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Abstract - We present a comparison on the performance exhibited by acceleration techniques of Source
Iteration (SI), namely the Diffusion Synthetic Acceleration (DSA), the Epsilon-k algorithm, the Coarse-Mesh
Finite Difference (CMFD). We also propose a new acceleration based on the use of the Analytical Discrete
Ordinates (ADO) method to provide a better initial guess of the scalar and angular fluxes to SI.
The results show that DSA or CMFD are the schemes of choice to accelerate numerical solutions of the typical
transport problems we have chosen to present in this work.

I. INTRODUCTION

Solving analytically the neutron transport equation is of-
ten a hard task, hence a number of iterative schemes were
developed in order to solve the problem approximately. Un-
fortunately, these methods may not converge fast enough for
problems of practical interest. One of the most classical and
fundamental iterative schemes proposed for solving transport
problems is the Source Iteration (SI) method; however, as
reported by Adams and Larsen [1], when the scattering ratio
is close to one and particularly for the case of thick media, the
convergence of the SI method may be very slow. Among the
acceleration schemes available to increase the rate of conver-
gence of SI, one of the most used is the Diffusion Synthetic
Acceleration (DSA) scheme [2, 3, 4, 5]. In recent years, a
classic nonlinear acceleration scheme of numerical iterative
methods, Wynn’s Epsilon algorithm [6, 7, 8] has been used for
the same purpose [9, 10]. Another acceleration scheme is the
Coarse-Mesh Finite Difference (CMFD) which is a two-level
angular-spatial multigrid, employing a fine and a coarse mesh,
where a transport sweep is carried on the fine mesh and the
diffusion part of the transport equation is applied on the coarse
mesh [11, 12, 13, 14, 15].

We consider here the one-speed, slab-geometry SN trans-
port problems with linearly anisotropic scattering given by
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where 0 < x < X is the spatial variable, (µn, ωn), 1 ≤ n ≤ N
is an even-order Gauss Legendre quadrature set and ψn(x) =
ψ (x, µn) is the angular flux of particles in the direction µn;
σt is the total macroscopic cross section; σs0 and σs1 are the
coefficients of the expansion of the phase function in Legendre
polynomials; and Q is the interior source. Boundary condi-
tions for Equation (1) are set accordingly, including vacuum
and/or reflexive conditions at one or both ends of the domain.

The spatial variable in Equation (1) is discretized on a
computational grid consisting of j = 1, . . . ,M cells of width h,

with x j−1/2 < x j < x j+1/2, ψn, j = ψn(x j) indicating the angular
flux evaluated in the middle of the cell. Then we integrate
Equation (1) between x j−1/2 and x j+1/2 to yield
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where ψn, j = (1/h j)ψn(x j) and ψn, j±1/2 = ψn

(
x j±1/2

)
. Upon

writing Equation (2) in each j cell and using the specified
boundary conditions we arrive at a system of N equations
with 2N ψn, j variables, which are defined here with the usual
diamond difference approximation,

ψn, j =
1
2

(
ψn, j+1/2 + ψn, j−1/2

)
. (3)

Equation (2) may be solved using the Source Iteration
(SI) method [1]. An initial approximation to the angular flux,
ψ(0)

n, j is given by its specification at the boundaries; there is also
the need to provide an initial guess φ(0)

j to the scalar flux and
to the current, J(0)

j in the right-hand-side of Equation (2), these
two usually given as zero. In an iteration l, this provides a
half-step approximation ψ(l+1/2)

n, j and these values are used to
obtain the new values of φ(l+1)

j . Therefore, Equation (2) may
be rewritten as
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, l = 0, 1, . . . , lmax (4)

and the Diamond Difference (DD) auxiliary equation [16]
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with 1 ≤ j ≤ M. If DSA or CMFD is used to accelerate
the convergence of SI, then φ(l+1)

j is obtained by adding a
correction term to φ(l+1/2)

j ; otherwise, we set φ(l+1)
j = φ(l+1/2)

j .
This iterative step or transport sweep is repeated until the
maximum relative error of the angular flux taken across the
cells satisfies the relationship
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II. ACCELERATION TECHNIQUES

As noted in [1, p. 24ff], SI may have a rather slow con-
vergence if the scattering ratio c = σs0/σt ≈ 1. It is that result
that encourages one to use acceleration techniques to speed-up
SI. We have elected to compare the use of Wynn’s Epsilon-k
algorithm, DSA, CMFD and a new technique that we have
developed that we call ADO+SI.

1. Epsilon-k algorithm

We apply the Epsilon-k algorithm [6, 7, 8, 9] over the se-
quence of approximations to the scalar flux φ(l)

j . The Epsilon-k
algorithm (for even values of k) is a general, nonlinear ex-
trapolation that may be applied to a sequence of values to
obtain a faster convergence to the limit of that sequence. As
mentioned in [17], its convergence and acceleration properties
are difficult to ascertain due to its nonlinearity, though for
totally monotonic or totally oscillating sequences there are
two theorems that guarantee its convergence.

Based on Wynn’s notation, after k transport sweeps, we
have a vector-valued sequence (each vector with J elements)
of (k + 1) values ε(0)

0 = φ(0), ε(1)
0 = φ(1), . . ., ε(k)

0 = φ(k) (note
that we have dropped the j subscript on φ as we refer here to
all φ grid elements). We wish to obtain ε(0)

k that will be the
accelerated value of φ(l)

j ; using the Epsilon-k equations, we
arrive at

δ = ε(s−1)
i+1 − ε

(s−1)
i (9)

ε(s)
i =

{
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i+1 + δ−1, |δ| > 0
0, otherwise

(10)

where 0 ≤ i ≤ k − s, 1 ≤ s ≤ k and we overwrite φ(l)
j with ε(0)

k
after computing Equations (9)-(10). The Epsilon-k algorithm
is applied to each φ(l)

j , each cell in turn. To aid in this, we
store the εk values on a Fortran 95 array EPSILON of k + 1
rows and k + 2 columns (i.e. the array has k2 + 3k + 2 ele-
ments in memory) with indices running from 0 to k and −1 to
k respectively. Using a Fortran 95 notation, we initialize EP-
SILON(0 : k,−1) with 0 (once, outside the main SI iteration)
and EPSILON(0 : k, 0) with a specific φ(l)

j . Then, we traverse
this array with indices i for the rows and s for the columns (as
defined above) in order to produce the required εk applying
Equations (9)-(10). The desired ε(0)

k will be found in element

(0, k) of the array EPSILON. We note that this traversal is a
triangular traversal of the array from column 0 towards column
k, from rows k to 0; therefore there are (k2 + k)/2 unused array
elements. For the sake of speed of computation we do not use
a compressed storage of the array (which would eliminate the
unused elements and reduce the amount of memory required
to store the array in memory); this penalty is acceptable for
the maximum value of k we have used, 16, which leads to 306
elements in memory or, equivalently, 2.390625 kilobytes of
memory using double precision (64 bits).

2. Diffusion Synthetic Acceleration

Another approach to reduce the number of iterations of
SI is to use DSA [18, 19], [1, p. 52ff]. After each transport
sweep using Equation (4) we obtain an approximation ψ(l+1/2)

n, j .
With these values at hand we write a related SN problem in
terms of the discrete correction

fn, j(±1/2) = ψn, j(±1/2) − ψ
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Equation (4) may be rewritten as
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Applying a P1 approximation to Equations (12)-(13), we
arrive at a tridiagonal system of M + 1 linear equations on
F(l+1)

j derived from the governing equation
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where 0 ≤ j ≤ M, σa j = σt j − σs0 j , σtr j = σt j − σs1 j and

F(l+1)
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N∑
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This system is solved using LAPACK’s DGTSVX routine [20,
p. 263ff] and then we update φ(l)

j via

φ(l+1)
j = φ(l+1/2)

j +
1
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Once φ(l+1)
j have been computed on each cell, another iteration

consisting of computing equations (4)-(7) and (14)-(16) is
performed, until Equation (8) is satisfied.
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3. Coarse-Mesh Finite Difference

As mentioned in [15], CMFD is similar to DSA in the
sense that each high-order transport sweep is followed by the
solution of a low-order diffusion problem. However CMFD
is more akin to a traditional multigrid method used to solve
an elliptic partial differential equation since that there are two
easily distinguishable spatial grids, a fine one with M cells
(as defined previously) and another, coarse grid with K cells,
K ≤ M. We will consider here for simplicity that p = M/K,
the number of fine cells in a coarse cell, is constant but this may
be generalized as given in [15]. Another two characteristics of
CMFD are that its low-order solution (on the coarse grid) is a
volume-averaged scalar flux and it is nonlinear. As analyzed
in [13, 14, 15], CMFD may diverge if the coarse cells have
widths more than 1 mean free path. Our implementation of
CMFD follows that presented in [15] to which we refer the
reader.

4. Hybrid analytical-iterative acceleration: ADO+SI

It is reasonable to expect that the SI iteration will converge
faster if one has available a better approximation to the scalar
flux than simply using, say, zero as an initial guess for it in the
right-and-side of Equation (4). Recently, [21, pp. 180-181]
has used such an approach to obtain via a synthetic diffusion
equation such a better approximation for the initial scalar flux,
and proceeding with the transport sweep thereafter.

We propose here the use of a new acceleration scheme
that employs the Analytical Discrete Ordinates (ADO) method
[22] and which has recently been extended to 2D domains [23].
This acceleration scheme consists of using ADO to obtain a
initial (better) first estimate to the scalar and angular fluxes
(and the current for linear anisotropic scattering problems)
and then using these values into the SI iteration. Among the
main advantages we seek using ADO is that we may use a
smaller number of directions than that used in the SI iteration
while still obtaining a good approximation to the scalar flux.
Note that due to the ADO formulation [22] the use of NADO
directions actually provide a solution as if using double the
number of directions; we refer the reader to [24] for further
details.

III. NUMERICAL EXPERIMENTS

We carried out a number of numerical experiments to com-
pare the Epsilon-k, DSA, CMFD and ADO+SI accelerations
to the SI method with diamond difference approximation, in
terms of the number of iterations taken to achieve convergence
(k∗); the wallclock execution time taken; and the maximum
relative error (MRE) between the scalar flux obtained by SI
and that by an acceleration scheme.

Our implementations were written in Fortran 95 using
double-precision floating point arithmetic and were compiled
under the GNU gfortran 5.4.0 with full optimization. The
computer used has an Intel i5-6400T 2.20 GHz quad-core
processor with 6 MB cache memory and 6 GB DDR3L-1600
SDRAM main memory. The execution times presented are
the average of five different runs, timed with calls to a 1-

millisecond resolution clock software function. To compare
the performance exhibited by the accelerations, we define the
speed-up as the ratio between the time taken for convergence
of the acceleration technique and the time taken by SI. In our
experiments we use the standard DD transport sweep in the
SI iteration and the solution of linear systems of equations
present in DSA, CMFD and ADO+SI is obtained using an
optimized LAPACK compiled library.

The first experiment uses a homogeneous slab with X =
100 cm divided into M = 2000 cells, with σt = 1.0 cm−1,
σs0 = 0.995 cm−1, Q = 0 and isotropic unit incident flux
at the boundaries, as given in [21, p. 181]. We have used
ε = 10−6 in Equation (8) as the tolerance for convergence. As
can be seen in Table I-a, the DSA acceleration provides the
fastest solution, and the MRE values are all coherent with the
tolerance used. It is possible to verify from the results that
the time taken for convergence of SI, DSA and Epsilon-k are
linearly dependent on N. Also note that the time per iteration
of SI is smaller than that of DSA (approximately 0.69 times
that of DSA for N = 128) since each SI iteration performs
less floating-point iterations than each DSA iteration; however
since the use of DSA provides the solution to the problem
in a constant number of iterations for all values of N tested,
the speed-up over SI increases for larger N. We note that
the number of iterations required by SI and DSA to achieve
convergence using the specified tolerance are in agreement
with the theoretical upper bounds given in [1, p. 30].

If we look at the columns for CMFD for p = 10 and 20
in Table I-a we notice that it provides a solution with similar
MREs to that presented by DSA and in this sense the solution
has the same quality as that. Its execution time is, however,
larger than DSA for all N > 4 but it is faster than the other
two accelerations.

The Epsilon-k acceleration provided a faster solution than
SI for almost all values of N (except for N = 4) but it was at
least two orders of magnitude slower than DSA. It also pro-
vided MREs of a similar order of magnitude to those presented
by DSA and CMFD.

As can be seen from the data on Table I-a, the ADO+SI
acceleration (with NADO = 4) is at least twice as fast as
the SI iteration while providing similar MRE values to the
other accelerations presented. The ADO method for NADO =
4 needs 1.010(−03) seconds to compute and for the largest
number of directions used (N = 128) this corresponds to less
than 0.0001% of the execution time of ADO+SI.

In Figure 1 we show the effect of increasing the value of
NADO on ADO+SI using the first experiment. Note that using
NADO = 4 and NADO = 8 reduce the number of iterations
compared to using NADO = 2. On the other hand, using either
NADO = 4 or NADO = 8 produces almost the same number
of iterations on the subsequent SI iteration and, since doubling
NADO requires twice the amount of work on ADO, it is better
to use the smallest value of NADO. The same behavior was
found on the second and third experiments described below.

We note that our ADO+SI result for N = 16 compares
favorably (k∗ = 823) to that given in [21, p. 181, Table 1]
(k∗ = 1097), using their acceleration with DSA to provide the
first initial guess; our ADO+SI provides a reduction of approx-
imately 25% in the number of iterations. In terms of execution
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a) Results for the first experiment.

SI DSA Epsilon-8 Epsilon-16
N k∗ Time [s] k∗ Time [s] MRE k∗ Time [s] MRE k∗ Time [s] MRE

4 2158 2.00(−01) 9 5.20(−03) 1.87(−04) 381 4.40(−01) 1.95(−04) 38 9.06(−02) 2.60(−04)
8 2158 1.75(+00) 9 5.60(−03) 1.87(−04) 497 8.14(−01) 1.70(−04) 28 9.36(−02) 2.50(−04)

16 2158 3.46(+00) 9 6.60(−03) 1.87(−04) 180 5.06(−01) 1.72(−04) 92 5.30(−01) 1.84(−04)
32 2158 6.86(+00) 9 8.80(−03) 1.88(−04) 448 2.52(+00) 1.40(−04) 72 8.25(−01) 1.69(−04)
64 2158 13.39(+00) 9 1.40(−02) 1.88(−04) 219 2.39(+00) 2.14(−04) 222 4.67(+00) 2.04(−04)

128 2158 26.86(+00) 9 2.06(−02) 1.87(−04) 489 10.24(+00) 2.25(−04) 78 3.05(+00) 1.74(−04)

SI ADO+SI (NADO = 4) CMFD (p = 10) CMFD (p = 20)
N k∗ Time [s] k∗ Time [s] MRE k∗ Time [s] MRE k∗ Time [s] MRE

4 2158 2.00(−01) 980 1.12(−01) 6.79(−05) 14 2.60(−03) 1.87(−04) 24 3.40(−03) 1.88(−04)
8 2158 1.75(+00) 853 1.50(−01) 2.10(−04) 14 1.22(−02) 1.87(−04) 22 1.94(−02) 1.87(−04)

16 2158 3.46(+00) 823 2.34(−01) 2.71(−04) 15 2.56(−02) 1.87(−04) 22 3.62(−02) 1.87(−04)
32 2158 6.86(+00) 815 4.25(−01) 2.88(−04) 15 5.10(−02) 1.87(−04) 21 6.90(−02) 1.87(−04)
64 2158 13.39(+00) 813 7.94(−01) 2.93(−04) 15 9.30(−02) 1.87(−04) 21 1.30(−01) 1.87(−04)

128 2158 26.86(+00) 813 1.56(+00) 2.94(−04) 15 1.84(−01) 1.87(−04) 21 2.60(−01) 1.87(−04)

b) Results for the second experiment.

SI DSA Epsilon-8 Epsilon-16
N k∗ Time [s] k∗ Time [s] MRE k∗ Time [s] MRE k∗ Time [s] MRE

64 42 6.00(−02) 13 2.50(−02) 1.57(−06) 4 3.78(−02) 1.67(−06) 2 4.18(−02) 9.92(−07)

SI ADO+SI (NADO = 4) CMFD (p = 10) CMFD (p = 20)
N k∗ Time [s] k∗ Time [s] MRE k∗ Time [s] MRE k∗ Time [s] MRE

64 42 6.00(−02) 35 5.54(−02) 1.91(−07) 13 1.74(−02) 1.53(−06) 13 1.70(−02) 1.51(−06)

c) Results for the third experiment.

SI DSA Epsilon-8 Epsilon-16
N k∗ Time [s] k∗ Time [s] MRE k∗ Time [s] MRE k∗ Time [s] MRE

128 489 2.11(+00) 22 8.50(−02) 2.94(−05) 24 4.54(−01) 3.35(−05) 9 3.51(−01) 1.94(−05)

SI ADO+SI (NADO = 4) CMFD (p = 10) CMFD (p = 20)
N k∗ Time [s] k∗ Time [s] MRE k∗ Time [s] MRE k∗ Time [s] MRE

128 489 2.11(+00) 439 1.19(+00) 3.91(−07) 43 1.00(−01) 2.96(−05) 31 7.00(−02) 3.00(−05)

TABLE I. Results for the three experiments.
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time, our implementation of their acceleration scheme needs
1.9083 seconds whereas the ADO+SI implementation obtains
the solution in 0.2340 seconds (cf. Table I-a).

We present in Figure 2 the speed-ups between SI and the
acceleration schemes (the second figure is a zoom of the first
to better show the speed-up curves for the Epsilon-k algorithm
and ADO+SI). They clearly show how much faster is DSA
over SI; moreover, it can be seen that as N grows, DSA pro-
vides the solution in even less time. This is a consequence
of the fact that the diffusion solve becomes insignificant in
expense when compared to SI. On the other hand, Epsilon-8
and Epsilon-16 show an oscillating behavior. Also note that
ADO+SI is consistently better than SI, by a factor of approxi-
mately 2 (see Table I-a).

The second experiment considers a linearly anisotropic,
heterogeneous test problem given in [21, p. 182], with a slab of
length X = 30 cm divided into five regions of different lengths,
number of cells and total and scattering macroscopic cross
sections and sources, as in Table II. The number of discrete

Region Length M σt σs0 σs1 Q(x)

1 8 800 0.5 0.2 0.1 0
2 5 200 1.2 0.8 0.2 0
3 10 1000 0.9 0.6 0.0 1
4 5 500 0.5 0.2 0.1 0
5 2 200 1.2 0.8 0.2 0

TABLE II. Description of the regions used in the second ex-
periment.

directions used was N = 64 and vacuum boundary conditions
were imposed on the boundaries at x = 0 cm and x = 30 cm.
We have also used ε = 10−6 in Equation (8) as the tolerance
for convergence. Table I-b shows the results obtained. In this

Fig. 1. Effect of increasing the value of NADO on ADO+SI.

problem, the MRE values are much better, being at least of
the same order as ε. The ADO+SI performs better than SI but
in here we have a much better performance by the Epsilon-k
acceleration which we attribute to the fact that the ratios of σs0
and σs1 to σt are not close to 1. In this experiment, we have
CMFD being the fastest acceleration and providing MREs of
similar order than DSA.

The third experiment considers a linearly anisotropic, het-
erogeneous test problem given in [25] with a slab of length
X = 100 cm divided into five regions of different lengths, num-
ber of cells and total and scattering cross sections and sources,
as given in Table III. The number of discrete directions used

Fig. 2. Speed-ups between SI and the acceleration schemes.
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Region Length M σt σs0 σs1 Q(x)

1 30 1500 1.0 0.97 0.32 0
2 5 250 0.9 0.8 0.267 2
3 22 1100 0.95 0.9 0.3 0
4 3 150 0.8 0.7 0.233 4
5 40 2000 1.0 0.97 0.32 0

TABLE III. Description of the regions used in the third experi-
ment.

was N = 64 and vacuum boundary conditions were imposed
on the boundaries at x = 0 cm and x = 100 cm. Again we have
used ε = 10−6 as the tolerance for convergence. As can be
seen in Table I-c, CMFD is again the fastest of the acceleration
schemes, being over 30 times faster than SI. In this experiment,
we have a similar behavior presented by the Epsilon-k and the
ADO+SI accelerations. The MRE values are again acceptable
within the tolerance used.

IV. CONCLUDING REMARKS

We have presented results obtained with the Diffusion
Synthetic Acceleration, Wynn’s Epsilon-k algorithm, Coarse-
Mesh Finite Difference and a new hybrid analytical-numerical
scheme (ADO+SI) to accelerate the rate of convergence of
Source Iteration on three different problems. The results con-
firm the superior performance of DSA and CMFD over the
Epsilon-k algorithm and ADO+SI as acceleration techniques
in terms of execution time. We note that in some cases an
acceleration technique provides a smaller MRE value, being
either faster or slower than others.

We intend to continue this study analysing other accelera-
tion techniques applied to SI in order to make other compar-
isons with regards to different problems, including the effects
of the values of σt, σs0 and σs1 on the overall convergence
of the methods, as well as with respect to the increase in the
number of cells used in the discretization and the number of
discrete directions used. We also intend to expand this study
by considering two-dimensional spatial geometries and how
these techniques would then perform. These comparisons will
aid in the study of new acceleration techniques applied to SI
which are currently under investigation.
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