
M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

Performance of Kernel Density Estimated Mesh Tallies on GPUs

Kerry L. Bossler

Sandia National Laboratories: P.O. Box 5800, Albuquerque, NM, 87185, kbossle@sandia.gov

Abstract – Although kernel density estimated (KDE) mesh tallies are capable of approximating

distributions like particle flux with less variance than conventional mesh tallies, this improvement in

precision comes with an increased computational cost per score. However, given that KDE mesh tallies

are both compute-intensive and highly data-parallel, this increased computational cost can be reduced by

taking advantage of a Graphics Processing Unit (GPU). This work compares a GPU implementation of a

mesh tally based on the KDE integral-track estimator to an equivalent implementation designed for a

single Central Processing Unit (CPU). Using a common abstract framework, both implementations consist

of a setup stage, a compute stage, and a finalize stage. A detailed analysis on the performance of all three

stages is presented. Results show that the compute stage of the KDE integral-track mesh tally is very

efficient on the GPU, with one set of scores for over 10 million nodes being processed in 58 ms. Taking

into consideration the increased cost for setup and finalize stages, tallying scores for 1000 particle tracks

for over 10 million nodes is expected to be about 100 times faster on the GPU than a single CPU.

I. INTRODUCTION

Kernel density estimated (KDE) tallies are a viable

option for solving both criticality [1, 2] and fixed-source [3]

Monte Carlo radiation transport problems. A few different

approaches to using KDE tallies for transport purposes have

been explored over the last few years – including the

original KDE collision and track estimators [1], the KDE

integral-track estimator [3], and the Mean Free Path KDE

collision estimator [2]. Although KDE tallies are capable of

approximating distributions like particle flux with less

variance than conventional tallies, this improvement in

precision comes with an increased computational cost per

score. The KDE integral-track estimator in particular

requires that at least one integration is performed for every

particle track expected to contribute to the tally.

Previous work has shown that the most time-consuming

task of a mesh tally based on the KDE integral-track

estimator is defining the neighborhood region, which

identifies all of the mesh nodes that might contribute a non-

zero score for each particle track [3]. One alternative to

defining a neighborhood region is to compute scores at

every mesh node in parallel on a Graphics Processing Unit

(GPU). Even though this would result in numerous trivial

scores being computed, GPUs have thousands of threads

that can execute the same instruction on different data sets

very efficiently. This makes the GPU an ideal architecture

for processing a KDE integral-track mesh tally, since each

score is computed independently of the others.

GPUs have already been considered for an improved

version of the Mean Free Path KDE collision estimator,

which reported overall speedups ranging between 1.6 and

5.0 [4]. Rather than focusing on a heterogeneous computing

environment like the previous work, this paper explores the

effectiveness of tallying on the GPU in detail. A KDE

integral-track mesh tally was developed for the GPU using

NVIDIA’s CUDA toolkit v7.5 [5]. This GPU version is

compared to an equivalent implementation designed for a

single Central Processing Unit (CPU).

II. KDE MESH TALLIES

KDE tallies can be used to estimate particle flux at all

nodal coordinates (x, y, z) on some input mesh. Each

estimate of the particle flux is obtained by averaging

contributions from N particle histories that experience a

sequence of Ci distinct events:

  .),,(
1

,,ˆ
1 1


 


N

i

C

c

ic

i

zyx
N

zyx  (1)

The contribution to the particle flux for the ith history and cth

event, denoted φic, can be computed using particle tracks

with a track estimator, or collisions with a collision

estimator. As with conventional mesh tallies, contributions

computed using a track estimator usually produce more

precise results for the same number of particle histories.

The KDE integral-track estimator computes a score for each

particle track by performing an integration over the path

length S traveled along the track:

  .
111

,,
0


icd

z

z

y

y

x

x

icic dSK
h

K
h

K
h

wzyx (2)

In Equation 2, wic is the particle weight, and dic is the track

length for the cth particle track that is processed from the ith

history. The integrand is a product of one-dimensional

kernel functions Kx, Ky, and Kz, whose shape and size will

determine how many nodal coordinates produce non-zero

scores. The size of the kernel functions is determined by the

bandwidth vector (hx, hy, hz). For the purposes of this work,

the kernel functions Kx, Ky, and Kz are all of the form:

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

,1
4

3
2






















 


x

o
x

h

uSXx
K (3)

where (Xo, Yo, Zo) and (u, v, w) are the origin and unit

direction of the particle respectively. Equation 3 is based on

the Epanechnikov kernel [6], which will only be non-zero

on the domain:

.1


x

o

h

uSXx
 (4)

III. GPU ARCHITECTURE FOR KDE MESH

TALLIES

The NVIDIA GPU architecture consists of a scalable

array of multithreaded streaming multiprocessors (SM),

each able to execute hundreds of threads concurrently using

a single-instruction, multiple-thread (SIMT) approach [5].

Threads that are assigned to an SM are processed in groups

of 32, which is known as a warp. If at least one thread in

that warp needs to execute one or more different

instructions, due to an if-statement or loop condition, then it

must wait until all other 31 threads have first completed

their instructions. Optimal performance in processing a

warp can therefore only occur when there is no branch

divergence among its 32 threads. This means that the GPU

is best suited to highly data-parallel applications that

execute an identical sequence of instructions on multiple

data sets.

Computing each score for a KDE integral-track mesh

tally is generally more compute-intensive than it is for a

conventional mesh tally. However, these computations are

also highly data-parallel due to the fact that each mesh node

can be considered independently of the others. Being both

compute-intensive and highly data-parallel makes the KDE

integral-track mesh tally an ideal candidate for taking

advantage of GPU architecture.

Before any scores can be computed for a tally using a

specific algorithm on a GPU, there are two important

concepts that should first be considered: how to assign work

to threads, and what device memory options are available

for efficient read/write access. Both can have a noticeable

impact on performance. A brief overview of these concepts

in the context of the KDE integral-track mesh tally is below.

1. Assigning Work to Threads

Since a score for each mesh node can be computed

independently of the others, the most obvious choice for

assigning work to threads is to use one thread per mesh

node. Each warp processed on the GPU would therefore

compute scores for a group of 32 mesh nodes at a time.

Ensuring that each thread is only responsible for one mesh

node means that it will only ever need to access one element

in the data structure used for accumulating scores. No write

contention will ever occur as a result of multiple threads

trying to add a score to the same memory location, which

can, at its worst, force the code being executed on the GPU

to become serialized.

2. Device Memory Options

After determining how to assign work to threads on the

GPU, the next step is to consider how the data will be stored

that is needed for computing scores. For the purposes of

this work, only register memory, global memory, and

constant memory were used.

Register memory is located on-chip and therefore

provides the fastest read/write access times. However, there

are a fixed number of registers available per SM that must

be shared by all of its assigned threads. Individual threads

can only access registers that were allocated to them, which

is determined by the compiler. These registers will likely

contain most of the local variables needed for computing a

score before it is added to the tally.

Global memory is the largest memory space on the

GPU, but also has the slowest read/write access times

because it is located off-chip. Variables stored in global

memory last for the duration of the host program, and are

accessible to all threads. This is the only memory space

with enough room to store nodal coordinates for a large

mesh, as well as the tally data structure used for

accumulating its corresponding scores.

Like global memory, constant memory is located off-

chip. There are two primary differences between global

memory and constant memory. First, the size of the

constant memory space is only 64 KB for current NVIDIA

GPU architectures. Second, data stored in constant memory

is cached on-chip for efficient read-only access. If all

threads in a warp read from the same location, then constant

memory can be as fast as accessing register memory [7].

This makes constant memory useful for variables such as

the bandwidth vector and particle track data that are

invariant and used by all threads.

IV. GPU VS. CPU IMPLEMENTATION

A KDE integral-track mesh tally using Equations 1

through 4 was implemented so that all scores could be

computed using double precision on either a GPU or CPU.

Both GPU and CPU versions share a common abstract

framework written in C++11 that consists of three distinct

stages: setting up the problem, computing scores, and

finalizing tally results. Although they share a common

abstract framework, there are some significant differences in

the GPU version that affects its performance compared to

the CPU version. The similarities and differences in the

setup, compute, and finalize stages are highlighted in the

following sections.

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

1. Setup Stage

Setting up the problem for both GPU and CPU versions

involves extracting the nodal coordinates from the input

mesh, creating the output file for storing tally results, and

initializing the estimator used for accumulating tally scores.

Note that the output file, written in the Exodus II binary

format [8], stores a full copy of the input mesh and will also

store the final accumulated tally results. This setup stage is

only executed once.

Unlike the CPU version, the GPU version must perform

additional work to copy read-only data to its different

memory spaces, and to initialize the intermediate tally array

in global memory that it uses for accumulating scores. This

additional work increases the time needed to complete the

setup stage. Read-only data that is copied to the GPU

during the setup stage includes the nodal coordinates added

to global memory, and the bandwidth vector added to

constant memory.

2. Compute Stage

After the setup stage is complete, the next stage

involves converting particle track data into tally scores by

evaluating Equation 2 using 4-point Gaussian quadrature.

This compute stage is therefore executed multiple times,

once per particle track. The quadrature points needed to use

the 4-point Gaussian quadrature method are stored in the

constant memory space on the GPU.

Before even attempting to evaluate Equation 2 for a

specific mesh node, both GPU and CPU versions first check

to see if it is expected to produce a non-zero score for the

particle track. Lower and upper integration limits for path

length S are computed by using Equation 4 to determine

minimum and maximum values in all three dimensions x, y,

and z. Only nodes that result in some overlap between these

three intervals and the particle track will actually continue

in evaluating Equation 2. Note that this is not the same as

using a neighborhood region, which reduces the set of nodes

before checking for valid integration limits.

Although GPU and CPU versions of the KDE integral-

track mesh tally use exactly the same algorithm, there are

two primary differences in their implementations that

impact their respective compute stages. The first difference

is that the GPU version needs to copy the particle track data

into its constant memory space prior to performing any

calculations on that data. The second difference, which is

more significant, is how the scores are accumulated.

Whereas an intermediate tally array is used to accumulate

scores for the GPU version, the CPU version adds scores

directly into a key-value data structure. This data structure

uses the mesh node ID as the key, and its accumulated score

(if any) as the value. As a result, the CPU version can

obtain nodal coordinates for computing scores by mesh

node ID as needed, rather than copying them all upfront

during the setup stage like the GPU version.

3. Finalize Stage

Finalizing tally results involves normalizing all of the

accumulated tally scores by the number of particle histories,

and writing those normalized scores to the output file. Like

the setup stage, the finalize stage is only executed once and

the GPU version takes longer because it must perform

additional work. Additional work that is performed during

the finalize stage includes transferring the accumulated

scores from the intermediate tally array on the GPU back to

the CPU, and then converting those scores into the same

key-value data structure used by the CPU version. Any

memory resources allocated on the GPU must also be freed.

V. PERFORMANCE TESTS

The performance of both versions of the KDE integral-

track mesh tally was tested to determine the effectiveness of

using GPUs for tallying scores. Since the smallest unit of

work is attempting to compute a score at every mesh node,

only one fixed particle track and bandwidth vector were

used for all performance tests:

 (Xo, Yo, Zo) = (-0.2, 0.2, 1.0)

 (u, v, w) = (0.0, -0.8, 0.6)

 wic = 0.5

 dic = 2.0

 (hx, hy, hz) = (0.1, 0.1, 0.1)

In addition to the above data, a pre-determined set of nodal

coordinates (x, y, z) must also be defined to evaluate

Equation 2. Typically, these nodal coordinates would be

extracted from some known input mesh. However, it was

decided to use non-physical mesh representations for these

performance tests to more accurately assess the strengths

and weaknesses of using the GPU for KDE integral-track

mesh tally calculations. The four non-physical mesh

representations chosen for this analysis are described below.

A varying number of nodes were considered for each

representation to reflect different valid mesh configurations,

ranging from a single element with 8 nodes, up to a

215x215x215 element grid with 10,077,696 nodes.

Mesh 1: All Nodes Compute Score

The maximum amount of work performed per particle

track occurs when every node computes a non-zero score.

Mesh 1 was designed to measure this maximum by making

the coordinates of all nodes equal to (-0.2, 0.1, 1.1).

Mesh 2: All Nodes Compute No Score

In contrast to Mesh 1, Mesh 2 was designed to measure

the minimum amount of work performed per particle track,

which was done by changing the coordinates of all nodes to

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

(0.0, 0.0, 0.0). This forces the check based on Equation 4

to always fail so that Equation 2 is never evaluated.

Mesh 3: Alternate Nodes Compute Different Score

If different nodes compute different scores, there should

be no noticeable impact on performance for either the GPU

version or the CPU version. To show that this is indeed the

case, Mesh 3 was designed so that all even-numbered nodes

had the coordinates (-0.2, 0.1, 1.1), and all odd-numbered

nodes had the coordinates (-0.15, -0.1, 1.1).

Mesh 4: Alternate Nodes Compute No Score

While different nodes computing different scores

should not impact performance, if half of the nodes compute

no score then there should be a noticeable difference.

Therefore, Mesh 4 was designed so that all even-numbered

nodes had the coordinates (-0.2, 0.1, 1.1), and all odd-

numbered nodes had the coordinates (0.0, 0.0, 0.0).

VI. RESULTS

All performance tests were run on a desktop Linux

workstation with Intel Xeon E5-2697 v3 (2.60 GHz) CPUs

and one NVIDIA Quadro K5200 GPU. Timing results

reported in this section are an average of ten independent

runs obtained using std::chrono::steady_clock from the

C++11 standard, unless otherwise noted.

Table I and II below contain summaries of the timing

results for Mesh 1 with 1331 and 10,077,696 nodes

respectively. As expected, the general trend for both cases

is that the setup and finalize times take longer for the GPU

version compared to the CPU version, but the compute

times are noticeably faster. During the compute stage,

processing scores for 1331 nodes was about 20 times faster

on the GPU, and processing scores for 10,077,696 nodes

was about 250 times faster.

Table I. Timing Results for Mesh 1 with 1331 Nodes

STAGE CPU (ms) GPU (ms)

Setup 9.78 341.51

Compute 1.93 0.094

Finalize 0.81 1.71

Total 12.52 343.31

Table II. Timing Results for Mesh 1 with 10,077,696 Nodes

STAGE CPU (ms) GPU (ms)

Setup 7.81×104 7.87×104

Compute 1.46×104 5.80×101

Finalize 0.51×104 1.07×104

Total 9.78×104 8.94×104

Although the compute stages for both 1331 and

10,077,696 nodes are noticeably faster on the GPU, note

that the overall performance for one particle track is highly

dependent on the impact of the setup and finalize stages.

Taking the timing results of these two stages into

consideration, the case with 10,077,696 nodes is only 9%

faster on the GPU compared to the CPU, and the case with

1331 nodes is actually 27 times slower.

Given that the compute stage is the only one that is

repeated, the GPU version should rapidly start to

outperform the CPU version as more and more particle

tracks are tallied on a large mesh. For example, tallying 100

particle tracks on a mesh with 10,077,696 nodes should

result in a total speedup of around 16, and tallying 1000

particle tracks should result in a total speedup of around

100. Even a smaller mesh with 1331 nodes will eventually

start outperforming the CPU version. At least 182 particle

tracks must be tallied for the GPU version to achieve similar

performance, but tallying 1000 particle tracks would be

about 4 times faster overall.

One fact that is important to note with these results is

that they only measure the performance of the tallying

process. Running a full Monte Carlo simulation with

particle tracking in a heterogeneous computing environment

introduces additional factors that will reduce the impact that

using the GPU has on the overall performance. The most

significant of these factors is the timing of the

communication between the GPU and the CPU. In the work

on the improved Mean Free Path KDE collision estimator,

groups of 50,000 collisions were created on the CPU before

being transferred to the GPU for tallying [2]. This means

that the GPU has to wait until enough collisions are

available before it can do anything. Although particle

tracking and tally processing can be overlapped, the time

required to create the collisions might be much higher than

the time it takes to process them on the GPU.

Results for the full range of mesh representations

considered in this work are discussed in more detail below

for the setup, finalize, and compute stages.

1. GPU vs. CPU Setup and Finalize Stages

As shown in Tables I and II, the setup and finalize

stages for 1331 and 10,077,696 nodes take longer for the

GPU version than the CPU version due to the additional

work that needs to be done. A visual comparison of the cost

of this additional work is shown in Fig. 1, which displays

the ratio of the GPU to CPU setup and finalize times for the

full range of nodes considered with Mesh 1. Similar results

also occur for Mesh 2, 3, and 4, which indicates that there is

a fixed cost for both setting up and finalizing the problem

based on the number of nodes.

For the setup stage, Fig. 1 shows that the ratio of the

GPU to CPU times varies significantly with the number of

nodes. Cases with more than 106 nodes appear to have

equivalent setup times because the dominant factor for both

versions is the creation of the output file. On the other end,

cases with fewer than 104 nodes take much longer to set up

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

for the GPU version. This increased setup time is caused by

the implicit initialization of the GPU [5], which occurs

when the first CUDA function is called to copy the

bandwidth vector into constant memory. The initialization

overhead for the Quadro K5200 GPU was about 300 ms,

which is more noticeable for meshes with fewer nodes

because it takes much less time to create the output file.

Fig. 1. Ratio of GPU to CPU setup and finalize times.

After output file creation and GPU initialization

overhead, most of the GPU version’s remaining setup time

is due to tasks that depend on the number of nodes.1 Fig. 2

and Fig. 3 compare the relative cost of these tasks for 1331

and 10,077,696 nodes respectively. All tasks executed on

the GPU were timed using CUDA events [5], but the total

time used to compute the percentages shown in Fig. 2 and

Fig. 3 was obtained using std::chrono::steady_clock. The

“Other” category refers to tasks executed only on the CPU,

which is equal to the difference between the total time and

the sum of all the tasks executed on the GPU. This

difference is primarily caused by creating the zero-valued

vector on the CPU for initializing the intermediate tally

array on the GPU.

Fig. 2 and Fig. 3 show that the number of nodes in the

mesh has a significant impact on the relative cost of each

task. The first task performed is to free GPU resources that

may have been previously allocated for a different mesh

tally. This task is negligible for 10,077,696 nodes, and also

only accounts for 3% of the total time for 1331 nodes. The

next task performed is to allocate space in the global

memory on the GPU for storing nodal coordinates and the

intermediate tally array. While this is the most time-

consuming task for 1331 nodes at 62%, it only accounts for

1% of the total time for 10,077,696 nodes. The most time-

consuming task executed on the GPU for 10,077,696 nodes

is copying the nodal coordinates into its global memory,

which accounts for almost half of the total time. In both

cases, “Other” is also significant, even though it represents

tasks that are executed on the CPU and not the GPU.

Fig. 2. GPU task breakdown during the setup stage for a

mesh with 1331 nodes

Fig. 3. GPU task breakdown during the setup stage for a

mesh with 10,077,696 nodes.

In contrast to the setup stage, Fig. 1 shows that the ratio

of GPU to CPU times for the finalize stage does not vary

much with the number of nodes. All cases took the GPU

version about twice as long to normalize tally results and

write those results to the output file. Although the finalize

stage for the GPU version is longer than it is for the CPU

version, this increase is not predominantly caused by tasks

executed on the GPU.

As an example, the additional time needed to finalize

the GPU version for 10,077,696 nodes was 0.56×104 ms.

Only 13 ms (~0.2%) of this time was used to transfer final

scores back to the CPU. Even less was needed to free GPU

resources (~0.01%). The remaining time was used to

convert the intermediate tally array into the key-value data

structure on the CPU that is written to the output file.

For 1331 nodes, the percentage of all the tasks executed

on the GPU during the finalize stage increases to about

20%. These results indicate that one area for improvement

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

in the GPU version would be to write results directly from

the intermediate tally array that was copied back to the

CPU. However, this would also reduce the level of

abstraction in the code because different functionality would

be needed for the GPU version over the CPU version.

2. GPU vs. CPU Compute Stage

Although both GPU and CPU versions use the same

algorithm to calculate scores, their performance can behave

very differently as the number of nodes increases. Timing

results for the compute stage versus the number of nodes are

plotted in Fig. 4 for Mesh 1 and 2, and in Fig. 5 for Mesh 3

and 4. Compared to the CPU version, which varies linearly

for all mesh representations, the performance of the GPU

version is fairly constant until 1331 nodes. This represents

the overhead for performing calculations on the GPU, which

is different from the overhead for initializing the GPU.

Fig. 4. Compute time vs. number of nodes for Mesh 1 and 2.

Fig. 5. Compute time vs. number of nodes for Mesh 3 and 4.

In order to offset the overhead for computing scores on

the GPU and maximize its efficiency, there must be enough

work for it to perform. One metric used to measure the

efficiency of a GPU calculation is occupancy, which is the

ratio of the number of active warps being processed on an

SM to the maximum number of possible active warps [7].

For the Quadro K5200 GPU, the maximum number of

possible active warps per SM is 64 [5]. So to achieve an

occupancy of 100%, 64 warps must be processed

concurrently on each SM. Due to register usage per thread,

however, the GPU version of the KDE integral-track mesh

tally can only process 48 active warps concurrently per SM,

which results in a peak possible occupancy of 75%. Table

III summarizes the impact of the number of nodes on the

achieved occupancy for Mesh 1 reported by the NVIDIA

profiler from the CUDA toolkit. Similar values were also

reported for Mesh 2, 3, and 4. The number of warps

processed refers to how many warps were needed to account

for the given number of nodes. Since these calculations

were done in blocks of 128 threads, the minimum number of

warps that will be processed is 4. Reducing this to blocks of

64 or 32 threads changes the peak possible occupancy to

50% and 25% respectively.2

Table III. Impact of Number of Nodes on Achieved

Occupancy of GPU for Mesh 1

NODES IN

MESH

ACHIEVED

OCCUPANCY (%)

WARPS

PROCESSED

8 1.9 4

27 1.7 4

216 5.5 8

1331 6.0 44

12,167 34.2 384

103,283 68.9 3228

1,030,301 72.5 32,200

10,077,696 72.4 314,928

Table III shows that achieved occupancy is

significantly impacted by the number of nodes in the mesh

for which scores are computed. Given that each SM can

process up to 48 active warps (i.e., 1536 threads), meshes

with fewer than 1536 nodes do not produce enough work to

make efficient use of the GPU. This corresponds to low

achieved occupancy values, such as only 6% for the case

with 1331 nodes. In contrast, meshes with substantially

more than 1536 threads are able to keep all SMs on the GPU

busy enough so that the achieved occupancy values are

much closer to the theoretical value of 75%. A saturation

point seems to occur after around a million nodes, indicating

that the GPU has reached its optimal efficiency.

Once there are enough nodes to keep the GPU busy in

terms of occupancy, the performance of the GPU version of

the KDE integral-track mesh tally also appears to vary

linearly with the number of nodes. Note, however, that

there is a greater difference between Mesh 1 and Mesh 2

when compared to the CPU version, which represents the

minimum and maximum performance expected for

processing one particle track. As a result, there is more

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

potential for improving the performance when many nodes

compute no score.

While Fig. 4 highlights the minimum and maximum

performance expected, Fig. 5 shows what happens when

alternate nodes execute different tasks. Two cases were

considered. The first case, Mesh 3, computed different

scores for alternate nodes. Given that the performance of

Mesh 1 and Mesh 3 is similar, neither the GPU nor the CPU

version pay any penalty for computing different scores. The

second case, Mesh 4, computed no score for alternate nodes,

which should, in theory, improve performance. Fig. 5

shows that this is only true for the CPU version.

Although only half of the nodes compute a score for

Mesh 4, its performance for the GPU version was about the

same as Mesh 1 and Mesh 3. As a result, there is no

performance benefit over the case where all nodes compute

a score. This result can be explained by understanding how

the GPU works in terms of warp efficiency, which is a

metric that can be used to measure the level of divergence of

a GPU calculation. Table IV summarizes the impact of the

number of nodes on warp efficiency for Mesh 1, 2, 3, and 4.

A lower warp efficiency means that the GPU calculations

that were performed experienced greater divergence.

Table IV. Impact of Number of Nodes on Warp Efficiency

NODES IN

MESH

WARP EFFICIENCY (%)

Mesh 1 Mesh 2 Mesh 3 Mesh 4

8 26.3 32.4 24.4 15.9

27 84.6 85.8 78.6 50.9

216 96.4 96.5 89.1 55.9

1331 99.0 99.1 91.5 57.4

12,167 99.8 99.8 92.2 57.8

103,283 100.0 100 92.3 57.9

1,030,301 100.0 100 92.4 57.9

10,077,696 100.0 100 92.4 57.9

Mesh 4 consistently had a lower warp efficiency than

all other mesh representations, which means that alternate

nodes computing no score introduces noticeable divergence

into the GPU calculations. This divergence arises from the

fact that Equation 2 is only evaluated if it has valid

integration limits based on Equation 4. Half of the threads

in each warp have to wait until the other half compute a

score, which means it takes just as long as the case where all

nodes compute a score. Mesh 4 is a worst-case scenario that

shows why it is important to reduce divergence in order to

maximize GPU performance. For this example, divergence

can be practically eliminated by reordering the nodes so that

the first half all compute a score and the second half

compute no score. However, the effectiveness of using this

approach depends on how long it takes to sort the nodes.

In addition to highlighting how much divergence exists

in Mesh 4, there are two other interesting results shown in

Table IV. The first is that Mesh 3 had slightly lower warp

efficiency than Mesh 1, which suggests that computing

different scores at alternate nodes introduces some minor

divergence. The most likely cause of this divergence is the

calculation of the integration limits for Equation 2, since

different nodal coordinates typically produce different

integration limits. This calculation requires evaluation of

two small if-statements for assigning the lower and upper

values. For the particle track data used with Mesh 3, it is

actually only the y-dimension that causes the divergence,

given that it executes both if-statements for one node, but

only one if-statement for the other.

The second interesting result from Table IV is that

cases with fewer nodes progressively report lower warp

efficiency, and therefore greater divergence. For 8 and 27

nodes this divergence is to be expected because not all of

the threads in the warp will be actively executing

instructions. Rearranging nodes will have no impact on this

type of divergence. In this situation, adding more nodes is

required to increase the number of warps that are processed

with all 32 threads actively executing instructions.

VII. POTENTIAL IMPACT FOR CONVENTIONAL

MESH TALLIES

Even though this work focused on the performance of

the KDE integral-track mesh tally on GPUs, there are some

important lessons learned that could be useful in developing

an effective GPU implementation for a conventional mesh

tally. The conventional mesh tally approach is to define

each mesh cell as a histogram bin. Particle tracks can then

be apportioned into those bins in two ways: either

deterministically or statistically. The deterministic method

involves adding the exact length of the track that intersects

with each mesh cell to its corresponding tally. The

statistical approach is to choose one or more random points

along uniform strata of the track, then add this uniform

portion to the tally for the mesh element(s) in which those

points are located.

Unlike the KDE integral-track mesh tally, which is

highly data-parallel, the conventional mesh tally most likely

needs to use different implementations for the GPU and the

CPU to take advantage of the different architectures. For

example, both the deterministic and statistical method for

tallying tracks requires that a point-in-cell search be

performed. On the CPU, a simple implementation for this

point-in-cell search could be to linearly check every mesh

cell until the one in which the point is located is found. If

threads were assigned to particle tracks on the GPU,

performing a linear search like this could introduce a

significant amount of divergence.

Instead of assigning threads to particle tracks, a better

alternative could be to assign them to mesh cells. Like the

mesh nodes needed for a KDE integral-track mesh tally,

data describing those mesh cells would be copied to the

GPU during the setup stage, their scores would be tallied

during the compute stage on the GPU, and their final results

would be transferred back to the CPU during the finalize

stage. Ensuring that each thread is only responsible for one

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

mesh cell has a couple of advantages. The first advantage is

that no thread will execute loops during a linear search of

the mesh cells with a different number of iterations than

other threads. The second advantage is that there will be no

write contention when adding scores to the intermediate

tally array, since each mesh cell would be assigned its own

element in that array.

If threads are assigned to mesh cells, then the

conventional mesh tally can also use the same approach as

the KDE integral-track mesh tally for determining device

memory usage. One key difference is that the conventional

mesh tally will need to store more mesh data in the global

memory, such as minimum and maximum coordinates for

each cell in a structured mesh. This will require twice the

amount of space as the nodal coordinates used by the KDE

integral-track mesh tally.

VIII. CONCLUSIONS

The performance of the KDE integral-track mesh tally

on the GPU was compared to the CPU for four different

mesh representations, based on a varying number of nodes.

Results show that computing scores on the GPU instead of

the CPU could eliminate the need for defining a

neighborhood region. Although eliminating the concept of

the neighborhood region does increase the number of trivial

scores that are computed, the SIMT architecture of the GPU

processes these scores very efficiently because the algorithm

is highly data-parallel. For example, scores for one particle

track were computed on the GPU for over 10 million nodes

in 58 ms, which is about 250 times faster than they were

computed on a single CPU.

Computing scores on the GPU does come with an

increased cost with respect to setup and finalize times, as

well as some overhead for launching jobs from the CPU. In

some cases, especially for meshes with fewer nodes that do

not tally many particle tracks, this overhead for using the

GPU may be too high. However, given that most Monte

Carlo simulations tally millions or billions of particle tracks,

the increased cost for using the GPU rapidly becomes less

significant. Taking the setup and finalize costs into

consideration, tallying 1000 particle tracks for over 10

million nodes is expected to be about 100 times faster on the

GPU than a single CPU.

Improvements in the GPU and/or CPU versions of the

KDE integral-track mesh tally would likely impact the

performance gains reported by this work. Specifically,

adding a neighborhood region search to the CPU version

would substantially reduce the amount of trivial scores that

it computed, which would result in a fairer comparison.

Alternatively, an equivalent parallel version could be

designed for use with a high performance computing

cluster. However, using a GPU for tallying purposes would

still be an attractive option considering it requires fewer

resources and frees up the CPUs for other calculations that

need to be performed during a Monte Carlo simulation.

Future work on using GPUs for tallying purposes will

compare implementations of the conventional mesh tally

based on the statistical method for apportioning tracks into

mesh cells. This statistical method is expected to be easier

to implement for the GPU than the deterministic method.

Using lessons learned from this work, as a first attempt each

thread will represent one mesh cell. All mesh cells will then

simultaneously check to see if different points on the

particle track are located within their domain.

ENDNOTES

1This excludes copying the bandwidth vector to the GPU.
2Based on CUDA occupancy calculator from CUDA toolkit.

ACKNOWLEDGMENTS

Supported by the Laboratory Directed Research and

Development program at Sandia National Laboratories, a

multi-mission laboratory managed and operated by Sandia

Corporation, a wholly owned subsidiary of Lockheed

Martin Corporation, for the U.S. Department of Energy’s

National Nuclear Security Administration under contract

DE-AC04-94AL85000.

REFERENCES

1. K. BANERJEE and W. R. MARTIN, “Kernel Density

Estimation Method for Monte Carlo Global Flux

Tallies,” Nuclear Science and Engineering, 170, 234

(2012).

2. T. P. BURKE, B. C. KIEDROWSKI, and W. R.

MARTIN, “Mean Free Path Based Kernel Density

Estimators for Capturing Edge Effects in Reactor

Physics Problems,” Proc. M&C 2015, Nashville,

Tennessee, April 19-23, American Nuclear Society

(2015).

3. K. L. DUNN, “Monte Carlo Mesh Tallies based on a

Kernel Density Estimator Approach,” Ph.D. Thesis,

University of Wisconsin-Madison (2014).

4. T. P. BURKE, B. C. KIEDROWSKI, W. R. MARTIN,

and F. B. BROWN, “GPU Acceleration of Kernel

Density Estimators in Monte Carlo Neutron Transport

Simulations,” Trans. Am. Nucl. Soc., 115, 531 (2016).

5. NVIDIA CORP., “CUDA C Programming Guide,” PG-

02829-001_v7.5 (2015).

6. B. SILVERMAN, Density Estimation for Statistics and

Data Analysis, Chapman and Hall, London, England

(1986).

7. NVIDIA CORP., “CUDA Best Practices Guide,” DG-

05603-001_v7.5 (2015).

8. G. D. SJAARDEMA, L. A. SCHOOF, V. R.

YARBERRY, “EXODUS II: A Finite Element Data

Model,” SAND92-2137, Sandia National Laboratories

(2006).

