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Abstract – Although kernel density estimated (KDE) mesh tallies are capable of approximating 

distributions like particle flux with less variance than conventional mesh tallies, this improvement in 

precision comes with an increased computational cost per score.  However, given that KDE mesh tallies 

are both compute-intensive and highly data-parallel, this increased computational cost can be reduced by 

taking advantage of a Graphics Processing Unit (GPU).  This work compares a GPU implementation of a 

mesh tally based on the KDE integral-track estimator to an equivalent implementation designed for a 

single Central Processing Unit (CPU).  Using a common abstract framework, both implementations consist 

of a setup stage, a compute stage, and a finalize stage.  A detailed analysis on the performance of all three 

stages is presented.  Results show that the compute stage of the KDE integral-track mesh tally is very 

efficient on the GPU, with one set of scores for over 10 million nodes being processed in 58 ms.  Taking 

into consideration the increased cost for setup and finalize stages, tallying scores for 1000 particle tracks 

for over 10 million nodes is expected to be about 100 times faster on the GPU than a single CPU. 

 

I. INTRODUCTION 

 

Kernel density estimated (KDE) tallies are a viable 

option for solving both criticality [1, 2] and fixed-source [3] 

Monte Carlo radiation transport problems.  A few different 

approaches to using KDE tallies for transport purposes have 

been explored over the last few years – including the 

original KDE collision and track estimators [1], the KDE 

integral-track estimator [3], and the Mean Free Path KDE 

collision estimator [2].  Although KDE tallies are capable of 

approximating distributions like particle flux with less 

variance than conventional tallies, this improvement in 

precision comes with an increased computational cost per 

score.  The KDE integral-track estimator in particular 

requires that at least one integration is performed for every 

particle track expected to contribute to the tally. 

Previous work has shown that the most time-consuming 

task of a mesh tally based on the KDE integral-track 

estimator is defining the neighborhood region, which 

identifies all of the mesh nodes that might contribute a non-

zero score for each particle track [3].  One alternative to 

defining a neighborhood region is to compute scores at 

every mesh node in parallel on a Graphics Processing Unit 

(GPU).  Even though this would result in numerous trivial 

scores being computed, GPUs have thousands of threads 

that can execute the same instruction on different data sets 

very efficiently.  This makes the GPU an ideal architecture 

for processing a KDE integral-track mesh tally, since each 

score is computed independently of the others. 

GPUs have already been considered for an improved 

version of the Mean Free Path KDE collision estimator, 

which reported overall speedups ranging between 1.6 and 

5.0 [4].  Rather than focusing on a heterogeneous computing 

environment like the previous work, this paper explores the 

effectiveness of tallying on the GPU in detail.  A KDE 

integral-track mesh tally was developed for the GPU using 

NVIDIA’s CUDA toolkit v7.5 [5].  This GPU version is 

compared to an equivalent implementation designed for a 

single Central Processing Unit (CPU). 

 

II. KDE MESH TALLIES 

 

KDE tallies can be used to estimate particle flux at all 

nodal coordinates (x, y, z) on some input mesh.  Each 

estimate of the particle flux is obtained by averaging 

contributions from N particle histories that experience a 

sequence of Ci distinct events: 
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The contribution to the particle flux for the ith history and cth 

event, denoted φic, can be computed using particle tracks 

with a track estimator, or collisions with a collision 

estimator.  As with conventional mesh tallies, contributions 

computed using a track estimator usually produce more 

precise results for the same number of particle histories.  

The KDE integral-track estimator computes a score for each 

particle track by performing an integration over the path 

length S traveled along the track: 
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In Equation 2, wic is the particle weight, and dic is the track 

length for the cth particle track that is processed from the ith 

history.  The integrand is a product of one-dimensional 

kernel functions Kx, Ky, and Kz, whose shape and size will 

determine how many nodal coordinates produce non-zero 

scores.  The size of the kernel functions is determined by the 

bandwidth vector (hx, hy, hz).  For the purposes of this work, 

the kernel functions Kx, Ky, and Kz are all of the form: 
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where (Xo, Yo, Zo) and (u, v, w) are the origin and unit 

direction of the particle respectively.  Equation 3 is based on 

the Epanechnikov kernel [6], which will only be non-zero 

on the domain: 
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III. GPU ARCHITECTURE FOR KDE MESH 

TALLIES 

 

The NVIDIA GPU architecture consists of a scalable 

array of multithreaded streaming multiprocessors (SM), 

each able to execute hundreds of threads concurrently using 

a single-instruction, multiple-thread (SIMT) approach [5].  

Threads that are assigned to an SM are processed in groups 

of 32, which is known as a warp.  If at least one thread in 

that warp needs to execute one or more different 

instructions, due to an if-statement or loop condition, then it 

must wait until all other 31 threads have first completed 

their instructions.  Optimal performance in processing a 

warp can therefore only occur when there is no branch 

divergence among its 32 threads.  This means that the GPU 

is best suited to highly data-parallel applications that 

execute an identical sequence of instructions on multiple 

data sets. 

Computing each score for a KDE integral-track mesh 

tally is generally more compute-intensive than it is for a 

conventional mesh tally.  However, these computations are 

also highly data-parallel due to the fact that each mesh node 

can be considered independently of the others.  Being both 

compute-intensive and highly data-parallel makes the KDE 

integral-track mesh tally an ideal candidate for taking 

advantage of GPU architecture. 

Before any scores can be computed for a tally using a 

specific algorithm on a GPU, there are two important 

concepts that should first be considered: how to assign work 

to threads, and what device memory options are available 

for efficient read/write access.  Both can have a noticeable 

impact on performance.  A brief overview of these concepts 

in the context of the KDE integral-track mesh tally is below. 

 

1. Assigning Work to Threads 

 

Since a score for each mesh node can be computed 

independently of the others, the most obvious choice for 

assigning work to threads is to use one thread per mesh 

node.  Each warp processed on the GPU would therefore 

compute scores for a group of 32 mesh nodes at a time.  

Ensuring that each thread is only responsible for one mesh 

node means that it will only ever need to access one element 

in the data structure used for accumulating scores.  No write 

contention will ever occur as a result of multiple threads 

trying to add a score to the same memory location, which 

can, at its worst, force the code being executed on the GPU 

to become serialized. 

 

2.   Device Memory Options 

 

After determining how to assign work to threads on the 

GPU, the next step is to consider how the data will be stored 

that is needed for computing scores.  For the purposes of 

this work, only register memory, global memory, and 

constant memory were used. 

Register memory is located on-chip and therefore 

provides the fastest read/write access times.  However, there 

are a fixed number of registers available per SM that must 

be shared by all of its assigned threads.  Individual threads 

can only access registers that were allocated to them, which 

is determined by the compiler.  These registers will likely 

contain most of the local variables needed for computing a 

score before it is added to the tally. 

Global memory is the largest memory space on the 

GPU, but also has the slowest read/write access times 

because it is located off-chip.  Variables stored in global 

memory last for the duration of the host program, and are 

accessible to all threads.  This is the only memory space 

with enough room to store nodal coordinates for a large 

mesh, as well as the tally data structure used for 

accumulating its corresponding scores. 

Like global memory, constant memory is located off-

chip.  There are two primary differences between global 

memory and constant memory.  First, the size of the 

constant memory space is only 64 KB for current NVIDIA 

GPU architectures.  Second, data stored in constant memory 

is cached on-chip for efficient read-only access.  If all 

threads in a warp read from the same location, then constant 

memory can be as fast as accessing register memory [7].  

This makes constant memory useful for variables such as 

the bandwidth vector and particle track data that are 

invariant and used by all threads. 

 

IV. GPU VS. CPU IMPLEMENTATION 

 

A KDE integral-track mesh tally using Equations 1 

through 4 was implemented so that all scores could be 

computed using double precision on either a GPU or CPU.  

Both GPU and CPU versions share a common abstract 

framework written in C++11 that consists of three distinct 

stages: setting up the problem, computing scores, and 

finalizing tally results.  Although they share a common 

abstract framework, there are some significant differences in 

the GPU version that affects its performance compared to 

the CPU version.  The similarities and differences in the 

setup, compute, and finalize stages are highlighted in the 

following sections. 



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering, 

Jeju, Korea, April 16-20, 2017, on USB (2017) 

1. Setup Stage 

 

Setting up the problem for both GPU and CPU versions 

involves extracting the nodal coordinates from the input 

mesh, creating the output file for storing tally results, and 

initializing the estimator used for accumulating tally scores.  

Note that the output file, written in the Exodus II binary 

format [8], stores a full copy of the input mesh and will also 

store the final accumulated tally results.  This setup stage is 

only executed once. 

Unlike the CPU version, the GPU version must perform 

additional work to copy read-only data to its different 

memory spaces, and to initialize the intermediate tally array 

in global memory that it uses for accumulating scores.  This 

additional work increases the time needed to complete the 

setup stage.  Read-only data that is copied to the GPU 

during the setup stage includes the nodal coordinates added 

to global memory, and the bandwidth vector added to 

constant memory. 

 

2. Compute Stage 

 

After the setup stage is complete, the next stage 

involves converting particle track data into tally scores by 

evaluating Equation 2 using 4-point Gaussian quadrature. 

This compute stage is therefore executed multiple times, 

once per particle track.  The quadrature points needed to use 

the 4-point Gaussian quadrature method are stored in the 

constant memory space on the GPU. 

Before even attempting to evaluate Equation 2 for a 

specific mesh node, both GPU and CPU versions first check 

to see if it is expected to produce a non-zero score for the 

particle track.  Lower and upper integration limits for path 

length S are computed by using Equation 4 to determine 

minimum and maximum values in all three dimensions x, y, 

and z.  Only nodes that result in some overlap between these 

three intervals and the particle track will actually continue 

in evaluating Equation 2.  Note that this is not the same as 

using a neighborhood region, which reduces the set of nodes 

before checking for valid integration limits. 

Although GPU and CPU versions of the KDE integral-

track mesh tally use exactly the same algorithm, there are 

two primary differences in their implementations that 

impact their respective compute stages.  The first difference 

is that the GPU version needs to copy the particle track data 

into its constant memory space prior to performing any 

calculations on that data.  The second difference, which is 

more significant, is how the scores are accumulated.  

Whereas an intermediate tally array is used to accumulate 

scores for the GPU version, the CPU version adds scores 

directly into a key-value data structure.  This data structure 

uses the mesh node ID as the key, and its accumulated score 

(if any) as the value.  As a result, the CPU version can 

obtain nodal coordinates for computing scores by mesh 

node ID as needed, rather than copying them all upfront 

during the setup stage like the GPU version. 

3. Finalize Stage 

 

Finalizing tally results involves normalizing all of the 

accumulated tally scores by the number of particle histories, 

and writing those normalized scores to the output file.  Like 

the setup stage, the finalize stage is only executed once and 

the GPU version takes longer because it must perform 

additional work.  Additional work that is performed during 

the finalize stage includes transferring the accumulated 

scores from the intermediate tally array on the GPU back to 

the CPU, and then converting those scores into the same 

key-value data structure used by the CPU version.  Any 

memory resources allocated on the GPU must also be freed. 

 

V. PERFORMANCE TESTS 

 

The performance of both versions of the KDE integral-

track mesh tally was tested to determine the effectiveness of 

using GPUs for tallying scores.  Since the smallest unit of 

work is attempting to compute a score at every mesh node, 

only one fixed particle track and bandwidth vector were 

used for all performance tests: 

 

 (Xo, Yo, Zo) = (-0.2, 0.2, 1.0) 

 (u, v, w) = (0.0, -0.8, 0.6) 

 wic = 0.5 

 dic = 2.0 

 (hx, hy, hz) = (0.1, 0.1, 0.1) 

 

In addition to the above data, a pre-determined set of nodal 

coordinates (x, y, z) must also be defined to evaluate 

Equation 2.  Typically, these nodal coordinates would be 

extracted from some known input mesh.  However, it was 

decided to use non-physical mesh representations for these 

performance tests to more accurately assess the strengths 

and weaknesses of using the GPU for KDE integral-track 

mesh tally calculations.  The four non-physical mesh 

representations chosen for this analysis are described below.  

A varying number of nodes were considered for each 

representation to reflect different valid mesh configurations, 

ranging from a single element with 8 nodes, up to a 

215x215x215 element grid with 10,077,696 nodes. 

 

Mesh 1: All Nodes Compute Score 

 

The maximum amount of work performed per particle 

track occurs when every node computes a non-zero score.  

Mesh 1 was designed to measure this maximum by making 

the coordinates of all nodes equal to (-0.2, 0.1, 1.1). 

 

Mesh 2: All Nodes Compute No Score 

 

In contrast to Mesh 1, Mesh 2 was designed to measure 

the minimum amount of work performed per particle track, 

which was done by changing the coordinates of all nodes to 



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering, 

Jeju, Korea, April 16-20, 2017, on USB (2017) 

(0.0, 0.0, 0.0).   This forces the check based on Equation 4 

to always fail so that Equation 2 is never evaluated. 

 

Mesh 3: Alternate Nodes Compute Different Score 

 

If different nodes compute different scores, there should 

be no noticeable impact on performance for either the GPU 

version or the CPU version.  To show that this is indeed the 

case, Mesh 3 was designed so that all even-numbered nodes 

had the coordinates (-0.2, 0.1, 1.1), and all odd-numbered 

nodes had the coordinates (-0.15, -0.1, 1.1). 

 

Mesh 4: Alternate Nodes Compute No Score 

 

While different nodes computing different scores 

should not impact performance, if half of the nodes compute 

no score then there should be a noticeable difference.  

Therefore, Mesh 4 was designed so that all even-numbered 

nodes had the coordinates (-0.2, 0.1, 1.1), and all odd-

numbered nodes had the coordinates (0.0, 0.0, 0.0). 

 

VI. RESULTS 

 

All performance tests were run on a desktop Linux 

workstation with Intel Xeon E5-2697 v3 (2.60 GHz) CPUs 

and one NVIDIA Quadro K5200 GPU.  Timing results 

reported in this section are an average of ten independent 

runs obtained using std::chrono::steady_clock from the 

C++11 standard, unless otherwise noted. 

Table I and II below contain summaries of the timing 

results for Mesh 1 with 1331 and 10,077,696 nodes 

respectively.  As expected, the general trend for both cases 

is that the setup and finalize times take longer for the GPU 

version compared to the CPU version, but the compute 

times are noticeably faster.  During the compute stage, 

processing scores for 1331 nodes was about 20 times faster 

on the GPU, and processing scores for 10,077,696 nodes 

was about 250 times faster. 

 

Table I. Timing Results for Mesh 1 with 1331 Nodes 

STAGE CPU (ms) GPU (ms) 

Setup 9.78 341.51 

Compute 1.93 0.094 

Finalize 0.81 1.71 

Total 12.52 343.31 

 

Table II. Timing Results for Mesh 1 with 10,077,696 Nodes 

STAGE CPU (ms) GPU (ms) 

Setup 7.81×104 7.87×104 

Compute 1.46×104 5.80×101 

Finalize 0.51×104 1.07×104 

Total 9.78×104 8.94×104 

 

Although the compute stages for both 1331 and 

10,077,696 nodes are noticeably faster on the GPU, note 

that the overall performance for one particle track is highly 

dependent on the impact of the setup and finalize stages.  

Taking the timing results of these two stages into 

consideration, the case with 10,077,696 nodes is only 9% 

faster on the GPU compared to the CPU, and the case with 

1331 nodes is actually 27 times slower. 

Given that the compute stage is the only one that is 

repeated, the GPU version should rapidly start to 

outperform the CPU version as more and more particle 

tracks are tallied on a large mesh.  For example, tallying 100 

particle tracks on a mesh with 10,077,696 nodes should 

result in a total speedup of around 16, and tallying 1000 

particle tracks should result in a total speedup of around 

100.  Even a smaller mesh with 1331 nodes will eventually 

start outperforming the CPU version.  At least 182 particle 

tracks must be tallied for the GPU version to achieve similar 

performance, but tallying 1000 particle tracks would be 

about 4 times faster overall. 

One fact that is important to note with these results is 

that they only measure the performance of the tallying 

process.  Running a full Monte Carlo simulation with 

particle tracking in a heterogeneous computing environment 

introduces additional factors that will reduce the impact that 

using the GPU has on the overall performance.  The most 

significant of these factors is the timing of the 

communication between the GPU and the CPU.  In the work 

on the improved Mean Free Path KDE collision estimator, 

groups of 50,000 collisions were created on the CPU before 

being transferred to the GPU for tallying [2].  This means 

that the GPU has to wait until enough collisions are 

available before it can do anything.  Although particle 

tracking and tally processing can be overlapped, the time 

required to create the collisions might be much higher than 

the time it takes to process them on the GPU. 

Results for the full range of mesh representations 

considered in this work are discussed in more detail below 

for the setup, finalize, and compute stages. 

 

1. GPU vs. CPU Setup and Finalize Stages 

 

As shown in Tables I and II, the setup and finalize 

stages for 1331 and 10,077,696 nodes take longer for the 

GPU version than the CPU version due to the additional 

work that needs to be done.  A visual comparison of the cost 

of this additional work is shown in Fig. 1, which displays 

the ratio of the GPU to CPU setup and finalize times for the 

full range of nodes considered with Mesh 1.  Similar results 

also occur for Mesh 2, 3, and 4, which indicates that there is 

a fixed cost for both setting up and finalizing the problem 

based on the number of nodes. 

For the setup stage, Fig. 1 shows that the ratio of the 

GPU to CPU times varies significantly with the number of 

nodes.  Cases with more than 106 nodes appear to have 

equivalent setup times because the dominant factor for both 

versions is the creation of the output file.  On the other end, 

cases with fewer than 104 nodes take much longer to set up 
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for the GPU version.  This increased setup time is caused by 

the implicit initialization of the GPU [5], which occurs 

when the first CUDA function is called to copy the 

bandwidth vector into constant memory.  The initialization 

overhead for the Quadro K5200 GPU was about 300 ms, 

which is more noticeable for meshes with fewer nodes 

because it takes much less time to create the output file. 

 

Fig. 1. Ratio of GPU to CPU setup and finalize times. 

 

After output file creation and GPU initialization 

overhead, most of the GPU version’s remaining setup time 

is due to tasks that depend on the number of nodes.1 Fig. 2 

and Fig. 3 compare the relative cost of these tasks for 1331 

and 10,077,696 nodes respectively.  All tasks executed on 

the GPU were timed using CUDA events [5], but the total 

time used to compute the percentages shown in Fig. 2 and 

Fig. 3 was obtained using std::chrono::steady_clock.  The 

“Other” category refers to tasks executed only on the CPU, 

which is equal to the difference between the total time and 

the sum of all the tasks executed on the GPU.  This 

difference is primarily caused by creating the zero-valued 

vector on the CPU for initializing the intermediate tally 

array on the GPU. 

Fig. 2 and Fig. 3 show that the number of nodes in the 

mesh has a significant impact on the relative cost of each 

task.  The first task performed is to free GPU resources that 

may have been previously allocated for a different mesh 

tally.  This task is negligible for 10,077,696 nodes, and also 

only accounts for 3% of the total time for 1331 nodes.  The 

next task performed is to allocate space in the global 

memory on the GPU for storing nodal coordinates and the 

intermediate tally array.  While this is the most time-

consuming task for 1331 nodes at 62%, it only accounts for 

1% of the total time for 10,077,696 nodes.  The most time-

consuming task executed on the GPU for 10,077,696 nodes 

is copying the nodal coordinates into its global memory, 

which accounts for almost half of the total time.  In both 

cases, “Other” is also significant, even though it represents 

tasks that are executed on the CPU and not the GPU. 

 
Fig. 2. GPU task breakdown during the setup stage for a 

mesh with 1331 nodes 

 

Fig. 3. GPU task breakdown during the setup stage for a 

mesh with 10,077,696 nodes. 

 

In contrast to the setup stage, Fig. 1 shows that the ratio 

of GPU to CPU times for the finalize stage does not vary 

much with the number of nodes.  All cases took the GPU 

version about twice as long to normalize tally results and 

write those results to the output file.  Although the finalize 

stage for the GPU version is longer than it is for the CPU 

version, this increase is not predominantly caused by tasks 

executed on the GPU. 

As an example, the additional time needed to finalize 

the GPU version for 10,077,696 nodes was 0.56×104 ms.  

Only 13 ms (~0.2%) of this time was used to transfer final 

scores back to the CPU.  Even less was needed to free GPU 

resources (~0.01%).  The remaining time was used to 

convert the intermediate tally array into the key-value data 

structure on the CPU that is written to the output file. 

For 1331 nodes, the percentage of all the tasks executed 

on the GPU during the finalize stage increases to about 

20%.  These results indicate that one area for improvement 
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in the GPU version would be to write results directly from 

the intermediate tally array that was copied back to the 

CPU.  However, this would also reduce the level of 

abstraction in the code because different functionality would 

be needed for the GPU version over the CPU version. 

 

2. GPU vs. CPU Compute Stage 

 

Although both GPU and CPU versions use the same 

algorithm to calculate scores, their performance can behave 

very differently as the number of nodes increases.  Timing 

results for the compute stage versus the number of nodes are 

plotted in Fig. 4 for Mesh 1 and 2, and in Fig. 5 for Mesh 3 

and 4.  Compared to the CPU version, which varies linearly 

for all mesh representations, the performance of the GPU 

version is fairly constant until 1331 nodes.  This represents 

the overhead for performing calculations on the GPU, which 

is different from the overhead for initializing the GPU. 

 

 
Fig. 4. Compute time vs. number of nodes for Mesh 1 and 2. 

 

 
Fig. 5. Compute time vs. number of nodes for Mesh 3 and 4. 

 

In order to offset the overhead for computing scores on 

the GPU and maximize its efficiency, there must be enough 

work for it to perform.  One metric used to measure the 

efficiency of a GPU calculation is occupancy, which is the 

ratio of the number of active warps being processed on an 

SM to the maximum number of possible active warps [7]. 

For the Quadro K5200 GPU, the maximum number of 

possible active warps per SM is 64 [5].  So to achieve an 

occupancy of 100%, 64 warps must be processed 

concurrently on each SM.  Due to register usage per thread, 

however, the GPU version of the KDE integral-track mesh 

tally can only process 48 active warps concurrently per SM, 

which results in a peak possible occupancy of 75%.  Table 

III summarizes the impact of the number of nodes on the 

achieved occupancy for Mesh 1 reported by the NVIDIA 

profiler from the CUDA toolkit.  Similar values were also 

reported for Mesh 2, 3, and 4.  The number of warps 

processed refers to how many warps were needed to account 

for the given number of nodes.  Since these calculations 

were done in blocks of 128 threads, the minimum number of 

warps that will be processed is 4.  Reducing this to blocks of 

64 or 32 threads changes the peak possible occupancy to 

50% and 25% respectively.2 

 

Table III. Impact of Number of Nodes on Achieved 

Occupancy of GPU for Mesh 1 

NODES IN 

MESH 

ACHIEVED 

OCCUPANCY (%) 

WARPS 

PROCESSED 

8 1.9 4 

27 1.7 4 

216 5.5 8 

1331 6.0 44 

12,167 34.2 384 

103,283 68.9 3228 

1,030,301 72.5 32,200 

10,077,696 72.4 314,928 

 

Table III shows that achieved occupancy is 

significantly impacted by the number of nodes in the mesh 

for which scores are computed.  Given that each SM can 

process up to 48 active warps (i.e., 1536 threads), meshes 

with fewer than 1536 nodes do not produce enough work to 

make efficient use of the GPU.  This corresponds to low 

achieved occupancy values, such as only 6% for the case 

with 1331 nodes.  In contrast, meshes with substantially 

more than 1536 threads are able to keep all SMs on the GPU 

busy enough so that the achieved occupancy values are 

much closer to the theoretical value of 75%.  A saturation 

point seems to occur after around a million nodes, indicating 

that the GPU has reached its optimal efficiency. 

Once there are enough nodes to keep the GPU busy in 

terms of occupancy, the performance of the GPU version of 

the KDE integral-track mesh tally also appears to vary 

linearly with the number of nodes.  Note, however, that 

there is a greater difference between Mesh 1 and Mesh 2 

when compared to the CPU version, which represents the 

minimum and maximum performance expected for 

processing one particle track.  As a result, there is more 
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potential for improving the performance when many nodes 

compute no score. 

While Fig. 4 highlights the minimum and maximum 

performance expected, Fig. 5 shows what happens when 

alternate nodes execute different tasks.  Two cases were 

considered.  The first case, Mesh 3, computed different 

scores for alternate nodes.  Given that the performance of 

Mesh 1 and Mesh 3 is similar, neither the GPU nor the CPU 

version pay any penalty for computing different scores.  The 

second case, Mesh 4, computed no score for alternate nodes, 

which should, in theory, improve performance.  Fig. 5 

shows that this is only true for the CPU version. 

Although only half of the nodes compute a score for 

Mesh 4, its performance for the GPU version was about the 

same as Mesh 1 and Mesh 3.  As a result, there is no 

performance benefit over the case where all nodes compute 

a score.  This result can be explained by understanding how 

the GPU works in terms of warp efficiency, which is a 

metric that can be used to measure the level of divergence of 

a GPU calculation.  Table IV summarizes the impact of the 

number of nodes on warp efficiency for Mesh 1, 2, 3, and 4.  

A lower warp efficiency means that the GPU calculations 

that were performed experienced greater divergence. 

 

Table IV. Impact of Number of Nodes on Warp Efficiency 

NODES IN 

MESH 

WARP EFFICIENCY (%) 

Mesh 1 Mesh 2 Mesh 3 Mesh 4 

8 26.3 32.4 24.4 15.9 

27 84.6 85.8 78.6 50.9 

216 96.4 96.5 89.1 55.9 

1331 99.0 99.1 91.5 57.4 

12,167 99.8 99.8 92.2 57.8 

103,283 100.0 100 92.3 57.9 

1,030,301 100.0 100 92.4 57.9 

10,077,696 100.0 100 92.4 57.9 

 

Mesh 4 consistently had a lower warp efficiency than 

all other mesh representations, which means that alternate 

nodes computing no score introduces noticeable divergence 

into the GPU calculations.  This divergence arises from the 

fact that Equation 2 is only evaluated if it has valid 

integration limits based on Equation 4.  Half of the threads 

in each warp have to wait until the other half compute a 

score, which means it takes just as long as the case where all 

nodes compute a score.  Mesh 4 is a worst-case scenario that 

shows why it is important to reduce divergence in order to 

maximize GPU performance.  For this example, divergence 

can be practically eliminated by reordering the nodes so that 

the first half all compute a score and the second half 

compute no score.  However, the effectiveness of using this 

approach depends on how long it takes to sort the nodes. 

In addition to highlighting how much divergence exists 

in Mesh 4, there are two other interesting results shown in 

Table IV.  The first is that Mesh 3 had slightly lower warp 

efficiency than Mesh 1, which suggests that computing 

different scores at alternate nodes introduces some minor 

divergence.  The most likely cause of this divergence is the 

calculation of the integration limits for Equation 2, since 

different nodal coordinates typically produce different 

integration limits.  This calculation requires evaluation of 

two small if-statements for assigning the lower and upper 

values.  For the particle track data used with Mesh 3, it is 

actually only the y-dimension that causes the divergence, 

given that it executes both if-statements for one node, but 

only one if-statement for the other. 

The second interesting result from Table IV is that 

cases with fewer nodes progressively report lower warp 

efficiency, and therefore greater divergence.  For 8 and 27 

nodes this divergence is to be expected because not all of 

the threads in the warp will be actively executing 

instructions.  Rearranging nodes will have no impact on this 

type of divergence.  In this situation, adding more nodes is 

required to increase the number of warps that are processed 

with all 32 threads actively executing instructions. 

 

VII. POTENTIAL IMPACT FOR CONVENTIONAL 

MESH TALLIES 

 

Even though this work focused on the performance of 

the KDE integral-track mesh tally on GPUs, there are some 

important lessons learned that could be useful in developing 

an effective GPU implementation for a conventional mesh 

tally.  The conventional mesh tally approach is to define 

each mesh cell as a histogram bin.  Particle tracks can then 

be apportioned into those bins in two ways: either 

deterministically or statistically.  The deterministic method 

involves adding the exact length of the track that intersects 

with each mesh cell to its corresponding tally.  The 

statistical approach is to choose one or more random points 

along uniform strata of the track, then add this uniform 

portion to the tally for the mesh element(s) in which those 

points are located. 

Unlike the KDE integral-track mesh tally, which is 

highly data-parallel, the conventional mesh tally most likely 

needs to use different implementations for the GPU and the 

CPU to take advantage of the different architectures.  For 

example, both the deterministic and statistical method for 

tallying tracks requires that a point-in-cell search be 

performed.  On the CPU, a simple implementation for this 

point-in-cell search could be to linearly check every mesh 

cell until the one in which the point is located is found.  If 

threads were assigned to particle tracks on the GPU, 

performing a linear search like this could introduce a 

significant amount of divergence. 

Instead of assigning threads to particle tracks, a better 

alternative could be to assign them to mesh cells.  Like the 

mesh nodes needed for a KDE integral-track mesh tally, 

data describing those mesh cells would be copied to the 

GPU during the setup stage, their scores would be tallied 

during the compute stage on the GPU, and their final results 

would be transferred back to the CPU during the finalize 

stage.  Ensuring that each thread is only responsible for one 
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mesh cell has a couple of advantages.  The first advantage is 

that no thread will execute loops during a linear search of 

the mesh cells with a different number of iterations than 

other threads.  The second advantage is that there will be no 

write contention when adding scores to the intermediate 

tally array, since each mesh cell would be assigned its own 

element in that array. 

If threads are assigned to mesh cells, then the 

conventional mesh tally can also use the same approach as 

the KDE integral-track mesh tally for determining device 

memory usage.  One key difference is that the conventional 

mesh tally will need to store more mesh data in the global 

memory, such as minimum and maximum coordinates for 

each cell in a structured mesh.  This will require twice the 

amount of space as the nodal coordinates used by the KDE 

integral-track mesh tally. 

 

VIII. CONCLUSIONS 

 

The performance of the KDE integral-track mesh tally 

on the GPU was compared to the CPU for four different 

mesh representations, based on a varying number of nodes.  

Results show that computing scores on the GPU instead of 

the CPU could eliminate the need for defining a 

neighborhood region.  Although eliminating the concept of 

the neighborhood region does increase the number of trivial 

scores that are computed, the SIMT architecture of the GPU 

processes these scores very efficiently because the algorithm 

is highly data-parallel.  For example, scores for one particle 

track were computed on the GPU for over 10 million nodes 

in 58 ms, which is about 250 times faster than they were 

computed on a single CPU. 

Computing scores on the GPU does come with an 

increased cost with respect to setup and finalize times, as 

well as some overhead for launching jobs from the CPU.  In 

some cases, especially for meshes with fewer nodes that do 

not tally many particle tracks, this overhead for using the 

GPU may be too high.  However, given that most Monte 

Carlo simulations tally millions or billions of particle tracks, 

the increased cost for using the GPU rapidly becomes less 

significant.  Taking the setup and finalize costs into 

consideration, tallying 1000 particle tracks for over 10 

million nodes is expected to be about 100 times faster on the 

GPU than a single CPU. 

Improvements in the GPU and/or CPU versions of the 

KDE integral-track mesh tally would likely impact the 

performance gains reported by this work.  Specifically, 

adding a neighborhood region search to the CPU version 

would substantially reduce the amount of trivial scores that 

it computed, which would result in a fairer comparison.  

Alternatively, an equivalent parallel version could be 

designed for use with a high performance computing 

cluster.  However, using a GPU for tallying purposes would 

still be an attractive option considering it requires fewer 

resources and frees up the CPUs for other calculations that 

need to be performed during a Monte Carlo simulation. 

Future work on using GPUs for tallying purposes will 

compare implementations of the conventional mesh tally 

based on the statistical method for apportioning tracks into 

mesh cells.  This statistical method is expected to be easier 

to implement for the GPU than the deterministic method.  

Using lessons learned from this work, as a first attempt each 

thread will represent one mesh cell.  All mesh cells will then 

simultaneously check to see if different points on the 

particle track are located within their domain. 

 

ENDNOTES 

 
1This excludes copying the bandwidth vector to the GPU. 
2Based on CUDA occupancy calculator from CUDA toolkit. 
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