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Abstract - Neutron and gamma multiplicity assay analysis attempts to determine SNM (special nuclear material) 

parameters such as mass and level of criticality of a fissioning system, based on inverting the information in neutron and 

gamma counting. We describe the various modeling capabilities developed and published at LLNL towards this effort. 
 
I. INTRODUCTION 

 
    Neutron assay analysis has been based on efficient 
counting of thermal neutrons on the µs time-scale using 3He 

detectors. In its most fundamental form, the counting data 
are just the time of each neutron count. Even if many 

neutrons from a chain arrive at the detector approximately 
simultaneously (< 1 µs spread in arrival times), they will 
diffuse through a moderator (polyethylene) for typically 

tens of µs before being detected by the 3He(n,p)T reaction 
which creates a charge pulse. The neutron detection times 
are therefore spread over tens of µs  and the fission chains 

are approximately instantaneous on the detection time scale. 
    Fast neutron and gamma-ray counting using scintillators 
(liquid, stilbene) arrays can measure evolving fission chains 

with nanosecond time resolution. Fast counting can 
therefore isolate and resolve the fission chain bursts. The 

time dependence of correlations now comes from the time 
evolution of the fission chains rather than from a diffusion 
process in the detector. There will still be a spread in arrival 

times from time-of-flight to the scintillator detectors and the 
energy spectrum of the neutrons resulting in an effective 
diffusion time on the order of ten nanoseconds. For gamma 

counting the effective diffusion time approximates the effect 
of geometry on the time-of-flight to the detectors and is 
typically less than a nanosecond. 

    We describe here the neutron and gamma multiplicity 
modeling capabilities, for both thermal and fast counting, 
developed and published at LLNL. 

   
II. Statistical Theory of Fission Chains and Generalized 

Poisson Neutron Counting Distributions 
 
    The neutron counting probability distribution for a 

multiplying medium was shown by Hage and Cifarelli to be 
a generalized Poisson distribution that depends on the 
fission chain number distribution. Assuming the fission 

chains are instantaneous on the timescale of the neutron 
detection process, an analytic formula was obtained at 
LLNL (Ref. 1) for this number distribution, the probability 

to produce a number of neutrons in a fission chain.  This 
point model theory has been used to analyze thermal 

neutron counting data acquired with 3He detectors. 
 

    The general formula for the count distribution generating 

function in terms of the fission chain generating function 
can be put in the form (Ref. 1), 
 

                                                                                           (1) 

 
where T is the measurement time gate, λ is the inverse 
neutron lifetime, ε is the detection efficiency, Fs is the rate 

of spontaneous fission source of neutrons. The fission chain 
is initiated by spontaneous fission, whose generating 

function is Cspont and is the generating 
function of a fission chain initiated by a single neutron 

which creates  neutrons with probability . The generating 
function variable y tracks the number of neutrons in the 
fission chain. The generating function h(y) satisfies the 
Bohnel functional equation: 

 

                    (2) 
 

where p is the probability to induce a fission and C is the 
generating function for induced fission which creates k 
neutrons with probability Ck: . A formal 

solution for h(y) can be expressed as a sum over all 
combinatorial trees (q = 1-p): 
 

 
(3) 

 
An independent (α,n) source of neutrons at a rate S can be 

described with a corresponding generating function: 
 

 
(4) 

 

    An external random source of neutrons at a rate Rext
 is 

described a simple Poisson generating function Exp[RextT(y-
1)]. In general one has to use a product of these various 
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generating functions to describe a multiplying system with a 
spontaneous fission source rate Fs, an (α,n) source rate S, 

and an external random source rate Rext
 of neutrons. The 

ratio A = S/(νs Fs), where νs is the average number of 
neutrons in a spontaneous fission,  is referred to as the alpha 

ratio. One can easily develop empirical models of correlated 
background source of neutrons within this framework. 

    Efficient algorithms have been developed to compute the 
fission chain generating function h(y) for any multiplication 

M = 1/(1-pν). The probabilities , along with all the other 
parameters, can be used to quickly generate analytical count 

distributions in real time. Furthermore, by sampling the 
analytically computed fission chain distributions we can 
generate a time-evolving sequence of event counts by 

spreading the fission chain distribution in time. This allows 
a real time 0-D Monte Carlo simulation of list mode data as 
would be acquired with a neutron detector equipped with 

time tagging electronics. At LLNL we have developed a 
code, SrcSim, which does precisely this. 

    An optimization code, BigFit, was developed at LLNL to 
efficiently compute the count distribution bn(T) that best fits 
a measured count distribution. This optimization constitutes 

an absolute assay of a system by determining its 
multiplication M, spontaneous fission source Fs, alpha ratio 
A, and possibly an external random source Rext or correlated 

background source along with ε and λ. This optimization 
algorithm has been patented in several U.S. patents 
(US7756237, US8180013, US8194813, and US9201025) 

(Ref. 2, 3, 4, 5). BigFit has proven to be a robust assay tool 
over a wide range of SNM parameter space. Detailed 

description of BigFit absolute assay methodology and its 
various applications can be found in Ref. 2-5. 
    While the count distribution bn(T) is a complicated 

function, the moments of the count distribution are quite 
simple. We define the (kth factorial moments)/k! ≡ Mk of 
bn(T) as: 

 

 
(5) 

 

    The mean of bn(T) is M1(T) = R1T which is the number of 
counts measured in time T with count rate R1. The 

correlated Feynman cumulant moments Yk are defined by:  
 

        (6) 

 
    For a random source of neutrons, Yk = 0 for k > 1. 
Therefore, any significant non-zero value of Yk  for k > 1 is 

a good measure of how correlated a source of neutrons 
originating from fission or elsewhere is. The Feynman 

moments Yk can be related to the normalized factorial 
moments Mk and the first three of these relations are: 
 

                         (7) 

 

                  (8) 

 

     (9) 

  
 

In the limit of instantaneous fission chains assumed in this 
section, Y2(T) and Y3(T) have simple analytical forms for a 
spontaneous fission source Fs and/or an (α,n) source S: 

 

       (10) 
 

 
(11) 

 

    Historically, several assay techniques have been based on 
moments but, in our experience, are not as robust as those 
based on the full count distributions such as BigFit. 

However, moments analysis is very useful in constraining 
and guiding BigFit optimization. 

 
III. Time Interval Distributions and the Rossi 
Correlation Function 

 
    For material spontaneously generating fission chains, the 
arrival times of neutron and gamma counts create a 

clustering pattern distinctly different from a random source. 
A theory for the time interval distribution between adjacent 
counts was developed in Ref. 6. As well as the distribution 

of nearest-neighbor counts, we gave the general 
distributions for all n th-neighbor intervals. The sum of these 

distributions gives the Rossi correlation function. This 
theory directly applies to experimentally measured list mode 
data.   

    List mode data can be analyzed in a variety of ways. 
First,  we can construct count distributions using random 
(Feynman) or triggered (shift-register coincidence) time 

gates T. For random counting we cut up the list mode data 
into N segments, each of length T, and define the random 
count distribution bk(T) = (number of segments with k 

events)/N. For triggered counting, at each event of the list 
mode data we open a segment of length T and define the 

triggered count distribution nk(T) = (number of segments 
with k events)/(total number of events). A different way of 
analyzing the list mode data is  to look at the distribution of 

time intervals between neighboring events . Time interval 
distributions are especially useful for low count rate data 
where one would have to otherwise collect data for a very 

long time to achieve good counting statistics. 
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    In Ref. 6 we derived an exact mathematical relation 

between the triggered nk(T) and random bk(T) count 
distributions:   
 

                   (12) 
 

and their (kth factorial moments)/k! ≡ Mk: 
 

                    (13) 
 
where R1 is the count rate. In general, the probability 

distribution function In(T) for the time interval from a 
trigger count to the n th skipped count is given exactly by: 
 

 
                (14) 

 

In particular, I0(T) is the waiting time distribution between 
succesive counts and is given by: 

 

                        (15) 
 

The Rossi correlation function for having a count at time T 
following a trigger count at time 0 , regardless of the 
number of intervening counts,  is: 

 

         (16) 
 
    The formulas just described for counting and time 

interval distributions are fundamental and true regardless of 
the underlying model of fission chains. For the special limit  

of instantaneous fission chains described in Section II, the 
Rossi distribution above reduces to [R1 + R2F λ Exp(-λT)].  
    A challenging aspect of analyzing list mode data is to 

visualize it in a useful way. One such way is the waterfall 
plot which plots the time to the next event versus time as 
shown in Fig. 1 below from Ref. 6: 

 

 
Fig. 1 Waterfall plot for simulated HEU (highly enriched 
uranium) count data, accumulated over 2.2 hours. The time 

difference between neighboring counts is plotted at the time 
of the first count.  

 
    In Fig. 1 we clearly see two bands corresponding to two 
characteristic timescales; the time intervals mostly between 

0.1 and 1 second are associated with the source initiation of 
the fission chains, and the time intervals between 1 and 500 
µs are associated with the timescale for neutron diffusion 

separating counts from a fission chain burst. A time 
projection of Fig. 1 gives the waiting time distribution I0(T) 
shown in Fig. 2 below using logrithmic binning to display 

the product T*I0(T) to accentuate the characteristic time 
scales. 

 

 
Fig. 2 Plot of TI0(T) versus time for the waterfall plot of 
Fig. 1. 
 

    Depending on the source rate of what is being measured, 
a particular way of analyzing the list mode data will be most 
effective. For low count rate data the time interval 

distributions, in particular the waiting time distribution 
I0(T), are most useful. At LLNL we have developed a     
processing algorithm to assay low count rate SNM which 

operates in real time as the list mode data is being collected. 
To assay low count rate data one must also carefully model 
background neutrons as described in Ref. 7. For high count 
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rate data the standard random time gate count distributions 
bn(T) are most useful because of good counting statistics. 

For medium count rate data triggered counting distributions 
may be best.  
 

IV. Time Evolving Fission Chain Theory and Fast 
Neutron and Gamma-Ray Counting Distributions 

 
    In Ref. 9 we solved a simple theoretical model of time 
evolving fission chains due to Feynman that generalizes and 

asymptotically approaches the point model theory described 
in Section II. The point model theory has been used to 
analyze thermal neutron counting data collected with 3He 

detectors. This extension of the theory underlies fast 
counting data for both neutrons and gamma rays from metal 
systems. Fast neutron and gamma counting is now possible 

using both liquid and stilbene crystal scintillator arrays with 
nanosecond time resolution. In Ref. 8 we describe the 

various benefits of fast counting using a prototype stilbene 
scintillator detector array. With nanosecond time resolution, 
it is possible to visually see individual fission chain bursts 

as the data is being collected. With this detailed time 
resolution, we can infer more details of the SNM. 
    List mode data collected by liquid scintillators clearly 

show the time evolution of fission chains. The data shown 
below in Fig. 4 are for a Pu ball: (a) 1 millisecond of data of 
the accumulation of counts including fast neutrons (gold) 

and gamma rays (red) and (b) the large isolated burst 
evolving over 50 nanoseconds.: 

 

 
Fig. 4 The accumulation of counts in list mode data taken 
with a Pu ball and liquid scintillator arrays. 

    A time evolving fission chain is described by the 
probability Pi,ν,γ(t) that starting from one neutron at t=0, 

there are i internal neutrons in the multiplying system at 
time t, ν neutrons that have been created by the fission chain 
but have escaped from the system, and γ gamma rays that 

have been created by fissions in the chain. The generating 
function for this fission chain  

 

               (17) 
 
satisfies the Feynman rate equation (Ref. 9): 

 

              (18) 

 
Where Q is the gamma multiplicity generating function for 
gammas created in an induced fission and τ is the total 

neutron lifetime. This equation can be easily solved by the 
method of characteristic. In Ref. 9 we show how to compute 
the various correlated moments of the time evolving 

counting distribution. The analogues of the Feynman 
correlated cumulant moments described in Section II are: 

 

                                (19) 

 

        (20) 
 

 
(21) 

 

    The formula for Y2F(T) is the same as in Section II except 
that the inverse neutron lifetime λ is now replaced by the 
inverse fission chain evolution time α = (1-pν)/τ. The 

formula for Y3 F(T), however, now has an additional time 
dependent term. The different time dependencies in Y3F(T) 
are associated with different topologies of common ancestry 

within the fission chain. The term  is the probability that 

all three counted neutrons have a single common ancestor 

fission somewhere in the chain while the term  is the 

probability that a pair of the counted neutrons have a 
common ancestor fission, and that fission has a common 
ancestor with the third counted neutron. 

    The corresponding random Feynman correlated cumulant 
moments for gamma counting have been worked out in Ref. 
9.  The gamma count rate has contributions from both 

fission chains and from nonfission background. There may 
be two sources contributing to that background: from 
external environmental background and from alpha decay 

chain gamma rays originating in the fissioning material. 
Both contributions are essentially random (although there 
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are a few cascade decays where multiple gamma rays are 
emitted).  

 
    The analogue Y1(T) and Y2(T) for gammas are: 
 

      (22) 

       (23) 
 

The definitions of the various symbols can be found in Ref. 
9. The analogue of Y3(T) for gammas is complicated but 
each term can be understood using Feynman diagrams, as 

described in Ref. 9: 
 

 
(24) 

 
    The correlated moment for counting one neutron and one 
gamma in a time gate T from the same fission chain is: 

 

 
(25) 

 
The correlated moment for counting one (two) neutron and 

two (one) gammas in a time gate T from the same fission 
chain is quite complicated and can be found in Ref. 9. 
 

V. Fission Chain Restart Theory  
 
    Fast nanosecond time scale neutron and gamma ray 

counting can be performed with (liquid, stilbene) scintillator 

arrays. Fission chains in metal evolve over a time scale of 
tens of nanoseconds. If the metal is surrounded by a 

moderator, neutrons leaking from the metal can thermalize 
and diffuse in the moderator. With finite probability, the 
diffusing neutrons can return to the metal and restart the fast 

fission chain. The timescale for this restart process is 
microseconds. A theory describing time evolving fission 

chains for metal surrounded by a moderator, including this 
restart process, is presented in Ref. 10. This theory is 
sufficiently simple for it to be implemented for real time 

analysis. 
    The Fig. 6 below shows Neutron (gold x) and γ-ray 

(maroon +) counts from moderated HEU. The upper panel 
shows the accumulation of counts in time. The lower panel 
shows the time intervals between adjacent counts, plotted at 

the time of the first count of the pair. The color is the 
particle type of the second count of an adjacent pair of 
counts. The time intervals within the entire fission chain 

burst range from nanoseconds (ns) to 10’s of microseconds 
(µs). Fission chains within the HEU metal evolve over only 

a few 10’s of ns. The fast chains in metal are being re-
started over the diffusion time scale of 10’s of µs. Only fast 

fission neutrons created in the HEU metal that escape being 
scattered down below 1 MeV in energy can potentially be 

counted by the liquid scintillator threshold detectors. 

 
Fig. 6 Accumulated counts (upper panel) and time intervals 

between adjacent counts  (lower panel) of neutrons and 
gammas. 
 

    The rate equation for a time evolving fission chain, 
including a moderator, is given below in Eq. (27). We 
consider two neutron populations, fast and thermal. There 

are two time scales, τ the fast neutron total lifetime and, λ -1 
the thermal neutron lifetime in the moderator. The 

generating function for tracking the different populations of 
neutrons and gammas is defined by: 
 

 
(26) 

 

The generating function variables track the different 
populations. The variable x tracks the fast internal neutron 
population in the multiplying SNM. This population of 

neutrons drives all the others. The variable y tracks those 
fast neutrons that leak from the system, and u tracks thermal 
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neutrons that leak from the system. The internal thermal 
population is tracked by w. Fast neutrons that leak from the 

system with probability q=1-p can get scattered down to 
thermal in the moderator with probability s. The thermal 
neutrons in the moderator can leak, with probability q th = 1-

pth, or induce fission with probability pth. The thermal 
neutrons that are lost from the system can be lost through 

leakage, or by capture within the moderator and be tracked 
by zth. The neutron capture probability in the moderator is 
generally significant, and can be included by partitioning q th 

into qthc and qth(1-c), where c is the probability for neutron 
capture. The fission gamma-rays created by fast neutron 
induced fission are tracked by 𝑧1 and the gamma-rays 

created by thermal neutron induced fission are tracked by 
𝑧2. The Feynman rate equation for the probability generating 

function Eq. (26) is (Ref. 10): 
 

 
 

(27) 

 
This rate equation can again be easily solved by the method 

of characteristics, as discussed in Ref. 10. 
    The random time gate neutron count distribution can be 
computed along with its various correlated Feynman 

cumulant moments. In particular, the Feynman Y2(T) has a 
remarkably simple time dependence: it is a superposition of 
the point model time dependent formula Eq. (10) associated 

with fast, an effective slow, and time-of-flight time scales. If 
we neglect the time-of-flight correction, Y2(T) is a sum of 
just two terms with separate fast fission chain and total 

fission chain time dependence: 

 
(28) 

 

If we include the time-of-flight (TOF) correction, Eq. (27) 
has an extra point model contribution associated with λTOF. 
In the limit λ << α: 

 

                             (29) 
 

                              (30) 
 

                             (31) 

                    (32) 

 
where M0 is multiplication of the SNM metal and M is the 
total system multiplication.   

    A simple limit of this theory can be applied to the 
analysis of list mode data acquired on a subcritical assembly 
ISSA at LLNL with bare 3He tubes. The assembly is a series 

of thin foils of HEU in a tank of water, and is described in 
Ref. 11. The multiplication of the HEU metal foils M0 ≈ 1. 
The fission chains are driven by thermal neutron induced 

fission in the HEU. The fast neutrons created thermalize in 
water and the diffusing neutrons can restart the chain. The 
thermal neutrons diffuse to either induce fission in the foils 

or diffuse out of the assembly to possibly be counted by the 
bare 3He tubes placed outside the water tank. Because of the 

adjacency of the 3He tubes there is no time of flight 
corrections. 
    The analysis is done using the τ → 0 limit of the restart 

theory. For M0 ≈ 1 (p ≈ 0) the total multiplication becomes: 
 

                       (33)         

 
and the time constant for the correlated moments is now 

 

                             (34) 

 
a time scale much longer than the diffusion time scale. For 

counting with bare 3He no fast neutrons are counted. 
 
    A segment of the list mode data measured is shown below 

in Fig. 7: 
 

 
Fig. 7 Segment of experimental list mode data from HEU 

foils in water. The form of the data is the time of each 
neutron count in bare 3He tubes, placed outside the 

assembly. The upper panel is the accumulation of counts in 
time, and the lower panel is the time difference between 
neighboring counts, plotted at the time of the first count. 

The large fission chains are seen as discontinuities in the 
accumulation of counts and as large streaks in the time 
interval plot. 
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    The data can be segmented to create count distributions. 
For this system, making the approximations that the chains 

are initiated by a random source, and that the multiplication 
is completely due to thermal neutron induced fission, the 
formulas for the count distribution moments reduce to the 

fast fission chain formulas of the previous Section IV with 
the replacements of nuclear data by thermal values, and: 

 

                               (35) 

 

.                   (36) 
 
    Moments of the count distribution, compared to theory, 

are shown below.  

 
Fig. 8 Feynman random time gate correlated pair moment 
Y2F(T) versus time gate T. The data is in blue and the fit to 
the theory is in red. 

 

 
Fig. 9 Feynman random time gate correlated triple moment 
Y3F(T) versus time gate T. The data is in blue and the fit to 
the theory is in red. 

 
The data quality is sufficiently good that we can also 

analyze the fourth Feynman random time gate correlated 
quad moment Y4F(T): 
 

 
Fig. 10 Feynman random time gate correlated quad moment 

Y4F(T) versus time gate T. The data is in blue and the fit to 
the theory is in red. 
 

In Section IV we gave the formulas for Y2F(T) and Y3F(T) 
and we now give the formula for Y4F(T) being used in the fit 

shown in Fig. 10: 
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(37) 
 

    At LLNL we have developed optimization algorithms and 
codes that can separately assay M0 and M along with all the 
other model parameters from measurement of moderated 

systems. The ISSA assembly data just described has M ≈ 20 

and  ≈ 720 µs. 

 
VI. Approximate Limits of Fission Chain Counting 

Theory 
 
    Analytic formulas were developed for neutron and 

gamma-ray counting distributions and time interval 
distributions, in the limit of high and low multiplication. 
Underlying the counting distributions are models for fission 

chains, the instantaneous Bohnel chain, and the Feynman 
time evolving fission chain. The theory of counting 
distributions is based on the Hage-Cifarelli model of 

randomly initiated fission chains, and its generalization for 
time evolving chains. The time evolving fission chain 

model, studied previously by numerically solving non-linear 
differential equations, simplifies to analytic forms for both 
high and low multiplication. These formulas show how 

fission chain information is packaged in the different 
counting distributions. 
    The random time gate count distribution simplifies 

dramatically in the limit of high M (Ref. 12). For thermal 
neutron counting with 3He detector (τ→0), in the high M 
limit, the generating function becomes: 
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(38) 

 
The integral above can be evaluated to give: 

 

 
 

 
(39) 

 
Because this formula depends only on R1 and R2F, only 
two parameters can be determined by 3He counting using 

the point model approximation in the high M limit. 
 
    For fast neutron counting, with time evolving fission 

chains, the count distribution generating function becomes: 
 

 
(40) 

 
This remarkable formula shows that there is a universality 

limit of the count distribution for high M, analogous to the 
Gaussian distribution in the central limit theorem. The 

complete count distribution depends on only three 

parameters, , , and . The source rate dependence 

appears only in the form of . All three parameters depend 

on M. Also  is proportional to , the total neutron 
lifetime, which includes only induced fission and neutron 
leakage as the processes where neutrons can be lost from the 

multiplying system, .  Nuclear fission 

data  is contained in , and both  and  are contained in 

. 
    The point model and time evolving chain have different 
time dependence for the moments, as was already noted in 

Section IV. In general, for time evolving chains, the 
different topologies that lead to correlations have separate 
time dependence. In the diffusion approximation of the 

point model all the different topologies give the same time 
dependence. 

    The full count distribution is more sensitive to the largest 
chains than the moments. The expansion of fission chains in 
powers of 1/M can be systematically obtained by summing 

successively non-leading terms in the moments formulas. 
We have at LLNL developed these 1/M corrections to the 
asymptotic formulas which are remarkably accurate from 

low M to high M (Ref. 12). Because these are analytical 
formulas they can be computed instantaneously and 

therefore have direct impact on our suite of analysis codes at 
LLNL that process list mode data as it is streaming in real 

time. 
 
VII. CONCLUSIONS  

 
    We have described here the neutron and gamma 

multiplicity modeling efforts at LLNL. These modeling 
tools underlie the suite of analysis codes at LLNL designed 
to assay SNM. 
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