
M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

Preliminary Serpent–MOOSE Coupling and Implementation of Functional Expansion Tallies in Serpent

Leslie Kerby,∗,† Aaron Tumulak,† Jaakko Leppänen,‡ and Ville Valtavirta‡

∗Idaho State University, Nuclear Engineering, Pocatello, ID, USA
†Idaho National Laboratory, Idaho Falls, ID, USA

‡VTT Technical Research Centre of Finland, Espoo, Finland
kerblesl@isu.edu

Abstract - Modeling nuclear reactors is complex, requiring multiphysics solutions between neutronics, thermal
hydraulics, and fuel behavior. A preliminary Serpent–MOOSE coupling has been created, with consistent
results demonstrated for a single fuel element with simple diffusion. In parallel with this work, Functional
Expansion Tallies (FETs) have been implemented in Serpent. These promise to ease mesh conversion for future
coupling, as well as reduce error around bin boundaries and decrease memory requirements.

I. INTRODUCTION

Modeling nuclear reactors is complex, requiring mul-
tiphysics solutions between neutronics, thermal hydraulics,
and fuel behavior. Monte Carlo methods are becoming more
desirable and feasible with advances in parallel computing
technology, yet they are still impractical for full-core simu-
lations. However, neutronics simulation could be performed
with Monte Carlo codes to obtain accurate fission powers and
cross sections, and then these solutions could be coupled with
deterministic thermal hydraulic and/or fuel behavior codes.

Serpent 2, a three-dimensional continuous-energy Monte
Carlo reactor physics burnup calculation code [1], has been
tested and produces accurate cross sections for the Advanced
Test Reactor (ATR) and shows potential for use in the Tran-
sient Reactor Test Facility (TREAT) [2], both at Idaho National
Laboratory (INL). The Multiphysics Object-Oriented Simu-
lation Environment (MOOSE) framework developed at INL
provides a high-level interface for solving systems of coupled,
nonlinear partial differential equations [3], lending itself use-
ful for modeling multiphysics phenomena found in reactor
physics problems. A preliminary Serpent–MOOSE coupling
has been created, with consistent results demonstrated for a
single fuel element with simple diffusion. In parallel with this
work, Functional Expansion Tallies (FETs) have been imple-
mented in Serpent. These promise to ease mesh conversion
for future Serpent–BISON coupling, as well as reduce error
around bin boundaries and decrease memory requirements.

II. COUPLING OF SERPENT AND MOOSE

A parallelizable, coupled Serpent 2.1.26–MOOSE code
has been created and tested successfully on a single fuel ele-
ment.

1. Implementation

A. UserObjects

The coupled code utilizes three MOOSE UserObjects:
ElementTransfer, RunSerpent, and HeatToMoose. Figure 1
illustrates the flow of the coupled Serpent–MOOSE code. The
UserObject HeatToMoose transfers the Serpent fission heat
generated, per element volume, to the MOOSE mesh. It reads

	

Serpent	 MOOSE	

Fig. 1. Flow of the coupled Serpent–MOOSE code.

the power production from the multiphysics interface output
file produced by Serpent into an array and transforms it into
the MOOSE 3D mesh. This array can later be accessed by
MOOSE to calculate heat production in a certain element. An
initial guess for the fission power generation, which can be
accomplished by running standalone Serpent, must be sup-
plied. MOOSE then runs a heat conduction solution given the
fission heat distribution dictated by Serpent. The UserObject
ElementTransfer averages the MOOSE temperature solution
field for each element, transforms this to an OpenFOAM mesh,
and transfers this to the Serpent interface input file. Next, the
UserObject RunSerpent runs either a full Serpent calculation,
or if Serpent has already been run once and does not need to
be initialized, a shorter transport cycle. The initial guess for
fission heat is then overwritten by the coupled Serpent, and
the process starts over again, iterating the number of times
specified in the MOOSE input file.



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

Fig. 2. OpenFOAM hexahedron vertices, faces, and edge
numbering.

Fuel Water
Isotope % mass Isotope %mass
235U 2.9971 1H 66.6667
238U 85.153 16O 33.3333
16O 11.85

5 cm x 5 cm 10 cm x 10 cm

TABLE I. Fuel element properties.

B. Meshes

The current impementation utilizes an OpenFOAM mesh
on the Serpent side. The OpenFOAM mesh uses a polyMesh
object, which has five attributes: points, faces, owners, neigh-
bors, and boundaries. These are separated into four separate
files (boundaries are not used) in the Serpent multiphysics
interface. The points file contains a list of vectors describing
the cell vertices, where the first vector in the list represents
vertex 0, the second vector represents vertex 1, etc. The faces
file contains a list of faces, each face being a list of indices to
vertices in the points list, where again, the first entry in the list
represents face 0, etc. The owner file is a list of owner cell
labels, the index of entry relating directly to the index of the
face, so that the first entry in the list is the owner label for face
0, the second entry is the owner label for face 1, etc. And lastly,
the neighbor file contains a list of neighbor cell labels. Fig.
2 shows an example of a hexahedron in the cellShape class,
which is the specific type of polyMesh used on the Serpent
side in this coupling.

In the present coupled code, MOOSE uses a Gen-
eratedMesh with dim=3 and elem_type=PRISM6, or a
rectangular-prism (ie, “box”) mesh.

C. Code Modifications

Several modifications to the Serpent 2 code were neces-
sary to create this coupled version. They are not detailed here
for brevity, but may be found in [4]. In testing the single fuel
element case we discovered a small bug in the TMS method,
which was not apparent in the standalone Serpent 2. The fix
for this was fairly simple. The corrections are implemented in
Serpent 2.1.27.

Fig. 3. Geometry of single fuel element.

2. Results

The coupled Serpent 2.1.26–MOOSE was tested with a
single fuel element surrounded by water, as shown in Fig. 3
and detailed in Table I. Results for ke f f for standalone Serpent
2.1.26 and the coupled Serpent 2.1.26–MOOSE are displayed
in Table II. The standalone was run with 50 inactive cycles
and 1000 active cycles of 100,000 neutrons/cycle, and with
OpenMP with 6 threads. The coupled Serpent–MOOSE was
run with 50 inactive cycles and 500 active cycles of 1,000,000
neutrons, for 5 iterations of thermal feedback; only results
from the final iteration are shown. The statistical error only
accounts for the final iteration, and not the entire coupled
calculation.

The analog and implicit ke f f calculated from the stan-
dalone Serpent and coupled Serpent–MOOSE are very similar
and within a standard deviation of each other.

III. IMPLEMENTATION OF FETS

This research builds upon and utilizes work performed by
OpenMC [5] in implementing Functional Expansion Tallies
(FETs). OpenMC, a Monte Carlo particle transport simulation
code focused on neutron criticality calculations, uses Func-
tional Expansion Tallies (FETs) to allow for a more efficient
passing of multiphysics data between OpenMC and MOOSE
[6].

One of the pre-eminent issues in coupling two codes is
accurately and efficiently transferring between their different
meshes. The current Serpent–MOOSE coupling uses the un-
structured OpenFOAM mesh on the Serpent side, and the
structured hexahedral mesh on the MOOSE side. Implement-
ing Functional Expansion Tallies (FETs) in Serpent enables
us to have a mesh-free fission power distribution in Serpent
which can more easily be transferred to any desired mesh
within MOOSE (and eventually BISON and MAMMOTH).

An implementation of functional expansion tallies (FETs)
to represent temperature, density, and local power in a single
3-D fuel pin is implemented in Serpent 2. Preliminary results
show that the method is feasible and produces qualitatively

Standalone Serpent 2.1.26 Coupled Serpent–MOOSE

ke f f (analog) 0.20577 +/- 0.00007 0.20573 +/- 0.00003
ke f f (implicit) 0.20578 +/- 0.00005 0.20573 +/- 0.00002

TABLE II. Fuel element ke f f values for the standalone Serpent and coupled Serpent–MOOSE.



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

acceptable results.

1. Theory

Fuel pins are usually cylindrical. In cylindrical geometry,
a scalar-valued function f (r, θ, z) can be expanded as the sum
of the product of Legendre and Zernike polynomials

f (r, θ, z) =
∑

i

∑
j

ci jZ j(r, θ)Pi(z) (1)

where the Zernike polynomials Z j = Zm
n are defined for even

n − m and n ≥ m as

Zm
n (r, θ) =


√

2(n + 1)Rm
n (r) cos(mθ) for m > 0

√
2(n + 1)R−m

n (r) sin(−mθ) for m < 0
√

n + 1R0
n(r) for m = 0

Rm
n (r) =

n−m
2∑

k=0

(−1)k
(
n − k

k

)(
n − 2k
n−m

2 − k

)
rn−2k

(2)

where the second and third factors in parenthesis are binomial
coefficients.

For brevity in notation and convenience in code imple-
mentation, the radial and radial indices n and m are mapped
to a single index j using Noll’s indexing. The rules are as
follows:

1. The first entry (n = 0,m = 0) is j = 1.

2. (n,m) with greater n have greater j.

3. (n,m) with m < 0 have odd-numbered j.

4. (n,m) with m > 0 have even-numbered j.

5. Within a given n, (n,m) with greater |m| have greater j.

The Legendre polynomials Pi are defined for integers
i ≥ 0 as

Pi(z) =

√
2i + 1

2

i∑
k=0

(
i
k

)(
−i − 1

k

) (
1 − z

2

)k

(3)

where the first two factors in parenthesis are binomial coeffi-
cients and the last factor is a real number.

From the orthogonality of Zernike and Legendre polyno-
mials, the product Z j(r, θ)Pi(z) also satisfies∫ 1

−1
dz

∫ 1

0
dr

∫ 2π

0
dθ

(
Z j(r, θ)Pi(z)

)(
Z j′ (r, θ)Pi′ (z)

)
= δi,i′δ j, j′

(4)

where δ is the Kronecker delta function. Note that the forms
of the polynomials defined in Eqs. [2] and [3] are normalized
so that their inner products are one. The constants ci j can then
be defined as

ci j =

∫ 1

−1
dz

∫ 1

0
dr

∫ 2π

0
dθ f (r, θ, z)Z j(r, θ)Pi(z). (5)

For the purpose of tallying a score E with weight w at
position (r, θ, z) using functional expansion tallies, the tally for
coefficient ci j can be incremented by a value

Z j(r, θ)Pi(z)Ew, (6)

taking care to also increase the total weight W by an amount
w.

Details of the implementation of FETs into Serpent can
be provided in the full paper.

2. Results

To quantitatively measure the accuracy of functional ex-
pansion tallies in resolving the spatial distribution of the fission
power, a benchmark PWR fuel assembly was developed. A
radially infinite, axially finite assembly of PWR fuel pins 366
cm in height was used to examine how an axially linear density
and temperature distribution in the coolant would affect the
fission power distrubtion in the fuel.

Parameter Value
Fuel UO2 (4.5% 235U)
Clad Zircalloy
Coolant H2O
Fuel Outer Radius 4.095 75 × 10−1 cm
Void Outer Radius 4.178 30 × 10−1 cm
Clad Outer Radius 4.749 80 × 10−1 cm
Assembly Pitch 1.259 84 cm
Active Fuel Height 366 cm
Fuel Nominal Density 10.424 g cm−3

Coolant Inlet Density 0.742 76 g cm−3

Coolant Outlet Density 0.664 52 g cm−3

Coolant Inlet Temperature 291.9 ◦C
Coolant Outlet Temperature 325.8 ◦C

TABLE III. Geometric and material parameters of fuel assem-
bly. Note that the coolant temperature and density is linearly
interpolated between the inlet and outlet values.

To compare results, the fuel pin was partitioned into 10
equally-spaced axial zones and 20 radial zones. The first five
innermost radial zones have the same volume and the last
fifteen outermost zones have the same (smaller) volume. This
was done since the change in neutron flux tends to change
significantly near the outer edge of the fuel pin. With 10
axial zones and 20 radial zones, the neutron neutron fission
power in 200 zones was measured using Serpent detector
cards. The functional expansion tally was carried out to 5th

order Legendre and 4th order Zernike polynomials.
The fission power density was plotted along one-

dimensional cross sections of the fuel pin. Figure [4] shows
the axial fission power density along the centerline of the
fuel pin. The fission power reaches a maximum closer to the
coolant inlet (z = −1.0) due to increased moderation from
denser water.



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

Fig. 4. Axial distribution of fission power density along cen-
terline (r = 0).

Closer to the edge of the fuel pin there is a significant
increase in fission power density due to the fuel’s proximity to
the moderator (this figure can be shown in the full paper).

Fig. 5. Radial distribution of fission power density at axial
point just below midpoint (r ≈ 0).

Fig. 6. Radial distribution of fission power density at axial
point just above midpoint (r ≈ 0).

Figures [5] and [6] show the radial fission power den-
sity along different axial cross sections of the fuel pin. They
demonstrate the discontinuity of the traditional spatial tallying
methods across the axial centerline of the fuel pin. The FET
remains continuous across this boundary, but the traditional
tallying results in significant overestimation of the radial fis-
sion power density (compared to the FET) immediately before
the discontinuity (Fig. [5]) and an underestimation immedi-
ately after (Fig. [6]). Since the FET appears to match with the

midpoints of the detectors, this indicates that smaller detector
sizes would agree with FET results.

IV. CONCLUSION

A parallelizable coupled Serpent–MOOSE code has been
created and Functional Expansion Tallies (FETs) have been
implemented within Serpent. The coupled Serpent–MOOSE
code simulated a slightly lower ke f f for the single fuel pin case
than the standalone Serpent. At this point it is unclear if this
is due to thermal feedback of the rising fuel temperatures or
to statistical variance. The FETs implemented within Serpent
provide a smooth, continuous function which has many ad-
vantages over the discontinuous tally system it replaces. The
FETs were accurate representations of fission power in PWR
fuel pin geometries. Both methods show promise of usefulness
in reactor analysis at INL.

Future planned work includes implementing FETs into a
coupled Serpent–BISON.

V. ACKNOWLEDGMENTS

Thank you to Javier Ortensi, Yaqi Wang, Frederick Gle-
icher, Matthew Ellis, Tuomas Viitanen, Cody Permann, An-
drew Slaughter, John Peterson, and Benoit Forget, all of whom
provided expert direction and discussion. This study was car-
ried out under the auspices of the U.S. Department of Energy
at Idaho National Laboratory under Contract No. DE- AC07-
05ID14517.

REFERENCES

1. J. LEPPÄNEN, M. PUSA, T. VIITANEN, V. VAL-
TAVIRTA, and T. KALTIAISENAHO, “The Serpent Monte
Carlo code: Status, development and applications in 2013,”
Ann. Nucl. Energy, 82, 142–150 (2015).

2. J. ORTENSI, M. D. DEHART, F. N. GLEICHER,
Y. WANG, S. SCHUNERT, A. L. ALBERTI, and T. S.
PALMER, “Full Core TREAT Kinetics Demonstration Us-
ing Rattlesnake/BISON Coupling Within MAMMOTH,”
INL Report, INL/EXT-15-36268 (2015).

3. D. GASTON, C. NEWMAN, G. HANSEN, and
D. LEBRUN-GRANDIE, “MOOSE: A parallel compu-
tational framework for coupled systems of nonlinear equa-
tions,” Nucl. Engrg. Design, 239, 1768–1778 (2009).

4. L. KERBY, M. DEHART, and A. TUMULAK, “Integra-
tion of OpenMC methods into MAMMOTH and Serpent,”
INL Report, INL/EXT-16-39874 (2016).

5. P. K. ROMANO, N. E. HORELIK, B. R. HERMAN, A. G.
NELSON, B. FORGET, and K. SMITH, “OpenMC: A
State-of-the-Art Monte Carlo Code for Research and De-
velopment,” Ann. Nucl. Energy, 82, 90–97 (2015).

6. M. ELLIS, B. FORGET, and K. SMITH, “Continuous
Temperature Representation in Coupled OpenMC/MOOSE
Simulations,” PHYSOR 2016, Unifying Theory and Exper-
iments in the 21st Century, Sun Valley, Idaho, May 1–5,
2016.


