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Abstract - This paper quantifies second-order response sensitivities for a deterministic spent nuclear fuel 

dissolver model, a model representing a likely mechanical component of an aqueous nuclear fuel 

separation facility. Results show large negatively skewed response distributions for several dissolver 

parameters, i.e., smaller than expected values of for computed nitric acid concentrations and discusses 

these results in the context of Gaussian-based confidence intervals used to support decision making. This 

paper compliments several previous numerical studies1-4 using the general forward and inverse predictive 

modeling methodology of Cacuci and Ionescu-Bujor5.  

 

I. INTRODUCTION 

 

The basic motivation for pursuing research and 

development in support of nuclear nonproliferation and 

international nuclear safeguards is to make informed 

decisions on a target of interest where the ability to collect 

accurate data are limited due to potential physical and 

political constraints. When considering using measured or 

computed data to inform such efforts, it should be 

understood that extracting “best estimate” values for model 

parameters and predicted results (responses), together with 

“best estimate” uncertainties requires reasoning from 

incomplete, error-afflicted, and occasionally discrepant 

information5. Quantifying uncertainties that accompanying 

these measurements and computations are essential to 

understanding how well the available information answers 

specific questions regarding the domain of interest, and the 

risk posed by using such information by what is unknown.  

    

Central to the results presented here is Cacuci’s adjoint 

sensitivity analysis methodology (ASAM) 5-8 which 

computes exact model response sensitivities for model 

parameters. These “sensitivities” support a wide range of 

efforts related to model validation such as: (1) 

understanding the system by identifying and ranking the 

importance of model parameters in influencing the response 

under consideration; (2) determining the effects of 

parameter variations on the system’s behavior thus 

improving the system design, possibly reducing 

conservatism and redundancy; (3) prioritizing possible 

improvements for the system under consideration by 

quantifying uncertainties in responses due to quantified 

parameter uncertainties; and (4) performing “predictive 

modeling”, including data assimilation and model 

calibration, for the purpose of obtaining best-estimate 

predicted results with reduced predicted uncertainties8. 

 

The spent nuclear fuel dissolver model comprises 16 

coupled nonlinear first-order equations that describe the 

time-evolution of the volumetric mass concentration of 

nitric acid of the liquid phase. The number of imprecisely 

known scalar model parameters is 1291, for which only the 

nominal values and the corresponding standard deviations 

are known. Previous numerical studies document the 

validation and uncertainty quantification of the dissolver 

model are published and available for better context of 

using the general forward and inverse predictive modeling 

methodology1-4 and its utility to potentially provide a full 

description of errors from both models and measurements5. 

 

This paper is organized as follows: Section 2 provides a 

brief discussion regarding the dissolver model’s base case at 

compartment #1 using spectral representations of an 

operator type response for computing most efficiently exact 

1st order sensitivities developed by Cacuci9; Section 3 

articulates the methodology for quantifying mixed 2nd order 

response sensitivities which are essential for characterizing 

the skewness of the model response distribution and thus a 

description of non-Gaussian features for computed nitric 

acid concentrations; Section 4, shows and discusses results 

for these 2nd order sensitivities and their effect on the 

“skewness” of the response distribution; and Section 5 

concludes with a brief discussion on the importance of 

having these higher order moments when using models and 

measurements for decision making. 

 

II. DISSOLVER MODEL 1ST ORDER SENSITIVITIES 

 

The dissolver model comprises 1291 model 

parameters:
       0 635,..., ,
in in

a at t         0 635,...,
in in

m t m t , 

represented in Figure 1, and 16 initial conditions 
   0
k

a and 
   0
k

V , as well as the parameters a, b, V0, p, 

G.  
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Fig. 1. Top: Dissolver Model parameters Inlet Mass Flow 

Rate 
   0
in

a t  Bottom: Inlet Nitric Acid Concentration 

   0
in

m t . 

 

Particularly important scalar-valued responses for the 

dissolver model are the measured and/or computed nitric 

acid concentration in a compartment k  at a time-instance 

it : 

 

       ( ) ( )

0

ft

k k

a i a i it t t t dt      (1) 

 

The sensitivity of the nitric acid concentration in 

compartment #1 can be obtained by computing the (first-

order) Gateaux-differential5-7 of Eq. (1), given by the 

following expression: 

 

       ( ) ( )

0

1,...,

ft

k k

a i a it t t t dt i I        (2) 

 

where  (1) a t  represents an arbitrary variation in the 

respective concentration. Previous numerical studies on the 

dissolver demonstrate ASAM for a nonlinear system6 and 

“ASAM for operator-type responses”10 respectively. The 

“ASAM for operator-type responses” considers the spectral 

representation of an operator-type (e.g., time and/or pace 

dependent) response. The response  (1) a t  defined in Eq. 

(1) admits the following Nth-order spectral expansion 

 (1)

, a S t  (where the subscript “S” indicates “spectral”):  

     (1)

,

0

2 1 , 0 ,
N

a S n n f f

n

t a P t t t t


      (3) 

with 

     (1)

,
0

2 1
2 1 , 0,1,..., .


   

ft

n a S n f

f

n
a t P t t dt n N

t
 (4) 

 

 
 

Fig. 2. Time-dependent behavior of the exact nitric acid 

concentration in compartment #1,  (1)

, a nom t , and its spectral 

representation,  (1)

, a S t , using the first 17 Legendre 

polynomials. 

 

Figure 2 (above) shows computed model responses using 

the first 17 Legendre polynomials and the full 1291 

parameters. The spectral representation  (1)

, a S t  of  (1) a t  

is shown to differ by less than 1% over the duration of the 

transient (10.5 hours, or 635 computational steps of 1 

minute).  

 

Previous numerical studies7 developed the 1st order 

adjoint sensitivity system and its solution vector i.e., the 

adjoint function as      , Vt t t
  ψ ψ ψ :  

       

     

              

8
0 0 ( )

1 0

8
( )

1 0

8
( )

0 0

1

, ; ,

0 0 0 .

f

f

t

k k

k

t

k k

V V

k

k k k k k

nom a V

k

R t q t dt

t q t dt

V V

  



 



  











        







u α ψ h

      (5) 

As equation 5 indicates, the sensitivities 

 0 0, ; ,R  u α ψ h  to all system parameters can be 

computed after the adjoint sensitivity system is solved once 

and corresponding adjoint functions, , V
  ψ ψ ψ , are 

obtained. Moreover, for computing sensitivities with 

operator type responses for the nitric acid 

concentration,  (1)

,a S t  , takes on the form: 
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       
16

(1) 0

,

0

, ; 2 1 ,
N

a S n n f

n

t a P t t 




   h ψ α (6) 

where  

 

             

              

8 8
0 ( ) ( )

, ,

1 10 0

8
( )

, 0 , 0

1

, ;

0 0 0 ,

0,1,..., 16.

f ft t

k kk k

n n V n V

k k

k k k k k

n nom a V n

k

a t q t dt t q t dt

V V

n N

  



  

  

 



 

        

 

  



h ψ α

      (7) 

 

Equations 6 and 7 are used to compute sensitivities of 

the nitric acid concentration in compartment #1 but can also 

be used to compute the relative sensitivities for the other 

compartments. Only the relative sensitivities for 
 

( )i
in

m t and  ( )in

a it  are shown in this work. Figure 3 shows 

the relative sensitivities for, 
 

( )i
in

m t  and  ( )in

a it  , at 

specific time instances for compartment #1. 

 

 
 

Fig. 3. Relative sensitivities of  (1)

,a nom it   for the scalar 

parameters 
 

( )i
in

m t  and  ( )in

a it  , at times 31 and 360 mins 

in compartment #1. 

 

The relative sensitivities were calculated for all scalar 

parameters at several time steps over the full transient for 

compartments #1, #4, and #7 as published in the predictive 

modeling study1. These sensitivities were also used to 

understand numerous trends which were used to inform the 

2nd order sensitivity analyses to be discussed in the 

subsequent sections of this paper. 

 

III. SKEWNESS AND NON-GAUSSIAN FEATURES 

OF THE NITRIC ACID CONCENTRATIONS 

 

Recall the spent nuclear fuel dissolver model comprises 

16 coupled nonlinear first-order equations that describe the 

time-evolution of the volumetric mass concentration of 

nitric acid of the liquid phase, as shown in Figures 1 and 2. 

The number of imprecisely known scalar model parameters 

is 1291, for which only the nominal values and the 

corresponding standard deviations are known. Recall, all 

parameters are considered to be all uncorrelated and 

normally distributed as shown previously in Section 2.  

 

Assuming an uncorrelated and normally distributed 

parameter distribution function, the mean, covariance, 

variance, and higher order moments as can be simplified as. 

 

     
2

0 2

2
1

1

2

N
UG

k
k k i

i i

r
E r r







    

α  (8) 

  

  2

1

2 2
4

2 2
1

,

1
.

2

N
UG

k
k i

i i i

N

k
i

i i i

r r
cov r r

r r






 


 





  
       

   
   

   





 (9) 

   
2 2

2
2 4

2
1 1

1
var .

2

N N
UG

k k
k i i

i ii i

r r
r

 

 
  

    
            
   (10) 

   
2

2
4

3 2
1

3 .
N

UG
k k

k i

i i i

r r
r



 
 

  
       
  (11) 

 

where the superscript “UG” indicates “uncorrelated 

Gaussian” parameters. Expressions 8-11 indicate the 2nd 

order sensitivities have the following impacts on the 

response moments: (1) they cause the “expected value of the 

response,  
UG

kE r   , to differ from the computed nominal 

value of the response”,  0

kr α ; (2) they contribute to the 

response variances and covariances; however, since the 

contributions involving the second-order sensitivities are 

multiplied by the fourth power of the parameters’ standard 

deviations, the total of these contributions is expected to be 

relatively smaller compared to the contributions of the first-

order response sensitivities; and (3) the 2nd-order 

sensitivities provide the leading contributions to the third-

order moment,  3

UG

kr   , and –hence the skewness, a 

response that depends on uncorrelated and normally 

distributed parameters. 

 

The above relations are also valid when the parameters 

and/or responses are implicit functions of time, as is the 

case for the acid concentration responses 

 ( ) , 1,...,8k

a it k   , which are functions of 1291 scalar 

parameters. If the inlet mass rate flow 
   in

im t  and the inlet 

 

   

   
   

 
1

1

31min
%

31min 60min

in

a

in

a

m

m










 

   

   
   

 
1

1

31min
%

31min 60min

in

aa

in

a a



 






 

   

   
   

 
1

1

360min
%

360min 60min

in

a

in

a

m

m










 

   

   
   

 
1

1

360min
%

360min 60min

in

aa

in

a a



 





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acid concentration  ( )in

a it   are considered to vary 

independently at every time node ti, 1,...,635i  then: 

 

 
 

 
   

 

 

 
   

( ) 0 ( ) 0

( )

2 ( ) 0 2 ( ) 0

2 2
( )

; ;
0, 0, , 1,...,635;

; ;
0, 0, , 1,...,635.

k k

a i a i

inin

a j j

k k

a i a i

inin

a j j

t t
j i i

t m t

t t
j i i

t m t

 



 



   
   

  

   
   

        

α α

α α
 

      (12) 

 

and 

 

     

( )
0 , 0

( )

,( )

( )

,

( )

, .

, ,

, ,
;

, ,

, ,

in
A A a A A

in
B A Bin a B A Bin

a in
C C D a C C D

in
D D f a D D f

m t t t t t t

m t t t t t t
m t t

m t t t t t t

m t t t t t t










    
     

   
    

     

 

      (13) 

 

Which means that the time dependent acid 

concentrations do depend on parameters from future time 

steps and that 
   in

m t  and  ( )in

a t   do not vary 

independently at each time step, but are piecewise constant 

functions as verified by Figure 1. Consequently, equations. 

8, 10, and 11 take on the following form for the expectation 

for the time-dependent acid concentration, 

 ( ) , 1,...,8k

a it k   , in each of the eight compartments: 

 

The expectation,  ( ) 0;k

a iE t 
 

α , of  ( ) 0;k

a it  α : 

 

     ( ) 0 ( ) 0 ( ) 0

2; ; ; ,

1,...,8; 1,...,635;

k k k

a i a i a iE t t E t

k i

         
   

 

α α α
 (14) 

 

where the quantity  ( ) 0

2 ;k

aE t 
 

α  comprises the 2nd-order 

contributions to the expectation  ( ) 0;k

aE t 
 

α  and is 

defined as:  

 

 
 
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 

 
   

   

 
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2 2
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 

 
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 

 
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 
 
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   
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,

var 0

1,...,8; 1,...,635;
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 
 
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 
 
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  

 



 

   (15) 

 

where the quantity  ; iX k t  is defined for 

1,...,8; 1,...,635k i  , as follows:  

 

 

 
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 
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






  
   

       
  

 
  

α
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   (16) 

 

 

 

 
 

 

 

 
 

 

2 ( ) 0

( )

,2
( )

,

2 ( ) 0

2

2 ( ) 0

( )

,2
( )

,

2 ( ) 0

2

;
var

1
;

2 ;
var

;
var

1
, ;

2 ;
var

k

a i in

a A
in

a A

i
k

a i

A

A

k

a i in

a B
in

a B

A i B
k

a i

B

B

t

X k t
t

m
m

t

for t t t
t

m
m















  
   

    
 

  
 

  

  
   

       
  

 
  

α

α

α

α

 

   (17) 



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering, 

Jeju, Korea, April 16-20, 2017, on USB (2017) 

 

 

 
 

 

 

 
 

 

 

2 ( ) 0

( )

,2
( )

,

2 ( ) 0

2

2 ( ) 0

( )

,2
( )

,

2 ( ) 0

2

2 ( ) 0

;
var

1
;

2 ;
var

;
var

1

2 ;
var

;

1

2

k

a i in

a A
in

a A

i
k

a i

A

A

k

a i in

a B
in

a B

k

a i

B

B

k

a i

a

t

X k t
t

m
m

t

t
m

m

t



















  
   

    
 

  
 

  

  
   

      
  

 
  

 




α

α

α

α

α

 
 

 

( )

,2
( )

,

2 ( ) 0

2

var

, ;
;

var

in

a C
in

C

B i C
k

a i

C

C

for t t t
t

m
m





 
   

       
  

 
  

α

 

   (18) 

 

 

 
 

 

 

 
 

 

 

2 ( ) 0

( )

,2
( )

,

2 ( ) 0

2

2 ( ) 0

( )

,2
( )

,

2 ( ) 0

2

2 ( ) 0

;
var

1
;

2 ;
var

;
var

1

2 ;
var

;

1

2

k

a i in

a A
in

a A

i
k

a i

A

A

k

a i in

a B
in

a B

k

a i

B

B

k

a i

a

t

X k t
t

m
m

t

t
m

m

t



















  
   

    
 

  
 

  

  
   

      
  

 
  

 




α

α

α

α

α

 
 

 

 

 
 

 

( )

,2
( )

,

2 ( ) 0

2

2 ( ) 0

( )

,2
( )

,

2 ( ) 0

2

var

;
var

;
var

1
, .

2 ;
var

in

a C
in

C

k

a i

C

C

k

a i in

a D
in

a D

C i D
k

a i

D

D

t
m

m

t

for t t t
t

m
m












 
   

    
 

  
 

  

  
   

       
  

 
  

α

α

α  

   (19) 

 

The variance,  ( ) 0Var ;k

a it 
 

α , of  ( ) 0;k

a it  α : 
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     

 

α α α
 

   (20) 

where the quantities  ( ) 0

1Var ;k

a it 
 

α  and 

 ( ) 0

2Var ;k

a it 
 

α  comprise the 1st-order and, respectively, 

the 2nd-order contributions to the variance 

 ( ) 0Var ;k

a it 
 

α , and the 3rd-order moment, 

 ( ) 0

3 ;k

a it  
 

α , of  ( ) 0;k

a it  α  but also having the 

quantities  ; iY k t , and  ; iZ k t  respectively for 

1,...,8; 1,...,635for k i  , again which are similar in 

time and form of  ; iX k t  as shown in expressions 16-19. 

The skewness,  ( ) 0

1 ;k

a it  
 

α , of  ( ) 0;k

a it  α takes the 

form: 
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α α α

   (21) 

 

Only a few non mixed 2nd order response sensitivities are 

needed to compute the respective terms from the 

expressions, and since the quantities for 

 (1) 0

1Var ;a it 
 

α and  (7) 0

1Var ;a it 
 

α  which were 

computed exactly using the ASAM in previously studies1 so 

it’s more expedient to compute the respective non-mixed 

2nd-order response sensitivities by using forward 

computations in conjunction with finite difference formulas, 

at every time step ti, 1,...,635i  as: 
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   (22) 

 

IV. RESULTS 

 

The relative and absolute 2nd-order sensitivities of the 

time-dependent acid concentrations  (1) 0;a it  α  in 

compartment #1 (furthest from the inlet) and, respectively, 

 (7) 0;a it  α  in compartment #7 (closest to the inlet) were 

computed for all parameters but are depicted for Am , the 

largest, as shown in Figure 4 below.  
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Fig. 4. Figure 4. Absolute (left) and relative (right) 2nd-order 

sensitivities of  (1) 0;a it  α (top) and  (7) 0;a it  α (bottom) 

with respect to Am , for ti, 1,...,635i  . 

 

Some general trends for all of the computations performed 

indicate that: (1) the relative 2nd-order sensitivities are much 

smaller than the corresponding 1st-order sensitivities; (2) the 

largest are the relative 2nd-order sensitivity of  (1) 0;a it  α  

with respect to the model parameters  in

Am , 0V  and b , at early 

times into the full transient, as well as to the model 

parameter  in

Dm , towards the end of the transient; (3) the 2nd-

order sensitivities of the acid concentration in compartment 

#1 (furthest from the inlet) overall are larger than the 

corresponding 2nd-order sensitivities of the acid 

concentration in compartment #7 (closest to the inlet).  

 

 

 

 

 
 

Fig. 5. Comparison of the nominal values  (1) 0;a it  α  and 

 (1) 0;a iE t 
 

α  for ti, 1,...,635i  . 

 

Figure 5 illustrates the effects of the 2nd order sensitivities 

on the expectation values,  (1) 0;a iE t 
 

α  , of the acid 

concentration responses in the dissolvers compartments was 

found to be quite small. Figure 6 illustrates depicts the 

contributions of the 2nd-order sensitivities, contained in the 

quantity,  (1) 0

2Var ;a it 
 

α , to the variance of the acid 

concentration,  (1) 0;a it  α , in compartment #1. This figure 

also depicts the minute influence of the 2nd-order 

sensitivities on the standard deviation of the acid 

concentration,  (1) 0;a it  α , in compartment  #1. 

 

 
 

Fig.6. Top: Comparison of the standard deviation of 

 (1) 0;a it  α  computed with 1st-order sensitivities vs. both 1st- 

and 2nd-order sensitivities, for ti, 1,...,635i  . Bottom: 
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Time-dependent variation of  (1) 0

2Var ;a it 
 

α , cf. Eq. 

(20), for ti, 1,...,635i  . 

 

The largest effects overall are on the expected value of the 

acid concentration in compartment #1. The individual 

contributions of the 2nd-order sensitivities to the most 

important model parameters and the skewness of the acid 

concentration responses  (1) 0;a it  α  and  (7) 0;a it  α  in 

compartments #1 and #7, furthest and closest to the inlet, 

respectively are depicted Figures 7-9. Figure 7 shows the 

negative distribution of  (1) 0;a it  α  which occurs at ca. 3 

hours into the transient which stems from the uncertainties 

in the (assumed) normally-distributed model parameter 
( )

, .

in

a A  This behavior of notably large negative values for 

skewness in the distributions that occur in the middle of the 

transient for  (1) 0;a it  α  and  (7) 0;a it  α , induced by the 

parameters 
 
,

in

a B  and 
 
,

in

a C , respectively as shown by Figures 

8 and 9. 

 

 
 

Fig. 7. Skewness in the distribution of  (1) 0;a it  α  (left) 

and, respectively,  (7) 0;a it  α  (right) due the uncertainties 

in the (assumed) normally-distributed model parameter 
 
, .

in

a A  

 

 
 

Fig. 8. Skewness in the distribution of  (1) 0;a it  α  (left) 

and, respectively,  (7) 0;a it  α  (right) due the uncertainties 

in the (assumed) normally-distributed model parameter 
 
, .

in

a B  

 

 
 

Fig. 9. Skewness in the distribution of  (1) 0;a it  α  (left) 

and, respectively,  (7) 0;a it  α  (right) due the uncertainties 

in the (assumed) normally-distributed model parameter 
 
, .

in

a C  

 

These highly negative values imply that the distributions of 

the responses  (1) 0;a it  α  and  (7) 0;a it  α  become heavily 

skewed toward smaller values than what would be 

calculated for the expected values. This behavior continues 

and increases by a factor of about 5 for the distribution of 

 (1) 0;a it  α  in the compartment furthest from the inlet 

which again would imply smaller values than expected 

values. The cumulative impact of the uncertainties in the 

parameter distributions (assumed to be normal) on the 

skewness in the distributions of  (1) 0;a it  α  and 

 (7) 0;a it  α , respectively, are depicted in Figure 10. 

 

 
 

Fig. 10. Time-dependence of the total skewness, 

 (1) 0

1 ;a it  
 

α , in the distribution of  (1) 0;a it  α (left); 

and, (right) that of  (7) 0

1 ;a it  
 

α  in the distribution of 

 (7) 0; .a it  α  

 

As the plot on the left-side of Figure 10 indicates, the largest 

negative skewness in the distribution of  (1) 0;a it  α  occurs 

at ca. 4.5 hours into the transient, and this negative 

skewness can be attributed overwhelmingly to the 



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering, 

Jeju, Korea, April 16-20, 2017, on USB (2017) 

uncertainties stemming from the parameter 
 
,

in

a B  (as seen by 

Fig. 8). The second-largest negative skewness in the 

distribution of  (1) 0;a it  α  occurs at ca. 7-7.5 hours into the 

transient, and this negative skewness can be attributed 

overwhelmingly to the uncertainties stemming from the 

parameter ( )

,

in

a C  (see Figure 9). The third-largest negative 

“dip” in the skewness in the distribution of  (1) 0;a it  α  

occurs earlier in the transient, at ca. 3 hours into the 

transient; this negative “dip” stems from the uncertainties in 

the (assumed) normally-distributed model parameter ( )

,

in

a A  

(see Figure 7). These same features are evident in the plot of 

the skewness in the distribution of  (7) 0;a it  α , near the 

inlet of the dissolver as depicted on the right-side of Figure 

10.  The three negative “dips” of varying magnitudes are 

similar to, but are much smaller and occur earlier in time 

than the negative “dips” in the distribution of  (1) 0;a it  α . 

The three “dips” in the skewness of the distribution of 

 (7) 0;a it  α , are caused by the uncertainties in the same 

parameters (sequentially in time) ( )

,

in

a A , ( )

,

in

a B , and ( )

,

in

a C . In 

conclusion, the combination of 2nd-order sensitivities and 

uncertainties in ( )

,

in

a A , ( )

,

in

a B , and ( )

,

in

a C  are the most important, 

in this order, in contributing to the marked negative dips in 

the skewness of the acid concentration response 

distributions. The effects of the combination of 2nd-order 

sensitivities and uncertainties in ( )

,

in

a B , ( )

,

in

a C , and ( )

,

in

a A  

increase in strength for the acid concentrations in the 

compartments furthest away from the inlet. 

 

V. CONCLUSIONS AND OUTLOOK 

 

The results of Section 4 present data for why it’s 

important to characterize the risk with using base case 

calculations to support decisions regarding dissolver/model 

performance. Non-zero skewness implies an asymmetric 

distribution of responses; in the case of the nitric acid 

concentration responses the respective asymmetries are 

negative, meaning that respective distributions favor values 

smaller than mean values. In other words assuming a 

Gaussian distribution for the response distributions would 

be misleading impacting activities such as; coupling the 

dissolver to other physico-mechanical models, adding 

equations for accounting for fission materials and gasses, or 

using measurements to “inversely” verify declarations with 

these calculations. 

 

This work establishes and documents the dissolver model’s 

performance and accuracy for simulating nitric acid 

concentrations needed to dissolve spent nuclear fuel which 

in turn suggest accuracy in generating the source terms for 

key reprocessing facility components downstream. Clearly, 

if non-Gaussian features of responses are to be captured and 

characterized then the computation of the 2nd-order 

responses sensitivities to the model parameters are essential. 

A new method which extends the 1st-order ASAM using 

adjoint operators, for computing most efficiently the exact 

2nd-order sensitivities of the acid concentration in the 

surrogate dissolver model enables the computation of all of 

the 2nd-order response sensitivities exactly and efficiently, 

requiring at most  1N   adjoint computations, as 

opposed to   1 2 / 2N N    forward computations 

required if using finite-difference formulas. The 2nd-order 

sensitivities impact the moments of the response distribution 

causing the “expected value of the response” to differ from 

the “computed nominal value of the response, albeit 

generally less than 1st order sensitivities, but are shown here 

to be the leading contributions to the third-order moment, or 

skewness of response distributions from uncorrelated and 

normally distributed parameters. 

 

In the case of the full dissolver model developed and 

analyzed in this work, Gaussian-based confidence intervals 

would be very misleading for the times into the transient 

behavior of the acid concentration in the dissolver, 

particularly around the middle of the transient (around 3.5 to 

4.5 hours after the initiation of the transient) and towards 

the last third of the transient (after 6 to 7.5 hours) that lasts 

for 10.5 hours, since the response skewness becomes large 

and negative over these times. Different procedures, based 

on chi-squared (with few degrees of freedom) or other 

asymmetric distributions would be needed to establish 

confidence intervals at these particularly important times.  

 

Thinking about nuclear fuel reprocessing on a facility level 

scale, the aforementioned source terms might include 

actinide concentrations, fission gases, material inventories, 

etc., which either would be used to understand operational 

performance for reprocessing or be used for activities such 

as better understanding material accountability for 

international nuclear safeguards. Quantifying the accuracy 

of measurements and computations, as well as 

understanding their value for minimizing ignorance or risk 

would be key to assigning accurate confidence intervals and 

using these data beyond a paper study regardless of their 

intended application. In particular, ongoing work is aimed at 

extending and coupling the dissolver model analyzed here to 

other key reprocessing facility components, including 

condenser, solvent extractor, and evaporator, which will, in 

turn, be coupled to a cooling tower and atmospheric 

transport models for a full component capability to model 

aqueous nuclear fuel reprocessing. Future work will extend 

the application of the forward and inverse predictive 

modeling methodology of Cacuci and Ionescu-Bujor5 and its 

applications to multiple components of nuclear facilities for 

use in more comprehensive nuclear safeguard applications. 
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