xeon Phi MIC processors requires the ability to use threads
and the ability to use vector units. Vectorization is challenging
for history-based Monte Carlo transport. Mercury has a hybrid
MPI+OpenMP parallel model in which cores on a node can
be tasked using either MPI processes, OpenMP threads, or
a combination of the two. Our initial research approach for
enabling Mercury to run on the Trinity machine is to focus
on leveraging and improving the existing OpenMP thread-
ing capability. As resources and priorities dictate, we may
investigate improved vectorization approaches in the future.

1. MPI + OpenMP Threading Research

Mercury can use a combination of both MPI and OpenMP
to distribute the Monte Carlo work across the cores of a com-
pute node. Each node may have one or more MPI processes,
and each MPI process may use one or more threads to access
compute cores on the node (and any hardware threads avail-
able for the cores). OpenMP pragmas are used to thread over
particles, cells, and other sections of the code that perform
significant work. OpenMP may be used with both spatial
decomposition and spatial replication [2]. Coarse grain thread-
ing is achieved by creating a particle vault (list of particles to
be tracked) for each thread and distributing particles evenly
across the vaults. At a high level, each thread works on the

particles in its vault. Implementing this capability requires an
additional thread dimension in tally data structures to enable
multiple threads to operate on particles independently without
requiring thread critical sections that can degrade efficiency.
This additional thread dimension in tally data structures does
increase memory as compared to the use of critical sections;
however, this memory would have also been used for per-
process tallies in the MPI-only case. At the end of the particle
transport, non-threaded code sums tallies over the threads to
thread zero. Mercury also uses fine grained OpenMP paral-
lelism at lower loop levels outside of the particle processing
loop. We previously reported [6] on the threading algorithm
and implementation used in Mercury and provided perfor-
mance results for a reactor eigenvalue calculation.

We are currently researching improved MPI + OpenMP
domain-decomposition approaches for the KNL architecture
using the Quicksilver proxy application. In the current MPI
“thread funneled” (TF) [10] particle sending and receiving algo-
rithms shown in Figs. 2(a) and 2(b), respectively, only thread
zero performs MPI communication, requiring that threads add
particles from a per-thread queue to a thread-shared work
buffer queue for MPI communication to another domain. This
TF approach requires 1) a work buffer queue for each MPI
process that is shared by all threads of the process, requiring
a critical section when particles are removed by thread zero
or added by other threads, 2) a choice regarding the frequency
with which thread zero checks for particles from other threads
that need to be communicated, and 3) thread zero interruptions
to communicate the particles.

The new MPI “thread multiple” (TM) [10] approach en-
ables direct thread-to-thread MPI communicators as shown
in Fig. 3 and is much simpler than the thread funneled ap-
proach. As a result, each thread communicates directly with
its corresponding thread on other MPI processes. This TM
approach bypasses critical sections in work queues and thread
Zero interruptions.

We studied the performance of the TF and TM approaches
using a Quicksilver homogeneous medium test problem with
80 million Monte Carlo particles per time step and ten time
steps. This study was performed on Intel KNL BO (early de-
livery) Xeon Phi 7210 hardware with 64 1.30 GHz cores and
four hyperthreads per core. The simulations used 4 MPI pro-
cesses and either 16 (one thread per core), 32 (two threads
per core), or 64 (four threads per core) OpenMP threads per
MPI process. The wall time performance results are shown
in Fig. 4. The TF results exhibit non-monotonic performance:
the cycle time decreases slightly going from 16 threads (one
thread per core) to 32 threads (two threads per core) but then
significantly increases when the number of threads increases
to 64 (four threads per core). We attribute this degradation
in efficiency to the thread zero critical sections and interrup-
tions at these large thread counts. The TM approach exhibits
monotonically decreasing cycle time with increasing numbers
of OpenMP threads. The MPI thread multiple approach with
64 threads (four hardware threads per core) provides nearly
a factor of two speedup over the best MPI thread funneled
performance at higher thread counts. Based on these results,
we are currently implementing and testing the thread multiple
approach in Mercury.

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

— 1<

mo>»nxodm-dZ —

. Slave thread fills thread private buffer (non-critical)

. Slave thread adds filled buffer to Buffer Queue (critical)
. Master thread removes buffers from Buffer Queue (critical)
. Master thread sends particles using MPI (non-critical)

(a) Particle sending algorithm

moO>»mTMxaom-—Z—

1. Master thread receives and buffers particles (non-critical)
2. Master thread adds filled buffer to Buffer Queue (critical)
3. Any thread removes buffers from Buffer Queue (critical)
4. Any thread processes particles (non-critical)

(b) Particle receiving algorithm

Fig. 2. MPI thread funneled algorithm

M
Pary
Threaq %€ Buge, P Patice (" Threag
0 e or 0
Thre Parig, Thre:
CD/ f e Bt e

T Pa"“:le By Pary; T
hread Uffer ricle | Threag
M j er N1

. MPI Communicator per thread

. Threads fill buffer

. Filled buffer sent over network
Thread 0 sends to thread 0, etc.
. No thread critical sections

P,
il Bug
'er

moO>»MIOmMm-HZ—

RN

Fig. 3. MPI thread multiple particle sending and receiving
algorithm

We also studied Quicksilver run time using the MPI thread
multiple approach as a function of the number of MPI pro-
cesses and OpenMP threads on the Intel KNL B0 hardware.
For this hardware, 64 cores with 4 hyperthreads per core re-
sults in 256 potential MPI processes and/or OpenMP threads.

Quicksilver Homogeneous Test Problem
400

350

300

250

200

Wall Time [s]

100

50

0 16 32 48 64 80
Threads Per MPI Process

Fig. 4. Quicksilver KNL performance results for thread fun-
neled and thread multiple algorithms

We used the Quicksilver homogeneous medium test problem
with 100 million Monte Carlo particles per time step and ten
time steps. We varied the number of MPI processes, N,
and the number of OpenMP threads per MPI process, Nyreqdss
keeping Nyupi X Nipreaas = 256 constant. Fig. 5 shows the run
times obtained in the study. The run time for all variations is
the same to within 7%, demonstrating similar performance for
all combinations of numbers of MPI processes and OpenMP
threads. The 16 MPI x 16 threads and 32 MPI x 8 threads con-
figurations are the most efficient. We had anticipated needing
larger numbers of threads on the KNL architecture. However,
the amount of memory available on the KNL architecture may
limit the number of MPI processes if memory is replicated
across processes.

Quicksilver Homogeneous Test Problem
200

180

160

140

120
g

£ 100

';" 80

60

40

20

0

4x64 8x32 16x 16 32x8 64x4

MPI Processes x Threads Per MPI Process

Fig. 5. Quicksilver KNL performance results varying number
of MPI processes and number of threads

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

2. Scalable I/O Research

The Mercury code is using the Scalable Check-
point/Restart (SCR) library [8] to leverage the storage hierar-
chy on Trinity for I/O speedup during checkpoint and restart.
To date, we have only had access to the Trinity on-node RAM
disks (not yet the DataWarp burst buffer technology) to obtain
I/O performance results [11]. While the use of the DataWarp
burst buffers is a major motivation for using the SCR library
in Mercury, the current use of the RAM disks allows us to
continue the development, integration, and testing of the SCR
library regardless of the burst buffer availability. For a weak
scaling test problem, we compared the time for writing check-
points (shown in Fig. 6) and reading restarts (shown in Fig. 7)
when using either the RAM disk or the Lustre parallel file
system, scaling up from 1 node (32 processors) to 4,096 nodes
(131,072 processors) in powers of two. Checkpointing to
RAM disk instead of Lustre produced speedups at 16 nodes
(512 processors) and above, including a 30X maximum output
speedup. Reading restarts from RAM disk instead of Lustre
produced speedups for all node counts but one, including a 9X
maximum input speedup.

10 Scaling Mercury SCR InfiniteScaling.inp
100k Particles, 1-4096 Nodes with 32 Procs per Node,
16 1 File per Processor, 20MB per File
@9 40 5CR, Checkpoints Witien o Lustre
@@ XOR SCR, Checkpaints Written to RAM disk A

=
L]

a
o

#*Checkpoint to RAM disk on Trinity**
Expected: Better scaling with SCR
Realized: Better scaling with SCR at 2' = 16 nodes and above

=)

=Y

&

Time taken for checkpoint (secends)
@

N
.

PP SRR GRS VETTTTS el SR RO S
r':'.“ ’ ? : 2 iy F4 7 i 2 2" 2 21
Number of nodes

Fig. 6. Mercury SCR checkpoint time results

10 Scaling Mercury SCR InfiniteScaling.inp
100k Particles, 1-2048 Nodes with 32 Procs per Node,
1 File per Processor, 20MB per File
@8 o SCR. Restarts Aead from Lustre
XOR SCR, Restarts Read from RAM dick

36/) .

N ow
@ R

~
&

Restart from RAM disk on Trinity
Expected: Better scaling with SCR
Realized: Faster restarts with SCR, except at 2'* = 1024 nodes

[
N o

Time taken for restart (seconds)
~
S

®
.

=
.
-
.
o

Y}

=
L]
.

" Number of nodes

Fig. 7. Mercury SCR restart time results

IV. SIERRA-RELATED RESEARCH

We are researching both history- and event-based Monte
Carlo particle transport algorithms for GPU architectures
in preparation for the LLNL Sierra machine. Previous re-

searchers [12, 13, 14] have noted that the use of an event-
based Monte Carlo particle transport algorithm [15] may be
beneficial for GPU architectures. The motivation for that idea
is that processing particles undergoing the same event avoids
branch statements that may introduce divergence in the GPU
calculation. Recent work performed by Scudiero [16, 17]
suggests that it may be possible to achieve performance on
GPUs using a history-based Monte Carlo transport algorithm.
Additionally, since Monte Carlo transport is a memory latency
bound problem, using a less compute-optimized approach may
be acceptable. Transforming a large production Monte Carlo
transport code to use an event-based algorithm is also a sig-
nificant undertaking. As a result, we are also investigating a
“big-kernel” history-based approach in which the entire particle
tracking function is treated as a single big GPU kernel. This
big-kernel approach is our preferred alternative to event-based
algorithms assuming it produces acceptable performance on
GPU architectures. We have identified performant and thread
safe particle work queues, thread safe tally incrementing, and
inter-node communication as three main research issues for
Sierra.

We have also researched the Nvidia C++ Thrust li-
brary [18] as a possible portable programming abstraction.
Thrust is a portable library that compiles into multiple lan-
guage backends (serial C++, CUDA, OpenMP, etc.) and pro-
vides data containers such as a host/device vector.

1. ALPS Test Code Research

Our initial research efforts for the Sierra machine involved
investigations with the ALPS Monte Carlo test code [19] that
models particle transport in a one-dimensional planar geome-
try binary stochastic medium. The ALPS code was originally
implemented using a standard history-based Monte Carlo al-
gorithm, as shown in Alg. 1. We implemented an event-based
version of the ALPS Monte Carlo algorithm, shown in Alg. 2,
for GPUs using a data parallel approach and the Nvidia Thrust
library [18] as a portability abstraction [20, 21]. We also im-
plemented an event-based version of ALPS explicitly with
CUDA [22] as a comparison with the Thrust version. The use
of CUDA enables more fine grained control at the kernel level
and enables access to different memory spaces such as GPU
shared memory.

A. Thrust

Thrust is a C++ header library using an STL-like template
interface [23]. Thrust provides a number of parallel algorithms
and data structures designed to provide access to GPU com-
puting without needing to write explicit CUDA code [22].
Additionally, Thrust provides backend capabilities allowing
these algorithms and data structures to target different de-
vices, including CPUs with OpenMP threads. This approach
was used for studying portable performance techniques with
Thrust, providing a method of maintaining a single source
code base that can be used on multiple platforms.

Thrust algorithms are used for implementing data parallel
procedures across all particles in a batch. These algorithms per-
form operations such as the data parallel map, reduce, gather,
scatter, or scan operations defined in [24]. Each of these

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

Algorithm 1: History-based Monte Carlo algorithm

1 foreach particle history do

2 generate particle from boundary condition or
source
3 while particle not escaped or absorbed do
4 sample distance to collision in material
5 sample distance to material interface
6 compute distance to cell boundary
7 select minimum distance, move particle, and
perform event
8 if particle escaped spatial domain then
9 update leakage tally
10 L end particle history
11 if particle absorbed then
12 update absorption tally
13 L end particle history

Algorithm 2: Event-based Monte Carlo algorithm

1 foreach batch of particle histories (fits in memory
constraint) do

2 generate all particles in batch from boundary
condition or source
3 determine next event for all particles (collision,
material interface crossing, cell boundary crossing)
4 while particles remaining in batch do
5 foreach event E in (collision, material
interface crossing, cell boundary crossing) do
6 identify all particles whose next event is E
7 perform event E for identified particles and
determine next event for these particles
8 if particle escaped spatial domain then
9 | update leakage tally
10 if particle absorbed then
1 | update absorption tally
12 remove particles absorbed or leaked

operations can be performed in a data parallel way.

Thrust also provides data types that can be used to man-
age memory for GPU devices. The thrust::device_vector and
thrust::host_vector data structures operate similarly to a C++
std::vector but with automatic memory copying between host
and devices whenever necessary. These data types allow for
simple memory management schemes that work on both GPU
and CPU based architectures.

B. Data Parallel Event-Based Algorithm Detail

An event-based algorithm focuses on performing data par-
allel operations across all particles undergoing the same event.
Additional overhead is needed to find the grouping of particles
that will be operated on and to determine an access pattern for

the particles. This reorganization stage can be costly and is
not directly related to solving the transport problem.

Thrust provides permutation iterators that allow for the
unaligned access of data elements according to an index map.
Using this iterator scheme, data elements do not need to be
copied into new locations for each operation. This approach
comes at the cost of performing non-contiguous memory ac-
cesses for reading and writing the information.

In order to perform an event operation on particles using
this scheme, a series of data parallel operations is used to
establish the correct index mapping for the permutation iterator.
This scheme is defined as follows and describes in detail lines
six and seven of Alg. 2:

Step 1: thrust::transform — Fill out a stencil map of 1’s and 0’s

of all particles doing event E (where each particle whose
next event is E will get a 1 in the stencil map at its index
location)

Step 2: thrust::reduce — Count the number of elements labeled

1 in the stencil (determines the number of particles that
will perform event E)

Step 3: Check if the number of elements is greater than 0 (check

if any particles are performing event E)

Step 4: thrust::exclusive_scan — generate indices for index map-

ping from stencil map (indices for each particle perform-
ing event E)

Step 5: Allocate a new map of appropriate size (map to hold

indices for all particles performing event E)

Step 6: Scatter indexes from scan into new index map (reduces

the exclusive_scan generated indices into the map that
holds only enough for particles performing event E)

Step 7: Use new index map in permutation_iterator loops over all

particles (combining the index map with the permutation
iterator allows loops over all particles to operate only on
the particles selected in the index map)

We implemented the event-based version of ALPS using
both the Nvidia CUDA programming model [22] explicitly
and the Nvidia C++ Thrust library [23]. The Thrust implemen-
tation of ALPS utilizes data parallel operations and Thrust data
types for managing memory. The same Thrust event-based
implementation can be compiled with either CUDA for use
on GPUs or OpenMP for use on CPUs, enabling portability to
different platforms. In the explicit CUDA implementation of
ALPS, we found it useful to continue to use Thrust algorithms
in building various maps. ALPS is implemented using dou-
ble precision floating point numbers throughout. The Thrust
and CUDA implementations of ALPS give physics results
identical to the original history-based implementation.

The CUDA implementations for this study matched the
algorithm in the Thrust implementations. The differences in
performance come from the capabilities that native CUDA pro-
gramming provide that cannot be accomplished with Thrust.
Using CUDA directly enables more fine-grained control at the
kernel level and enables important access to different memory

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

spaces such as GPU shared memory. The CUDA implementa-
tion includes a scheduling algorithm to optimize the number
of active threads on the GPU for each kernel call. Additionally,
the CUDA implementation includes the use of the different
available memory spaces, such as constant and shared memory.
For example, Monte Carlo particles were initially allocated
in GPU global memory and then copied to shared memory
for all operations within a kernel. All problem constants such
as cross sections and mean chord length values were placed
in GPU constant memory. These optimizations under certain
conditions can have a significant impact on the performance
of a GPU kernel.

Finally, we previously found [21] that a struct-of-arrays
(SOA) data structure for storing and accessing Monte Carlo
particle data was more efficient than an array-of-structs (AOS)
data structure on the GPU. We also observed [21] that an opti-
mized scheme for removing inactive particles (line twelve of
Alg. 2) achieved a significant performance improvement. We
chose to perform the particle remove operation if the number
of inactive particles to be removed is at least half the size of
the particles in the list. As a result, the maximum number of
times we perform the expensive removal operation becomes
log(n), where n is the size of the list. The numerical results
below incorporate both of these optimizations.

C. Big Kernel History-Based GPU Implementation

Recent work performed by Scudiero [16, 17] suggests
that it may be possible to achieve acceptable performance
for Monte Carlo particle transport on GPUs using a history-
based algorithm if the correct transformations are made. Since
Monte Carlo transport is a memory latency bound problem,
using a less compute-optimized approach may be acceptable
from a performance standpoint. We refer to this history-based
approach as a “big-kernel” approach in which the entire parti-
cle tracking function is treated as a single big GPU kernel. We
have implemented a “big-kernel” history-based GPU version
of ALPS [21] using CUDA by making the following transfor-
mations. First, we moved those calculations that only needed
to be performed once for all particles out of the single large
kernel. Second, we utilized shared memory for storing the
particle data structure and read-only constant memory for stor-
ing the material data (e.g., cross section values). Finally, we
removed all atomic tally updates and replaced them with a
shared per particle tally that is reduced to single values after
the kernel is complete.

D. Numerical Comparisons

We investigated the performance of these approaches on
the LLNL Rzhasgpu computer that has Intel Xeon Haswell
3.2 GHz host cores with Nvidia Tesla K80 GPU device ac-
celerators. Speedups relative to a history-based serial CPU
calculation with the ALPS Monte Carlo test code using native
CUDA implementations as well as using the Thrust implemen-
tation on both a GPU and with sixteen OpenMP threads on the
CPU are shown in Table I [21].

The ALPS explicit CUDA event-based implementation
produces a speedup of approximately 31 over the serial CPU
code. The explicit CUDA “big-kernel” implementation of the

TABLE 1. Maximum Speedups Compared to the Original
History-Based Serial Algorithm

Algorithm Speedup
CUDA Event-based 31.3
CUDA History-based (big-kernel) | 52.8
Thrust CUDA Event-based 54.6
Thrust OpenMP Event-based 5.5

Monte Carlo history-based algorithm demonstrates a larger
speedup than the event-based implementation. The event-
based algorithm requires overhead to identify particles that
are undergoing the same event, and this overhead reduces the
efficiency of the calculation. The Thrust event-based version
running on the GPU is slightly more efficient than the explicit
CUDA event-based implementation. We expect that this result
is due to two possible factors. First, the Thrust scheduler
may be launching kernels more effectively than the kernel
launching scheme we implemented. Second, the memory
locations of the read-only tallies and written tallies are stored
with the Thrust functor which may allow Thrust to optimize
what memory exists in registers or caches when the kernel
launches.

We would ideally expect a speedup of sixteen for the
OpenMP version when using sixteen threads. The Thrust
OpenMP event-based results are significantly less than opti-
mal with a speedup of less than six. So while Thrust provides
a portable abstraction, the OpenMP results for the event-based
implementation exhibit a significant reduction from optimal
performance. While the event-based Thrust OpenMP results
are significantly less than optimal, they do demonstrate porta-
bility and some performance gain.

2. Quicksilver-Lite Research

We have recently tested the big-kernel history-based ap-
proach in Quicksilver-Lite, a proxy application of interme-
diate complexity between ALPS and Quicksilver. The goal
for Quicksilver-Lite is that it would be easy to port to the
GPU but would maintain enough memory access and function
call complexity to challenge the hardware. Quicksilver-Lite
consists of simplified code (no MPI, etc.) along with sim-
plified particles and mesh. Quicksilver-Lite is, essentially, a
thin layer on top of nuclear data lookups. We implemented
an explicit CUDA version of the big-kernel history-based ap-
proach in Quicksilver-Lite. We compared the performance
of the big-kernel version running on half of an Nvidia Tesla
K80 GPU device accelerator to an OpenMP threaded version
running on one node with sixteen IBM BGQ 1.6 GHz cores.
The big-kernel GPU version achieved a speedup of a factor
of 1.64 compared to the threaded version running on sixteen
cores. Increased performance of the big-kernel version should
be possible using both GPUs on the K80. Based on these
encouraging results, we are currently extending the big-kernel
history-based approach to Quicksilver.

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

V. CONCLUSIONS

The LLNL Monte Carlo Transport Project team is work-
ing to enable efficient use of the upcoming advanced comput-
ing architectures. The Quicksilver proxy application is prov-
ing useful for algorithmic investigations and computer vendor
engagements. For the Trinity machine, we have found that
enabling thread-to-thread MPI communication (MPI thread
multiple) improves efficiency for domain-decomposed prob-
lems on the KNL processor. In addition, higher numbers of
MPI processes appears efficient for Monte Carlo transport on
the KNL architecture. Finally, the SCR library is a promising
approach for leveraging the storage hierarchy on Trinity for
I/O speedup. For the Sierra machine, the big-kernel history-
based approach implemented in both the ALPS Monte Carlo
test code and the Quicksilver-Lite proxy application appears
promising for GPU architectures and is our preferred path
forward.

Future work will include further testing of the MPI +
OpenMP thread multiple implementation in Mercury. In addi-
tion, we are implementing the big-kernel GPU approach in the
Quicksilver proxy application and are performing additional
high-level architectural investigations. We are investigating
both OpenMP4.5 and explicit CUDA big-kernel implementa-
tions.

VI. ACKNOWLEDGMENTS

This work performed under the auspices of the U.S. De-
partment of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344. Funding
for R.C.B. was provided by the LLNL Livermore Graduate
Scholar Program.

REFERENCES

1. P. S. BRANTLEY, R. C. BLEILE, S. A. DAWSON,
M. S. MCKINLEY, M. J. O’BRIEN, M. POZULP, R. J.
PROCASSINI, D. RICHARDS, S. M. SEPKE, and
D. E. STEVENS, “Mercury User Guide: Version 5.2,”
Lawrence Livermore National Laboratory Report LLNL-
SM-560687 (Modification #10) (2016).

2. G. GREENMAN, M. J. O’'BRIEN, R. J. PROCASSINI,
and K. I. JOY, “Enhancements to the Combinatorial Ge-
ometry Particle Tracker in the Mercury Monte Carlo
Transport Code: Embedded Meshes and Domain Decom-
position,” in “Proceedings of International Conference on
Mathematics, Computational Methods & Reactor Physics
(M&C 2009),” Saratoga Springs, New York (May 3-7,
2009 (2009)).

3. R.J. PROCASSINI, M. J. O’BRIEN, and J. M. TAYLOR,
“Load Balancing of Parallel Monte Carlo Transport Appli-
cations,” in “Proceedings of Mathematics and Computa-
tion, Supercomputing, Reactor Physics and Nuclear and
Biological Applications,” Avignon, France (September
12-15, 2005 (2005)).

4. M.J. O’BRIEN, P. S. BRANTLEY, and K. I. JOY, “Scal-
able Load Balancing for Massively Parallel Distributed
Monte Carlo Particle Transport,” in “Proceedings of In-

10.

11.

12.

13.

14.

15.

16.

ternational Conference on Mathematics and Computa-
tional Methods Applied to Nuclear Science & Engineer-
ing (M&C 2013),” Sun Valley, Idaho (May 5-9, 2013
(2013)).

. M. J. O’BRIEN, Scalable Domain Decomposed Monte

Carlo Particle Transport, Ph.D. Dissertation, University
of California, Davis (2014).

. P.S.BRANTLEY, S. A. DAWSON, M. S. MCKINLEY,

M. J. O’BRIEN, D. E. STEVENS, B. R. BECK, and E. D.
BROOKS 111, “Advanced Computing Architecture Chal-
lenges for the Mercury Monte Carlo Particle Transport
Project,” in “Proceedings of ANS MC2015 - Joint Inter-
national Conference on Mathematics and Computation
(M&C), Supercomputing in Nuclear Applications (SNA)
and the Monte Carlo (MC) Method,” Nashville, Tennessee
(April 19-23, 2015 2015).

. D. RICHARDS, P. BRANTLEY, S. MCKINLEY, and

M. O’BRIEN, “Quicksilver: A Mini-App for Mercury,”
Lawrence Livermore National Laboratory Report LLNL-
SM-668536 (2016).

. A. MOODY, G. BRONEVETSKY, K. MOHROR, and

B. R. DE SUPINSKI, “Design, Modeling, and Evaluation
of a Scalable Multi-level Checkpointing System,” Super-
computing 2010, New Orleans, LA (2010).

. M. HEROUX, R. NEELY, and S. SWAMINARAYAN,

“ASC Co-design Proxy App Strategy,” LA-UR-13-
20460/LLNL-TR-592878 (2013).

MPI: A Message-Passing Interface Standard Version 3.0,
Message Passing Interface Forum (2012), available at
http://mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf.

M. M. POZULP, G. B. BECKER, P. S. BRANTLEY,
S. A. DAWSON, K. MOHROR, A. T. MOODY, and M. J.
O’BRIEN, “Optimizing Application I/O by Leveraging
the Storage Hierarchy Using the Scalable Checkpoint
Restart Library with a Monte Carlo Particle Transport
Application on the Trinity Advanced Computing System,”
Supercomputing 2016, November 13-18, 2016, Salt Lake
City, Utah (2016).

A. G.NELSON, Monte Carlo Methods for Neutron Trans-
port on Graphics Processing Units Using CUDA, M.S.
Thesis, The Pennsylvania State University (2009).

T. LIU, X. DU, W.JI, X. G. XU, and F. B. BROWN, “A
Comparative Study of History-Based Versus Vectorized
Monte Carlo Methods in the GPU/CUDA Environment for
a Simple Neutron Eigenvalue Problem,” in “Proceedings
of Supercomputing in Nuclear Applications and Monte
Carlo (SNA+MC),” Paris France (October 27-31, 2013
(2013)).

R. M. BERGMANN and J. L. VUJIC, “Algorithmic
Choices in WARP - A Framework for Continuous Energy
Monte Carlo Neutron Transport in General 3D Geome-
tries on GPUS,” Annals of Nuclear Energy, 77, 176—193
(2015).

F. B. BROWN and W. R. MARTIN, “Monte Carlo Meth-
ods for Radiation Transport Analysis on Vector Comput-
ers,” Progress in Nuclear Energy, 14, 269-299 (1984).
A. SCUDIERO, “Monte Carlo Neutron Transport: Sim-
ulating Nuclear Reactions One Neutron at a Time,” in
“GPU Technology Conference,” San Jose, California (May

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

2014).

17. A. SCUDIERO, “personal communication,” (2016).

18. “Thrust Web Site, https://developer.nvidia.com/Thrust,”
(2016).

19. P. S. BRANTLEY, “A Benchmark Comparison of Monte
Carlo Particle Transport Algorithms for Binary Stochas-
tic Mixtures,” Journal of Quantitative Spectroscopy and
Radiative Transfer, 112, 599-618 (2011).

20. R. C. BLEILE, P. S. BRANTLEY, S. A. DAWSON, M. J.
O’BRIEN, and H. CHILDS, “Investigation of Portable
Event-Based Monte Carlo Transport Using the NVIDIA
Thrust Library,” Trans. Am. Nucl. Soc., 114, 369-372
(2016), on USB.

21. C. BLEILE, P. S. BRANTLEY, M. J. O’BRIEN, and
H. CHILDS, “Algorithmic Improvements for Portable
Event-Based Monte Carlo Transport Using the NVIDIA
Thrust Library,” Trans. Am. Nucl. Soc., 115, 535-538
(2016), on USB.

22. “CUDA Web Site,” (2014),
http://www.nvidia.com/object/cuda_home_new.html.
23. “Thrust Web Site,” (2014),

https://developer.nvidia.com/Thrust.
24. G. E. BLELLOCH, Vector Models for Data-Parallel Com-
puting, vol. 356, MIT press Cambridge (1990).

