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Abstract -
This paper presents the adoption of Monte Carlo Perturbation Theory to approximate the Jacobian matrix
of coupled neutronics-thermal/hydraulics problems. The projected Jacobian is obtained from the eigenvalue
decomposition of the fission matrix, and it is adopted to solve the coupled problem via the Newton method.
This avoids numerical differentiations commonly adopted in Jacobian-free Newton–Krylov (JFNK) methods,
that tend to become expensive and inaccurate in presence of Monte Carlo statistical errors in the residual. The
proposed approach is presented and demonstrated for a simple 2D PWR case study.

I. INTRODUCTION

Multiphysics modeling of fission reactors represents a
field of growing interest in the nuclear community (e.g., see
[1, 2]). Coupled neutronics–thermal/hydraulics reactor simu-
lations have been usually performed employing deterministic
codes. Recently, the adoption of continuous energy Monte
Carlo codes for the neutronics solution of multiphysics prob-
lems has been the subject of several research activities (e.g.,
see [3, 4, 5]).

The use of Monte Carlo in coupled simulations is mo-
tivated by the desire of obtaining more accurate results and
more flexible implementations. On the other hand, stochastic
neutron transport usually involves higher computational re-
quirements, compared to deterministic approaches, and poses
barriers to the adoption of common techniques for the solution
of non-linear problems.

This work presents a new approach to stabilize and accel-
erate the convergence of steady-state coupled Monte Carlo–
Thermal/hydraulics simulations adopting then Newton method
and Monte Carlo perturbation theory. The method is demon-
strated in a simplified PWR multiphysics simulation.

II. THE COUPLED NEUTRONICS–T/H NON-LINEAR
PROBLEM

For the purpose of the present work, it is useful to de-
scribe the coupled neutronics–Thermal/Hydraulics problem as
a system of two equations. The first equation represents the
generic neutron transport eigenvalue problem:

[L − S]φ =
1

keff

Fφ (1)

where keff is the fundamental eigenvalue, L , S and F are
the loss, scattering and fission production operators, and φ
represents the neutron flux, solution of the eigenvalue problem.

The second equation is here represented as a generic non-
linear equation in which the T/H solution T depends on the

fission source distribution ϕ :

T = Θ(ϕ) (2)

In the considered cases, T represents material temperature
and density distributions, and the main feedback of T on the
neutronics solution is driven by the Doppler effect and the
moderator expansion effect. The generic coupling terms can
be introduced in Eq. (1) by allowing the L , S and F operators
be dependent on the generic T/H solution T .

[L(T ) − S(T )]φ =
1

keff

F(T )φ (3)

We consider now, for simplicity, that the fission power
distribution ϕ is the only term of Eq. (3) required for the
solution of the coupled problem. Thus, the neutronics equation
can be simplified to:

ϕ = Φ(T ) (4)

Equation 4 depends on T only. Replacing T with Eq. (2),

ϕ = Φ
[
Θ(ϕ)

]
(5)

it is shown that the fission power distribution ϕ depends on
the material temperatures and densities (T ), which depend on
the power distribution itself.

Equation 5 can be written as:

ϕ = G(ϕ) (6)

so that the coupled neutronics–thermal/hydraulics problem
reduces to finding ϕ solution to G.

In practical applications of multiphysics reactor analysis,
the power distribution ϕ is scored or discretized into N vol-
umes, within the reactor core. In this case ϕ is a vector of N
components:

ϕ = (ϕ1, ϕ2...ϕN) (7)

and G(ϕ) is a function G : RN → RN :

G(ϕ) = (G1,G2...GN) (8)



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

III. MONTE CARLO/CFD COUPLING: FIXED POINT
ITERATION

In the present work, the solution to the non-linear equation
T = Θ(ϕ) is obtained via CFD, adopting the multiphysics C++

toolkit OpenFOAM. The fission power distribution ϕ = Φ(T )
is obtained via the Monte Carlo code Serpent.

One of the easiest and most common way to solve the
non-linear problem ϕ = G(ϕ) consists in the adoption of the
operator splitting approach along with the fixed point iteration
method. This approach consists in solving iteratively the
neutronics and the thermal/hysraulics code, adopting as input
to each simulation, the output of the previous run. This way,
at each coupled iteration n we solve:

T (n+1) = Θ(ϕ(n)) (9)
ϕ(n+1) = Φ(T (n+1)) (10)

or:
ϕ(n+1) = G

(
ϕ(n)

)
(11)

That is, at each iteration, the new value for the fission power
distribution ϕ(n+1) is the output obtained from the coupled
simulation, adopting as input the previous value ϕ(n). Defining
the residuals of each iteration n as:

r(n) = ϕ(n) −G
(
ϕ(n)

)
(12)

we can rewrite Eq. (11) as:(
ϕ(n+1) − ϕ(n)

)
= −r(n) (13)

The fixed point iteration method is very simple and does
not require major modifications to the codes used to solve the
neutronics and thermal/hydraulics problems. Unfortunately,
this approach is prone to numerical instabilities and low speed
of convergence.

To test this method of solution, the coupled Ser-
pent/OpenFOAM simulation of a PWR core from [6] is
presented. The CFD solution is obtained with a coarse-
mesh/porous-media approach, in which power densities and
coolant temperature are homogenized over a scale of several
centimeters. The case study is presented in Fig. 1.

Instabilities in the convergence of the fixed point itera-
tion commonly arise when dealing with coupled neutronics–
thermal/hydraulics problems in e.g., Light Water Reactors
(LWRs). In Fig. 2, the radial power distribution and coolant
density distribution in the PWR case study are presented for
coupled iterations #37 and #38. In this case, when an unbal-
ance arise in the power distribution e.g., due to the randomness
of the Monte Carlo sampling, the fuel temperature and coolant
density at the next T/H solution will follow the unbalance in
the power. Due to the strong negative Doppler and moderator
feedback, the following Monte Carlo solution will result in
an opposite power unbalance (see Fig. 2). These oscillations
will be damped or amplified according to the peculiarities of

Fig. 1. Geometry of the considered PWR case study.

Fig. 2. Radial power distribution (top) and coolant density
distribution (bottom) for coupled iterations #37 (left) and #38
(right).

the system (dimensions, power level, magnitude of the T/H
feedback on neutronics, etc.).

The condition for the stability of the fixed point iteration
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ϕ(n+1) = G(ϕ(n)) can be expressed as:

ρ (JG) < 1 (14)

where ρ (JG) is the spectral radius of the Jacobian matrix JG

of G:
ρ (JG) = max {|λ1|, |λ2|...|λN |} (15)

and {|λ1|, |λ2|...|λN |} are the eigenvalues of JG.
The JGi, j element of the Jacobian matrix JG is the deriva-

tive of the ith value Gi of the vector function G, with respect
to the jth value ϕ j of the vector input ϕ :

JG =


dG1
dϕ1

dG1
dϕ2

· · ·
dG1
dϕN

dG2
dϕ1

dG2
dϕ2

· · ·
dG2
dϕN

...
...

. . .
...

dGN
dϕ1

dGN
dϕ2

· · ·
dGN
dϕN

 (16)

Thus, if the power distribution ϕ is scored in N different vol-
umes, JG is an N × N matrix.

To overcome the problem of numerical instabilities in the
fixed point iteration, under-relaxation is commonly employed
to enforce the convergence of the coupled simulation. This is
obtained by multiplying the residuals r(n) by a scalar α with
0 < α < 1 before the update of one of the coupled variables:(

ϕ(n+1) − ϕ(n)
)

= −α · r(n) (17)

The optimal under-relaxation factor α can be obtained as [7]:

α =
2

2 + ρ (JG)
(18)

Unfortunately, the spectral radius ρ (JG) is not known when
dealing with a generic multiphysics problem with fixed point
iteration. Thus, α is usually selected by the user based on its
experience.

[8] proposed an optimal iterative procedure adopting de-
creasing under-relaxation factor and increasing neutron pop-
ulation for the Monte Carlo simulation. Unfortunately, any
approach based on under-relaxed fixed point iteration features
very slow convergence rate (i.e., requires a large number of
coupled iterations). Even in case of variable population size,
this might lead to large computational requirements, especially
if the thermal/hydraulic solution is obtained via expensive
CFD calculations.

IV. THE NEWTON METHOD

One of the classical way to stabilize and accelerate the
convergence of a non-linear problem is the adoption of the
Newton method. At each Newton iteration, the update of the
variable ϕ is obtained by solving the following linear system:

JG
(n)

(
ϕ(n+1) − ϕ(n)

)
= −r(n) (19)

where r(n) are the residuals obtained at the nth iteration as[
ϕ(n) −G

(
ϕ(n)

)]
, and JG

(n) is the Jacobian matrix of G evalu-

ated in ϕ(n).
The Newton method can lead to quadratic convergence in

most multiphysics problems of interest if the field of compu-
tational physics. Unfortunately, its adoption as described by
Eq. (19) is impractical in common applications, due to the dif-
ficulty of obtaining the full Jacobian JG in large multiphysics
problems.

For this reason, Newton methods adopting an approxi-
mated Jacobian gained popularity in the last decades. One of
the most popular approach consists in the family of Jacobian-
free Newton–Krylov (JFNK) methods [9]. These methods do
not require the formation of the full JG. At each Newton itera-
tion, the systems of Eq. (19) is solved approximately adopting
the Krylov subspace method for the Jacobian. Rather than
calculating the full JG, JFNK approaches only require the cal-
culation of a Jacobian-vector product, through the evaluation
of the non-linear function G. For example, an approximation

of the Jacobian-product JG
(
ϕ(n)

)
ei can be obtained as [9]:

JG
(
ϕ(n)

)
ei '

[
G

(
ϕ(n) + ε · ei

)
−G

(
ϕ(n)

)]
ε

(20)

where ε represents a small perturbation.
At each Newton iteration, Jacobian-vector products are

evaluated for each direction ei of the selected Krylov subspace.
JFNK methods have been successfully applied as Newton

iteration wrappers around fixed point iteration solvers in many
computational physics fields. Unfortunately, their adoption in
combination with Monte Carlo calculations of the residuals r(n)

poses some difficulties related to the stochastic behavior of the

approach used to evaluate G
(
ϕ(n)

)
[10]. When dealing with

Monte Carlo solvers for the neutronics problem, the evaluation

of G
(
ϕ(n)

)
in Eq. (20) is replaced by Ĝ

(
ϕ(n)

)
= G

(
ϕ(n)

)
+ ε.

The noise term ε practically prevents the adoption of small
perturbations for the evaluation of Jacobian-vector products.
[10] studied specific techniques to try to circumvent this prob-
lem. Nonetheless these techniques lead to severe limitations
on the number of Krylov directions, possibly jeopardizing the
benefit of the adoption of JFNK method.

In the present work, we propose an innovative approach
to the Newton method with Monte Carlo. The new method
benefits from recent developments in the field of Monte Carlo
perturbation theory, to obtain a cheap and accurate approxima-
tion of JG at each Newton iteration.

V. JACOBIAN APPROXIMATION VIA MONTE
CARLO PERTURBATION THEORY

Recalling that the function ϕ = G(ϕ) is equivalent to
ϕ = Φ

[
Θ(ϕ)

]
, the Jacobian matrix JG can be obtained via the



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

Fig. 3. First few higher forward eigenmodes for the 2D PWR case study depicted with height deformation.

chain rule as:

JG = JΦJΘ =


dΦ1
dθ1

dΦ1
dθ2

· · ·
dΦ1
dθN

dΦ2
dθ1

dΦ2
dθ2

· · ·
dΦ2
dθN

...
...

. . .
...

dΦN
dθ1

dΦN
dθ2

· · ·
dΦN
dθN




dΘ1
dϕ1

dΘ1
dϕ2

· · ·
dΘ1
dϕN

dΘ2
dϕ1

dΘ2
dϕ2

· · ·
dΘ2
dϕN

...
...

. . .
...

dΘN
dϕ1

dΘN
dϕ2

· · ·
dΘN
dϕN


(21)

The first term of Eq. (21) is the Jacobian of the function
Φ(T ), and represents the change in the power distribution due
to a change in the thermal/hydraulics fields. In the present
work, it will be approximated via Monte Carlo Perturbation
Theory, along a set of directions (S1,S2 · · · Sk). The second
term (JΘ) represents a change in the CFD thermal/hydraulics
solution, due to a change in the power distribution. JΘ-vector
products can be obtained via numerical differentiation onto a
set of directions (θ1, θ2 · · · θk).

The Iterated Fission Matrix (IFM) method [11] has been
adopted to accurately calculate eigentriplets of the discretized
lth iterated fission kernel (l)F:

(kn)l · Sn = (l)F · Sn and (kn)l · S†n = (l)FT
· S†n

The first few higher forward eigenmodes for the PWR
case study obtained via the IFM method are presented in
Fig. 3. While complex eigenvalues in the Fission Matrix
method might arise due to statistical errors, the present ap-
proach only adopts the first few eigentriplets, in which case,
the eigenvalues are always positive.

Provided that the forward and adjoint eigenmodes respect
the bi-orthogonality condition:

S†0
S†1
...

S†n


S0 S1 · · · Sn

 =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


(22)

the effect of perturbations on the fundamental fission source
distribution can be obtained as [12]:

dS0

dT
=

∞∑
i=0

Si ·

S†i
T d (l)F

dT
S0

(k0)l − (ki)l (23)

where
dS0

dT
represents the derivatives of the fundamental

fission source distributions S0 with respect to the ther-

mal/hydraulics distributions T .
d (l)F
dT

is the effect of the

perturbation in T on the fission kernel (l)F. Si , S†i and (ki)l

form the ith eigentriplet of the discretized lth iterated eigen-
problem. In the present approach, the effect of perturbations
on the iterated fission kernel can be estimated via Monte Carlo
Perturbation Theory [13].

Assuming for simplicity that relative changes in the fis-
sion source distribution are very similar to relative changes in
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the fission power distribution, (S1,S2 · · · Sk) form a reduced

basis for the calculation of derivatives
dΦ

dT
, to approximate the

Jacobian JΘ.
Due to the fact that the thermal/hydraulic solution is ob-

tained via deterministic solutions (i.e., the CFD solution is

not affected by stochastic noise ε), the derivatives
dΘ

dϕ
can be

efficiently calculated via numerical differentiation, as in the
JFNK approaches:

θi =
dΘ

dϕSi

=
Θ(ϕ + ε · Si) −Θ(ϕ)

ε
(24)

θi is a numerical estimate for the Jacobian-vector product JΘSi.
It represents the derivative of the function Θ(ϕ) with respect to
a change in the fission power distribution ϕ along the direction
Si.

This way, the Jacobian matrix JG can be approximated at
each Newton iteration by calculating J̃G, the projection of the
Jacobian-vector products onto the two reduced sets of basis
(S1,S2 · · · Sk) and (θ1, θ2 · · · θk).

VI. RESULTS FOR A SIMPLIFIED PWR CASE STUDY

To test the new approach, Newtwon iterations adopting
the Jacobian approximations described above were performed
on the PWR case study with an axial averaging of the ther-
mal/hydraulics solution. This reduces the dimensionality of T
to a 2D problem (the Monte Carlo calculations with Serpent
were performed in the 3D full core geometry). To further sim-
plify the coupled iterations, only the coolant density feedback
on neutronics was considered in the present study.

When adopting the fixed point iteration method, this case
rapidly diverges (see Fig. 2) due to the strong negative feed-
back and the very large dominance ratio.

Following the procedure described in the previous section,
the basis functions (θ1, θ2 · · · θk) for the projection of ther-
mal/hydraulics problem (only considering the coolant density
distribution, in this example) are produced adopting Eq. (24)
considering numerical differentiation from the first 50 eigen-
modes (S1,S2 · · · Sk, see Fig. 3).

The first few basis functions θ1 =
dΘ

dϕS1

, θ2 =
dΘ

dϕS2

,

θ3 =
dΘ

dϕS3

, and θ5 =
dΘ

dϕS5

, are presented in

Due to the procedure adopted to calculate the Jacobian
JΘ, the out-of-diagonal elements of this matrix are small, and
have been discarded in the present case study, for the sake of
simplicity. Moreover, the diagonal elements are equal to 1 by
construction.

The Jacobian matrix JΦ is obtained via perturbation the-
ory, as described above, and is projected on the selected eigen-
modes. In Fig. 5, the fission source distribution changes due
to perturbations in the coolant density distribution along the
directions θ1 , θ2 , θ3 , and θ5 of Fig. 4 are presented.

Fig. 4. Basis functions for the projection of the coolant density.
θ1 (top left), θ2 (top right), θ3 (bottom left), and θ5 (bottom
right). For better clarity, the 2D basis functions are presented
with height deformation.

Fig. 5. Selected projections of JΦ.
dΦ

dθ1
(top left),

dΦ

dθ2
(top

right),
dΦ

dθ3
(bottom left), and

dΦ

dθ5
(bottom right). For better

clarity, the 2D projections are presented with height deforma-
tion.

It is worth noting that the effects of the feedback on power
distribution act mainly in the opposite direction of the pertur-
bation, as expected.

Adopting the Newton method with the approximated Ja-
cobian obtained applying the chain rule to JΦ and JΘ ensures
the stabilization of the coupled iterations, and leads to the con-
vergence of the multi-physics simulation within approximately
3 iterations.1 The normalized fission power distribution and
coolant density distribution are presented in Fig. 6.

The availability of an approximated Jacobian allows the
analysis of the system stability by estimating the spectral ra-
dius of JG. In the selected case study, the value of ρ (JG)
resulted to be approximately 1.08, confirming the arising of

1A detailed discussion on the advantages of the adoption of approximate
Jacobians can be found in [9]
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Fig. 6. Radial power distribution (top) and coolant density dis-
tribution (bottom) for Newton iteration #3. For better clarity,
on the left, the 2D fission source distribution is presented with
height deformation.

instabilities along the directions of the first two degenerate
eigenmodes. It is expected that a more complete consideration
of the thermal/hydraulics feedback, including doppler effect,
and the adoption of full 3D cases will lead to larger spec-
tral radii and stronger instabilities when the operator splitting
approach is employed.

VII. CONCLUSIONS

The standard operator splitting approach in coupled
neutronics-thermal/hydraulics problems might result in un-
stable or slowly converging results. Jacobian-free Newton–
Krylov (JFNK) methods proved very useful in many fields
of computational engineering. Nonetheless, the adoption of
Monte Carlo transport for the neutronic solution of the prob-
lem challenges the adoption of JFNK methods due to the
difficulties arising from numerical differentiations in presence
of statistical errors. This paper presents the adoption of Monte
Carlo Perturbation Theory to approximate the Jacobian matrix
of the coupled neutronics-thermal/hydraulics problem. The
Jacobian matrix is projected along few directions obtained
from the eigenvalue decomposition of the fission matrix of the
problem, and it is adopted to solve the coupled problem via
the Newton method.

The proposed approach has been successfully tested in
a 2D PWR problem, only considering the coolant density
feedback on neutronics, and showing an effective stabilization
and convergence acceleration of the coupled problem.
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