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Abstract - In order to investigate distribution of fuel debris remaining in the reactor containment vessel of 

Fukushima Daiichi NPS, we focused on the estimations based on the measured value of neutron counts. 

Maximum Likelihood-Expectation Maximization (ML-EM) method and Moore-Penrose Matrix Inverse 

(MPMI) method were examined. The ML-EM method is used for image reconstruction of Computed 

Tomography, and the MPMI method is one of the solution of the simultaneous linear equations. Concrete 

shielding were set between detectors and neutron sources in the calculation system, since where detector 

position in actual applications would be outside of the shielding such as the pedestal. Since sufficient number 

of count measurement positions would not be secured owing to the complexity of structures inside 

containment vessel, the number of measurement points were set to be smaller than that of neutron sources. 

Since the detection probability is used as the coupling coefficient between the radiation count and the 

radioactivity, the adjoint transport calculation is performed to obtain the detection probability. The detection 

probability calculated by adjoint neutron flux reproduced the physical trend expected from detector and 

neutron source positions. Result of estimation using this detection probability indicates that two methods 

gave reasonable neutron emission rate distribution that is close to the true value. 

 

I. INTRODUCTION 

 

In Fukushima Daiichi Nuclear Power Plant (1F), 

decommissioning of the nuclear reactors experienced severe 

accident is being carried out. The retrieval of fuel debris 

remaining in the reactor pressure vessel and/or the 

containment vessel (RPV/CV) is expected one of the most 

difficult works since we have few experience in the past. 

Information on the distribution of fuel debris in RPV/CV is 

essential to establish a roadmap plan to remove it, to prevent 

unexpected re-critical accident during removal works and to 

determine shielding of radiation from fuel debris during and 

after removal. Especially the risk of re-criticality of fuel by 

taking actions to the system is studied in Ref.[1] etc., and it 

is one of the issues in the removal of fuel debris. 

Removal strategy of fuel debris of 1F Unit 1 is going to 

be established in the first half of 2018 and the detail 

information inside RPV/CV is highly desirable. 

Investigation using muon suggests that most of fuel debris 

would not resident in RPV in Unit 1. Contrary, in Unit 2, 

most of fuel debris would still exist at the RPV bottom head. 

However, more detail estimation on location of fuel debris 

is desirable. Location identification of fuel debris is being 

tried, e.g. Ref.[2], but improvement of reliability on 

prediction results is necessary using various methods. 

In this study, we try to estimate distribution of 

radioactive sources using multiple measurement results of 

radiation and inverse analysis methods, i.e. the Maximum 

Likelihood–Expectation Maximization (ML-EM) method 

and the Moore-Penrose Matrix Inverse (MPMI) method. In 

these inverse analysis methods, detection probability of 

radiation emitted from a radioactive source is necessary. 

Though various approaches can be used to evaluate the 

detection probability, a numerical transport calculation using 

the discrete ordinate method is adopted. A simplified 

calculation model simulating pedestal and shielding around 

RPV is constructed and used for analysis. Through 

verification calculations, effectiveness and validity of the 

present method is confirmed. 

 

II. THEORY 

 

Structures inside RPV/CV are complicated as well as 

distribution of fuel debris. On the other hand, measurement 

points of radiation inside RPV/CV are very limited. 

Therefore, the inverse problem of this study should treat an 

underdetermined system, where the number of unknowns 

(radioactivity) is larger than that of constraint conditions 

(radiation measurement results by detectors). There are 

some techniques to estimate a plausible solution for such an 

inverse problem. In this study, we use the following two 

methods: One is Maximum Likelihood-Expectation 

Maximization (ML-EM) method; another is Moore-Penrose 

Matrix Inverse (MPMI) method. Let us assume that 

radioactive sources are point-sources emitting neutrons and 

estimate the neutron emission rate at each source-position. 

In this case, the three-dimensional distribution of 

radioactive intensity of point sources can be estimated using 

these two methods. 

 

1. Maximum Likelihood-Expectation Maximization 

(ML-EM) method 

 

The ML-EM method is one of the techniques based on 

the Bayesian estimation. In the image reconstruction of 

Computed Tomography (CT), the ML-EM method is 

effectively utilized [3,4]. The inverse problem of this study 

is similar to that of CT, thus we try applying the ML-EM 

mailto:s-sugaya@fermi.nucl.nagoya-u.ac.jp
mailto:t-endo@nucl.nagoya-u.ac.jp


M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering, 

Jeju, Korea, April 16-20, 2017, on USB (2017) 

method to estimate radioactivity distribution. The 

radioactivity can be estimated by considering a prior 

radioactivity distribution 𝐴𝑗 and measured values of 

radiation count 𝑦𝑖 . Using the iterative calculation of Eq. (1), 

the converged solution of radioactivity can be finally 

obtained: 

 

𝐴𝑗
𝑘+1 =

𝐴𝑗
𝑘

∑ 𝐶𝑖𝑗
𝐼
𝑖=1

∑
𝑦𝑖𝐶𝑖𝑗

∑ 𝐶𝑖𝑗𝐴𝑗
𝑘𝐽

𝑗=1

𝐼

𝑖=𝑖

. (1) 

 

Detailed derivation of Eq. (1) is described as follows. 

𝑥𝑖𝑗  indicates the number of radiations emitted from the 

radiation source 𝑗 and detected by the detector 𝑖. 𝑥𝑖𝑗  obeys 

the Poisson distribution and can be regarded as independent. 

Therefore, the occurrence probability of the event, which 

the radiation count becomes 

(𝑥11, 𝑥12, … , 𝑥1𝐽 , 𝑥21, 𝑥22, … , 𝑥2𝐽, … , 𝑥𝐼𝐽), is expressed by 

Eq. (2): 

 

𝑃(𝒙𝐼,𝐽) = ∏ ∏ 𝑒−𝑥𝑖𝑗̅̅ ̅̅
𝑥𝑖𝑗̅̅̅̅ 𝑥𝑖𝑗

𝑥𝑖𝑗!

𝐽

𝑗=1

𝐼

𝑖=1

= ∏ ∏ 𝑒−𝐶𝑖𝑗𝐴𝑗
(𝐶𝑖𝑗𝐴𝑗)𝑥𝑖𝑗

𝑥𝑖𝑗!

𝐽

𝑗=1

𝐼

𝑖=1

. 

(2) 

It should be noted that the relation 𝑥𝑖𝑗̅̅̅̅ = 𝐶𝑖𝑗𝐴𝑗 is used. 

We try to find the values of 𝐴𝑗 that give the maximum 

value of the probability expressed by Eq. (2). At first, we 

take the logarithm of Eq. (2) as shown in Eq. (3). Then Eq. 

(3) is diffentiated by 𝐴𝑗. Since the logarithmic function 

increases monotonically and 𝐴𝑗 is positive, the values of 𝐴𝑗 

obtained by partial diffentiation of Eq. (3) also gives the 

maximum value for Eq. (2). 

 

ln (𝑃(𝒙𝐼,𝐽)) 

= ∑ ∑(−𝐶𝑖𝑗𝐴𝑗 + 𝑥𝑖𝑗(ln 𝐶𝑖𝑗 + ln 𝐴𝑗) − ln(𝑥𝑖𝑗!))

𝐽

𝑗=1

𝐼

𝑖=1

 

= ∑ ∑(−𝐶𝑖𝑗𝐴𝑗 + 𝑥𝑖𝑗 ln 𝐴𝑗)

𝐽

𝑗=1

𝐼

𝑖=1

+ 𝑐 = 𝐿. 

(3) 

 

The term which does not depend on 𝐴𝑗 is replaced by 𝑐. In 

addition, 𝐿 is used for simplification. Since 𝑥𝑖𝑗  is not known 

in actual measurement, 𝐸[𝑥𝑖𝑗|𝑦𝑖], which is the expected 

value of 𝑥𝑖𝑗  when 𝑦𝑖  is given, is used. Then Eq. (3) also 

changes to the expression of expected value as shown in Eq. 

(4): 

 

𝐸[𝐿|�⃗�] = ∑ ∑ (−𝐶𝑖𝑗𝐴𝑗 + 𝐸[𝑥𝑖𝑗|𝑦𝑖] ln 𝐴𝑗)𝐽
𝑗=1

𝐼
𝑖=1 + 𝑐. (4) 

 

To obtain the expression of 𝐸[𝑥𝑖𝑗|𝑦𝑖], we consider 

𝑃(𝑥𝑖𝑗|𝑦𝑖), which is the conditional probability of 𝑥𝑖𝑗  when 

𝑦𝑖  is given. 𝑃(𝑥𝑖𝑗|𝑦𝑖) is expressed by Eq. (5) from the 

Bayesian formula: 

 

𝑃(𝑥𝑖𝑗|𝑦𝑖) =
𝑃(𝑥𝑖𝑗)𝑃(𝑦𝑖|𝑥𝑖𝑗)

𝑃(𝑦𝑖)
. (5) 

 

𝑃(𝑦𝑖|𝑥𝑖𝑗) is the probability that the radiation count is 𝑦𝑖  

under the condition off given 𝑥𝑖𝑗 . Therefore 𝑃(𝑦𝑖|𝑥𝑖𝑗) is 

expressed by Eq. (6): 

 

𝑃(𝑦𝑖|𝑥𝑖𝑗) = 𝑃(𝑦𝑖 − 𝑥𝑖𝑗) 

= 𝑒−(∑ 𝐶𝑖𝑚𝐴𝑚
𝐽
𝑚=1 −𝐶𝑖𝑗𝐴𝑗) (∑ 𝐶𝑖𝑚𝐴𝑚

𝐽
𝑚=1 −𝐶𝑖𝑗𝐴𝑗)

𝑦𝑖−𝑥𝑖𝑗

(𝑦𝑖−𝑥𝑖𝑗)!
. 

(6) 

Note that the relations of 𝑦𝑖 = ∑ 𝐶𝑖𝑚𝐴𝑚
𝐽
𝑚=1  and 𝑥𝑖𝑗 =

𝐶𝑖𝑗𝐴𝑗 are used. Then, 𝑃(𝑥𝑖𝑗|𝑦𝑖) in Eq. (5) can be written as: 

 
𝑃(𝑥𝑖𝑗|𝑦𝑖)

=

𝑒−𝐶𝑖𝑗𝐴𝑗
(𝐶𝑖𝑗𝐴𝑗)

𝑥𝑖𝑗

𝑥𝑖𝑗!
𝑒−(∑ 𝐶𝑖𝑚𝐴𝑚

𝐽
𝑚=1 −𝐶𝑖𝑗𝐴𝑗) (∑ 𝐶𝑖𝑚𝐴𝑚

𝐽
𝑚=1 − 𝐶𝑖𝑗𝐴𝑗)

𝑦𝑖−𝑥𝑖𝑗

(𝑦𝑖 − 𝑥𝑖𝑗)!

𝑒
− ∑ 𝐶𝑖𝑗𝐴𝑗

𝐽
𝑗=1

(∑ 𝐶𝑖𝑗𝐴𝑗
𝐽
𝑗=1 )

𝑦𝑖

𝑦𝑖!

 

= C𝑥𝑖𝑗𝑦𝑖

𝑒−𝐶𝑖𝑗𝐴𝑗𝑒−(∑ 𝐶𝑖𝑚𝐴𝑚
𝐽
𝑚=1 −𝐶𝑖𝑗𝐴𝑗)

𝑒
− ∑ 𝐶𝑖𝑗𝐴𝑗

𝐽
𝑗=1

(𝐶𝑖𝑗𝐴𝑗)
𝑥𝑖𝑗

(∑ 𝐶𝑖𝑚𝐴𝑚
𝐽
𝑚=1 − 𝐶𝑖𝑗𝐴𝑗)

𝑦𝑖−𝑥𝑖𝑗

(∑ 𝐶𝑖𝑗𝐴𝑗
𝐽
𝑗=1 )

𝑦𝑖
 

= C𝑥𝑖𝑗𝑦𝑖
× 1 ×

(𝐶𝑖𝑗𝐴𝑗)
𝑥𝑖𝑗

(∑ 𝐶𝑖𝑚𝐴𝑚
𝐽
𝑚=1 − 𝐶𝑖𝑗𝐴𝑗)

𝑦𝑖−𝑥𝑖𝑗

(∑ 𝐶𝑖𝑗𝐴𝑗
𝐽
𝑗=1 )

𝑥𝑖𝑗

(∑ 𝐶𝑖𝑗𝐴𝑗
𝐽
𝑗=1 )

−𝑥𝑖𝑗

(∑ 𝐶𝑖𝑗𝐴𝑗
𝐽
𝑗=1 )

𝑦𝑖
 

= C𝑥𝑖𝑗𝑦𝑖
(

𝐶𝑖𝑗𝐴𝑗

∑ 𝐶𝑖𝑗𝐴𝑗
𝐽
𝑗=1

)

𝑥𝑖𝑗

(
∑ 𝐶𝑖𝑚𝐴𝑚

𝐽
𝑚=1 − 𝐶𝑖𝑗𝐴𝑗

∑ 𝐶𝑖𝑗𝐴𝑗
𝐽
𝑗=1

)

𝑦𝑖−𝑥𝑖𝑗

 

= C𝑥𝑖𝑗𝑦𝑖
(

𝐶𝑖𝑗𝐴𝑗

∑ 𝐶𝑖𝑗𝐴𝑗
𝐽
𝑗=1

)

𝑥𝑖𝑗

(1 −
𝐶𝑖𝑗𝐴𝑗

∑ 𝐶𝑖𝑗𝐴𝑗
𝐽
𝑗=1

)

𝑦𝑖−𝑥𝑖𝑗

. 

(7) 

Note that Ck l indicates number of combinations.  

 

Equation (7) is interpreted as the probability distribution of 

trials where the number of trials is 𝑦𝑖 , the success count is 

𝑥𝑖𝑗 , and the success probability is 
𝐶𝑖𝑗𝐴𝑗

∑ 𝐶𝑖𝑗𝐴𝑗
𝐽
𝑗=1

. 𝐸[𝑥𝑖𝑗|𝑦𝑖] is 

expressed by Eq. (8) since (Expected value of success 

count) = (number of trials) × (success probability): 

 

𝐸[𝑥𝑖𝑗|𝑦𝑖] = 𝑦𝑖

𝐶𝑖𝑗𝐴𝑗

∑ 𝐶𝑖𝑗𝐴𝑗
𝐽
𝑗=1

. (8) 

 

We substitute Eq. (8) into Eq. (4) and find the value of 𝐴𝑗 

which satisfies the value of partial differential equation of 

Eq. (4) to be zero, as shown in Eq. (9). Instead of 𝐴𝑗, we use 

𝐴𝑗
𝑘 obtained in 𝑘-th iteration calculation. 

 
∂

∂𝐴𝑗

𝐸[L|�⃗�, 𝐴𝑘] = 0 (9) 
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∂

∂𝐴𝑗

[∑ ∑(−𝐶𝑖𝑗𝐴𝑗 +
𝑦𝑖𝐶𝑖𝑗𝐴𝑗

𝑘

∑ 𝐶𝑖𝑗𝐴𝑗
𝑘𝐽

𝑗=1

ln 𝐴𝑗)

𝐽

𝑗=1

𝐼

𝑖=1

+ 𝑐]

= ∑ (−𝐶𝑖𝑗 +
𝑦𝑖𝐶𝑖𝑗𝐴𝑗

𝑘

∑ 𝐶𝑖𝑗𝐴𝑗
𝑘𝐽

𝑗=1

1

𝐴𝑗

)

𝐼

𝑖=1

= − ∑ 𝐶𝑖𝑗

𝐼

𝑖=1

+
1

𝐴𝑗

∑
𝑦𝑖𝐶𝑖𝑗𝐴𝑗

𝑘

∑ 𝐶𝑖𝑗𝐴𝑗
𝑘𝐽

𝑗=1

𝐼

𝑖=1

= 0 

𝐴�̂� =
1

∑ 𝐶𝑖𝑗
𝐼
𝑖=1

∑
𝑦𝑖𝐶𝑖𝑗𝐴𝑗

𝑘

∑ 𝐶𝑖𝑗𝐴𝑗
𝑘𝐽

𝑗=1

𝐼
𝑖=1 =

𝐴𝑗
𝑘

∑ 𝐶𝑖𝑗
𝐼
𝑖=1

∑
𝑦𝑖𝐶𝑖𝑗

∑ 𝐶𝑖𝑗𝐴𝑗
𝑘𝐽

𝑗=1

𝐼
𝑖=1 . 

 

By setting  𝐴�̂� as 𝐴𝑗
𝑘+1, which is the updated value of 

𝐴𝑗
𝑘, Eq. (1) can be obtained. 

 

2. Moore-Penrose Matrix Inverse (MPMI) method 

 

The inverse problem of radioactivity in this study can 

be expressed by the following simultaneous linear 

equations: 

 

𝐂𝐴 ≈ �⃗�, (10) 

 

where 𝐂 is a 𝐼 × 𝐽 matrix of detection probability. For 

example, Eq. (10) is rewritten by Eq. (11) when the numbers 

of detectors and radioactive sources are 2 and 3, 

respectively: 

 

(
𝐶11 𝐶12 𝐶13

𝐶21 𝐶22 𝐶23
) (

𝐴1

𝐴2

𝐴3

) ≈ (
𝑦1

𝑦2
). (11) 

 

Figure 1 is shown as a diagram of this situation. 

 
Fig. 1 Three neutron sources and two detectors 

 

Simultaneous linear equations of an underdetermined 

system cannot be solved by a normal inverse matrix. Even 

in this case, a minimum L2-norm solution 𝐴𝑀𝑃𝑀𝐼  can be 

numerically solved using MPMI, i.e.  

 

𝐴𝑀𝑃𝑀𝐼 = (
𝐶11 𝐶12 𝐶13

𝐶21 𝐶22 𝐶23
)

+

(
𝑦1

𝑦2
), (12) 

 

where the superscript + means the Moore-Penrose 

pseudoinverse. The condition that L2-norm is minimum is 

necessary to uniquely obtain the solution of 𝐴 for the 

underdetermined system. For example, when the numbers of 

constraint conditions and unknowns are respectively 2 and 

3, all solutions of (𝐴1, 𝐴2, 𝐴3) satisfying Eq. (10) 

correspond to arbitrary points on the plane-plane 

intersection: 𝐶11𝐴1 + 𝐶12𝐴2 + 𝐶13𝐴3 = 𝑦1  and  𝐶21𝐴1 +
𝐶22𝐴2 + 𝐶23𝐴3 = 𝑦2. The minimum L2-norm solution 

(𝐴𝑀𝑃,1, 𝐴𝑀𝑃,2, 𝐴𝑀𝑃,3) corresponds to the nearest point from 

the origin (0,0,0). 

In order to numerically solve 𝐴𝑀𝑃𝑀𝐼, the singular value 

decomposition is used. We can perform singular value 

decomposition by using proper matrices of 𝐔, 𝐕 and singular 

values of 𝐂: 

 

𝐂 = 𝐔𝚺𝐕T = 𝐔 (
diag(𝜎1, … , 𝜎𝑟) 𝟎𝑟,𝐽−𝑟

𝟎𝐼−𝑟,𝑟 𝟎𝐼−𝑟,𝐽−𝑟
) 𝐕T. (13) 

 

First, we find 𝐴 satisfying Eq. (10). That is, we aim to find 

𝐴 satisfying ‖𝐂𝐴 − �⃗�‖
2

= 0. By using the property of the 

orthogonal matrix, Eq. (14) can be obtained: 

 

‖𝐂𝐴 − �⃗�‖
2

= (𝐂𝐴 − �⃗�)
T

(𝐂𝐴 − �⃗�) 

= {𝐔(𝚺𝐕T𝐴 − 𝐔T�⃗�)}
T

𝐔(𝚺𝐕T𝐴 − 𝐔T�⃗�) 

= (𝚺𝐕T𝐴 − 𝐔T�⃗�)
T

𝐔T𝐔(𝚺𝐕T𝐴 − 𝐔T�⃗�) 

= (𝚺𝐕T𝐴 − 𝐔T�⃗�)
𝑇

(𝚺𝐕T𝐴 − 𝐔T�⃗�)

= ‖𝚺𝐕T𝐴 − 𝐔T�⃗�‖
2

. 

(14) 

 

Replacing 𝐕T𝐴 with �⃗� and 𝐔T�⃗� with �⃗⃗�, ‖𝚺𝐕T𝐴 − 𝐔T�⃗�‖
2
 is 

expressed by Eq. (15): 

 

‖𝚺�⃗� − �⃗⃗�‖
2

= ∑(𝜎𝑖𝑥𝑖 − 𝑏𝑖)
2

𝑟

𝑖=1

+ ∑ 𝑏𝑖
2

𝐼

𝑖=𝑟+1

. (15) 

 

Here, the second term of in the right hand of Eq. (15) can be 

regarded as 0 for considering the situation of 

underdetermined system: 𝑟 = 𝐼. Therefore, by using �⃗� of 

Eq. (16), we make the first term of Eq. (15) to be zero. 𝑑 is 

any vector with (𝐽 − 𝐼) elements. 

 

�⃗� = (

𝑏1𝜎1
−1

⋮
𝑏𝐼𝜎𝐼

−1

𝑑

) = (
diag(𝜎1

−1, … , 𝜎𝐼
−1) �⃗⃗�

𝑑
). (16) 

 

Then 𝐴 is given by Eq. (17): 

source

detector
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𝐴 = 𝐕𝐕T𝐴 = 𝐕�⃗� = 𝐕 (
diag(𝜎1

−1, … , 𝜎𝐼
−1) �⃗⃗�

𝑑
). (17) 

 

𝐴 with 𝑑 = 0, whose L2-norm is minimum within the 

solution of Eq. (10), i.e. 𝐴𝑀𝑃𝑀𝐼 is expressed by Eq. (18). 

 

𝐴𝑀𝑃𝑀𝐼 = 𝐕 (
diag(𝜎1

−1, … , 𝜎𝐼
−1) 𝐔T�⃗�

𝟎𝐽−𝐼
)

= (𝐕 (
diag(𝜎1

−1, … , 𝜎𝐼
−1)

𝟎𝐽−𝐼
) 𝐔T)�⃗� = 𝐂+�⃗�. 

(18) 

 

III. CALCULATION OF DETECTION 

PROBABILITY 

 

In this section, a calculation method of detection probability 

𝐶𝑖𝑗 is described [5]. The stationary neutron transport 

equation with the external neutron source is given by Eqs. 

(19)-(21): 

 

𝐀𝜓(𝑟, 𝐸, Ω⃗⃗⃗) = 𝐅𝜓(𝑟, 𝐸, Ω⃗⃗⃗) +
𝑆(𝑟, 𝐸)

4𝜋
, (19) 

𝐀 ≡ Ω⃗⃗⃗∇ + Σt(𝑟, 𝐸) − ∫ 𝑑𝐸′
∞

0

∫ 𝑑Ω⃗⃗⃗
4𝜋

Σs(𝑟, 𝐸′

→ 𝐸, Ω⃗⃗⃗′ → Ω⃗⃗⃗), 

(20) 

𝐅 ≡
𝜒(𝑟, 𝐸)

4𝜋
∫ 𝑑𝐸′

∞

0

∫ 𝑑Ω⃗⃗⃗
4𝜋

𝜈Σf(𝑟, 𝐸′). (21) 

 

The adjoint neutron transport equation corresponding to 

Eqs. (19)-(21) is given in Eqs. (22)-(24): 

 

𝐀†𝜓† = 𝐅†𝜓† +
Σd,i(𝑟, 𝐸)

4𝜋
, (22) 

𝐀† ≡ −Ω⃗⃗⃗∇ + Σt(𝑟, 𝐸) − ∫ 𝑑𝐸′
∞

0

∫ 𝑑Ω⃗⃗⃗′
4𝜋

Σs(𝑟, 𝐸

→ 𝐸′, Ω⃗⃗⃗ → Ω⃗⃗⃗′), 

(23) 

𝐅† ≡ 𝜈Σf(𝑟, 𝐸) ∫ 𝑑𝐸′
∞

0

∫ 𝑑Ω⃗⃗⃗′
4𝜋

𝜒(𝑟, 𝐸′)

4𝜋
. (24) 

 

𝐀† and 𝐅† are the adjoint operators corresponding to 𝐀 and 

𝐅, respectively. Equation (25) is obtained by multiplying 

both sides of Eq. (19) by 𝜓† from the left side and 

integrating in all phase space: 𝑟, 𝐸, Ω⃗⃗⃗. 

 

〈𝜓†𝐀𝜓〉 = 〈𝜓†𝐅𝜓〉 + 〈𝜓†
𝑆

4𝜋
〉 . (25) 

 

The adjoint neutron source is represented by the symbol of 

the detection cross section. With similar procedure for Eq. 

(22), Eq. (26) is also obtained: 

 

〈𝜓𝐀†𝜓†〉 = 〈𝜓𝐅†𝜓†〉 + 〈𝜓
Σd,i

4𝜋
〉 . (26) 

On the other hand, from the property of adjoint operator, 

Eqs. (27) and (28) are established: 

 

〈𝜓†𝐀𝜓〉 = 〈𝜓𝐀†𝜓†〉, (27) 

〈𝜓†𝐅𝜓〉 = 〈𝜓𝐅†𝜓†〉. (28) 

 

Equation (29) can be derived from the Eqs. (25)-(28): 

 

〈𝜓†
𝑆

4𝜋
〉 = 〈𝜓

Σd,i

4𝜋
〉 

∫ 𝑑𝑉
𝑉

∫ 𝑑𝐸
∞

0

∫ 𝑑Ω⃗⃗⃗
4𝜋

𝑆(𝑟, 𝐸)𝜓†(𝑟, 𝐸, Ω⃗⃗⃗)

= ∫ 𝑑𝑉
𝑉

∫ 𝑑𝐸
∞

0

∫ 𝑑Ω⃗⃗⃗
4𝜋

Σd,i(𝑟, 𝐸)𝜓(𝑟, 𝐸, Ω⃗⃗⃗), 

(29) 

 

Point neutron source 𝑆 at 𝑟𝑗 is expressed by Eq. (30). 𝑆 can 

be regarded as the spontaneous fission source the situation 

considered in the present study. 

 

𝑆(𝑟, 𝐸)

= (neutron emisson rate at position 𝑟𝑗)

× 𝛿(𝑟 − 𝑟𝑗)𝜒(𝐸). 

(30) 

 

Using Eq. (30), we can obtain 𝐶𝑖𝑗 as: 

 

(neutron emisson rate at position 𝑟𝑗)

× ∫ 𝑑𝐸
∞

0

∫ 𝑑Ω⃗⃗⃗
4𝜋

𝜒(𝐸)𝜓†(𝑟𝑗 , 𝐸, Ω⃗⃗⃗)

= ∫ 𝑑𝑉
𝑉

∫ 𝑑𝐸
∞

0

∫ 𝑑Ω⃗⃗⃗
4𝜋

Σd,i(𝑟, 𝐸)𝜓(𝑟, 𝐸, Ω⃗⃗⃗)

= (neutron count rate at position 𝑟𝑗) 

∫ 𝑑𝐸
∞

0

𝜒(𝐸)𝜙†(𝑟𝑗, 𝐸, Ω⃗⃗⃗)

=
(neutron count rate at detector 𝑖)

(neutron emisson rate at position 𝑟𝑗)
= 𝐶𝑖𝑗 . 

(31) 

 

It should be noted that neutron multiplication is not 

considered in the present study. 

 

IV. CALCULATION PROCEDURE 

 

As a simple problem, let us consider an annular 

concrete shielding as shown in Fig. 2. Other regions except 

for the shielding are void. All boundary conditions are 

vacuum conditions. Two ring-detectors (𝑖 = 1,2) and three 

point-sources (𝑗 = 1,2,3) are considered in this geometry. 

The calculation conditions of detectors and neutron sources 

are summarized in Tables I and II. In this calculation, the 

thermal detection cross-section Σd,1 is zero. Since 

majorneutron source is spontaneous fission, source strength 

of thermal neutron 𝑆2 is assumed to be zero. 
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Table I Calculation condition; neutron detectors 

 
 

Table II Calculation condition; neutron sources 

 
 

 
Fig. 2 Calculation geometry for radioactivity estimation 

 

Before calculation of the detection probability 𝐶𝑖𝑗 

(detection probability of a neutron at each detector 𝑖 emitted 

from source 𝑗) in the calculation geometry of Fig. 2, we 

prepared two group macroscopic cross-section for concrete 

using SCALE6.2.1/NEWT [6].  The energy boundary 

between fast and thermal energy is 0.625 [eV]. The two 

group cross-sections were collapsed using neutron spectrum 

obtained by a forward transport calculation of NEWT in 

Fig. 3, where fuel region of UO2 was used to obtain a 

typical neutron flux spectrum in concrete. Thickness of 

concrete wall in Fig. 3 is set based on Fig. 2. In Fig. 3, the 

left and right boundary conditions are vacuum; and upper 

and lower ones are periodic, respectively. 

 
Fig. 3 Calculation geometry of NEWT to obtain two-group 

macroscopic cross-section of concrete 

 

The detection probability 𝐶𝑖𝑗 was evaluated by an 

adjoint transport calculation with PARTISN5.97 [7] using 

the two group cross-section. As the adjoint sources, 

detection cross-sections Σd,1 and Σd,2 were located at 

detector regions (𝑖 = 1,2). Then, 𝐶𝑖𝑗   due to point-source 

(𝑗 = 1, 2, 3) is evaluated by Eq. (32) using the adjoint 

neutron flux 𝜙𝑔,𝑖
†

 at the point of neutron source (𝑟𝑗 , 𝑧𝑗): 

 

𝐶𝑖𝑗 = ∑ 𝜒𝑔𝜙𝑔,𝑖
† (𝑟𝑗 , 𝑧𝑗)

𝑁𝐺

𝑔=1

= 𝜙1,𝑖
† (𝑟𝑗 , 𝑧𝑗), (32) 

 

where 𝜒1 = 1, 𝜒2 = 0. Only 𝜙1,𝑖
†

 were used because all 

neutrons released from sources are fast neutron in this 

calculation. Equation (32) is a discrete representation of Eq. 

(31). 

In practical applications, 𝑦 is the “measured value”. 

However in this study, 𝑦 were numerically calculated using 

𝐶𝑖𝑗 and virtual true values of 𝐴𝑡𝑟𝑢𝑒,𝑗, i.e. the following 

calculated value was regarded as the virtual measured value. 

 

𝑦𝑖 = ∑ 𝐶𝑖𝑗𝐴𝑡𝑟𝑢𝑒,𝑗 .
𝐽

𝑗=1
 (33) 

 

It is noted that the statistical uncertainties of measured value 

𝑦 were neglected in this calculation. Since the relative 

uncertainty of neutron count can be reduced by increasing 

the measured count, we assume that this simplification does 

not significantly affect the validity of this verification. 

The estimation of the ML-EM method is carried out for 

the following three initial distributions: 

Case 1: Without spatial distribution (uniform distribution) 

(𝐴1
𝑘=0: 𝐴2

𝑘=0: 𝐴3
𝑘=0 = 1: 1: 1) 

Case 2: With spatial distribution (𝐴1
𝑘=0: 𝐴2

𝑘=0: 𝐴3
𝑘=0 =

3: 2: 1) 

Case 3: The estimation result of MPMI method (𝐴1
𝑘=0 =

𝐴1
𝑀𝑃𝑀𝐼 , 𝐴2

𝑘=0 = 𝐴2
𝑀𝑃𝑀𝐼 , 𝐴3

𝑘=0 = 𝐴3
𝑀𝑃𝑀𝐼) 

We used an in-house code to numerically solve 

radioactivity by both the ML-EM and the MPMI methods. 

We used the C++ library of Eigen for matrix operation [8] 

such as singular value decomposition in the MPMI method. 

The convergence criteria of the ML-EM method is given by 

Eq. (34): 

 

𝜀 = √∑ (
𝐴𝑗

𝑘

𝐴𝑗
𝑘−1

− 1)

2𝐽

𝑗=1

𝐽⁄ ≤ 10−9. (34) 

 

V. RESULTS 

 

Table III shows the numerical results of 𝐶𝑖𝑗. In Table 

III, the row and vertical column correspond to the detector 

and source numbers, respectively. 

i r[cm] z[cm]

1 599-600 96-100 0 0.01

2 599-600 596-600 0 0.01

Σd1, Σd2[1/cm]

j r[cm] z[cm]

1 0 0 9.00E+13 0

2 0 200 5.00E+13 0

3 0 400 1.00E+13 0

S1, S2[neutrons/sec]

ring
detector

co
n

crete

point neutron source

500cm thickness: 

100cm

j=3

j=2

j=1

i=2

i=1

concretefuel

100cm

100cm 100cm
periodic

periodic

vacu
u

m

vacu
u

m
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Table III Numerical results of 𝐶𝑖𝑗 obtained by an adjoint 

transport calculation 

 
 

In this calculation condition, the variation of detection 

probabilities is not very large because distances among 

detectors and point-sources are similar. Since the distances 

between the detector of 𝑖 = 1 and the point-source of 𝑗 =
1 or 2 are approximately the same, 𝐶11 is nearly equal 

to 𝐶12 although 𝐶12 is slightly larger due to scattering in 

concrete. The trend of 𝐶23 > 𝐶22 > 𝐶21 are observed since 

the detector of 𝑖 = 2 is located at higher level than those of 

point-sources. 

Figure 4 shows the estimated values of neutron 

emission rate at each point-source obtained by the ML-EM 

and the MPMI methods. 

 
Fig. 4 Estimated value of neutron emission rate 

 

The magnitude of the estimated value of neutron 

emission rate is almost the same as that of true value. The 

overall spatial distribution of estimated values fairly 

reproduce the true values. In general, the ML-EM method 

shows better agreement with the true values. We adopted 

the ML-EM and the MPMI methods, however the difference 

between the estimated values by both methods is not very 

large in this simple problem, although estimated values of 

the ML-EM and  the MPMI methods are obtained by 

different procedures, i.e. the ML-EM method estimates the 

value whose likelihood is maximum; the MPMI method 

solve the minimum L2-norm solution. It was expected that 

the MPMI method underestimates radioactivity because it 

utilizes constraints of minimum L2-norm, however such a 

tendency is not observed in this simple calculation. It is 

noted that we cannot discuss the characteristic of each 

solution method only based on the result of this calculation; 

further investigation is necessary. 

Since the estimation of Case 1 and Case 2 are different 

from Case 3, it can be found that there is the dependence on 

the initial distribution of the estimation in the ML-EM 

method. The present result suggest that there are several 

quasi-optimum solutions for ML-EM method. Calculation 

starting from initial distribution of Cases 1 and 2 reach a 

quasi-optimum solution and that of Case 3 reached another 

quasi-optimum solution. 

Variation of 𝜀 expressed by Eq. (7) is shown in Fig. 5. 

 
Fig. 5 Exponential decreasing of residual 𝜀 in the ML-EM 

method 

 

It is fast convergence to finish with 𝑘 of 102-order against 

the small convergence criteria: 10-9. The convergence of 

methods like ML-EM had been studied [9,10] and the ML-

EM method can be regarded as having a certain 

convergence property. However, such fast convergence 

cannot be guaranteed when factors such as the uncertainty 

of neutron count exist. 

In all cases, 𝜀 shows a clear trend that the decreasing 

rate (the gradient) in one update is constant. Therefore, we 

conclude that it is appropriate to adopt the residual of Eq. 

(34) as convergence criteria. The decreasing rates of 𝜀 of 

Cases 1 and 2 are almost equal and the absolute value of 𝜀 is 

slightly smaller in Case 2. The latter can be understood from 

that Case 2 used the initial distribution closer to the true 

distribution than Case 1. The former trend suggests that the 

change of the initial distribution in the range not satisfying 

Eq. (10) does not have a large influence. In Case 3, the 

decreasing rate of 𝜀 is smaller than Case 1 and Case 2. This 

is presumed to reflect that the estimated value of MPMI 

method has little room for improvement. 

 

VI. SUMMARY 

 

We investigated fundamental performance of inverse 

estimation methods estimating radioactive source in order to 

contribute to the spatial distribution estimation of fuel debris 

which is necessary for 1F decommissioning. Actual spatial 

distribution of neutron emission rate is continuous, but it 

can be approximated by a large number of point-sources 

through discretization. Once discretized, estimation of 

spatial distribution can be cast into estimation of intensity of 

each point source. 
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Adopted calculation techniques were the ML-EM and 

the MPMI methods. The calculation geometry of this study 

was a simple model which consists of annular concrete 

shielding. Two group macroscopic cross-section of concrete 

was evaluated using SCALE6.2.1/NEWT before neutron 

transport calculation at the target system. Detection 

probability was calculated using the adjoint neutron flux. 

Estimated values of neutron emission rate by both methods 

reasonably reproduce the true values. From these results, it 

is concluded that both the ML-EM and the MPMI methods 

can be used for inverse estimation of radioactivity source. 

In this preliminary study, we did not evaluate 

uncertainty although there are many factors of uncertainty in 

actual situations, e.g. detection cross-section, composition 

of fuel debris or shielding material, thickness of shielding 

and so on. Statistical uncertainty of radiation counts could 

become a major factor of uncertainty in the case of low 

count rates. In addition, the calculation model and condition 

of this study are considerably simplified in comparison with 

the actual 1F situation. Thus, further investigations are 

necessary to establish an uncertainty quantification method 

and to apply the ML-EM and the MPMI methods to more 

realistic calculation models and conditions. 

In the ML-EM method, the estimated value was almost 

equal between the case where the initial distribution was 

uniform and the case where the initial distribution was close 

to the true trend. However, then estimation result by the 

MPMI method is used in the ML-EM method, another 

distribution is estimated. This results suggest that the result 

by the ML-EM method would show quasi-optimum 

solution, thus choice of initial distribution is important. 

Since the residual of ML-EM method during iteration 

(𝜀) showed the clear exponential decreasing trend, use of 

the relative difference expressed by Eq. (34) for the 

convergence criteria of the ML-EM method is appropriate. 

In addition, the ML-EM method was found to have good 

convergence when the condition is simple. 

 

NOMENCLATURE 

 

𝐴 : radioactivity of each radioactive source 

𝑦 : radiation count of each detector 

𝐶𝑖𝑗 : detection probability of radiation at detector (𝑖) emitted 

from radiation source (𝑗) 

𝑖 : detector number (from 1 to 𝐼) 

𝑗 : radioactive source number (from 1 to 𝐽) 

𝑘 : number of iterations in ML-EM method 

𝐔   : 𝐼-th order orthogonal matrix 

V   : 𝐽-th order orthogonal matrix 

𝜎 : singular value 

diag: diagonal matrix composed of its argument 

𝑟 : radial position in cylindrical geometry 

𝑧 : height in cylindrical geometry 

𝐸 : neutron kinetic energy 

Ω⃗⃗⃗ : neutron flight direction 

𝑆 : external neutron source 

𝜓 : angular neutron flux 

𝜓+ : adjoint angular neutron flux 

Σd : macroscopic detection cross-section 

𝜒   : energy spectrum of  fission neutron 

𝛿 : delta function 

𝜙† : adjoint neutron flux 

𝜀   : residual of the ML-EM method 
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