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Abstract - The Analytical Discrete Ordinates method for adjoint transport problems is applied in the solving
process of an inverse problem of neutral particles source reconstruction in a physical medium with known
properties and geometry.

I. INTRODUCTION

Source estimation of nuclear particles is of utmost rele-
vance in the effort against nuclear proliferation. A tool that
might aid in the solution of such problems is the Analytical
Discrete Ordinates (ADO) method, a version of the S n method
characterized for obtaining explicit solutions, with respect to
the spatial variable, for the one-dimensional transport equation
and its adjoint form [1, 2]. Recent studies also point out [3]
that the ADO method along with nodal techniques, when ap-
plied in bi-dimensional problems, are able to reproduce results
as accurate as other techniques from coarser meshes, which
might provide a speed up in computational time.

In this work, the ADO adjoint solution is applied to solve
an inverse problem of neutral particle source reconstruction
in a medium with known physical properties and geometry,
which results in a finite dimensional linear inverse problem
[4].

II. MATHEMATICAL FORMULATION

Given an isotropic source of neutral particles S , the dis-
tribution of particles in one-dimensional slab geometry is ob-
tained as the solution of the transport problem

Lψ = S , (1)

with the transport operator L written as [5]

Lψ(z, µ) = µ
∂

∂z
ψ(z, µ) + σψ(z, µ)

−
c
2

L∑
l=0

βlPl(µ)
∫ 1

−1
Pl(µ′)ψ(z, µ′)dµ′ (2)

where ψ is the angular flux of particles, in this work assumed
to be symmetrical with respect to the azimuthal variable;
µ ∈ [−1, 1] is the cosine of the polar angle measured from
the positive z-axis, with z ∈ (0, z0). Moreover, the total macro-
scopic cross-section is represented by σ, c is the mean number
of neutral particles emerging from collisions, and βl’s are the
coefficients of the expansion of the scattering in terms of Leg-
endre’s polynomials Pl’s. Additionally, boundary conditions
on the inward directions are prescribed as

ψ(0, µ) = g1(µ) + α1ψ(z,−µ), (3a)

ψ(z0,−µ) = g2(µ) + α2ψ(z0, µ), (3b)

for µ ∈ [0, 1], with known incoming fluxes at the boundaries
g1 and g2, and α1, α2 ∈ [0, 1], the reflection coefficients.

If σd is the absorption macroscopic cross-section of a
neutral particles detector located within (0, z0), then [5]

r = 〈ψ, σd〉 ≡

∫ z0

0

∫ 1

−1
σd(z, µ)ψ(z, µ)dµdz (4)

is a measure of the absorption rate of neutral particles by the
detector. In this formulation, σd is defined as a positive con-
stant in a given contiguous region of (0, z0) and zero outside
the region. Thus, r measures the absorption rate of neutral par-
ticles within the detector’s region migrating from all possible
directions.

Closely related to the transport operator L, the adjoint
transport operator L† is defined by [5]

L†ψ†(z, µ) = −µ
∂

∂z
ψ†(z, µ) + σψ†(z, µ)

−
c
2

L∑
l=0

βlPl(µ)
∫ 1

−1
Pl(µ′)ψ†(z, µ′)dµ′ (5)

where all physical parameters are the same as the ones in the
transport operatorL. The rate of absorption of neutral particles
defined in Equation (4) might be alternatively computed as [5]

r =
〈
ψ†, S

〉
− P

(
g1, g2, ψ

†
)

(6)

by means of solving the adjoint transport problem

L†ψ† = σd (7)

subjected to boundary conditions prescribed by

ψ†(0,−µ) = α1ψ
†(z, µ), (8a)

ψ†(z0, µ) = α2ψ
†(z0,−µ), (8b)

for µ ∈ [0, 1]. The term P
(
g1, g2, ψ

†
)

represents a contribution
of particles migrating on both inward and outward directions
at z = 0 and z = z0 and is given by

P
(
g1, g2, ψ

†
)

= −

∫ 1

0
µ
[
g1(µ)ψ†(0, µ)

+g2(µ)ψ†(z0,−µ)
]

dµ. (9)
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III. SOURCE RECONSTRUCTION STRATEGY

Following Hykes and Azmy [4], a set of D particle de-
tectors are placed within the physical domain [0, z0]; for each
detector, the adjoint angular flux that solves L†ψ† = σd,i is
known, with σd,i the absorption macroscopic cross section
of the i-th detector; the original source of neutral particles S
might be accurately approximated by the projection of S onto
a linear space with known basis function f j, j = 1, . . . , B, i.e.,
S might be approximated by

Ŝ (z) =

B∑
j=1

α j f j(z), (10)

with constants α j yet to be found, i.e., targets of our source
reconstruction process. Under these assumptions, the rate of
absorption of neutral particles within the i-th detector region
might be computed by

ri =
〈
ψ†i , Ŝ

〉
− P

(
g1, g2, ψ

†

i

)
=

B∑
j=1

α j

〈
ψ†i , f j

〉
− P

(
g1, g2, ψ

†

i

)
(11)

for i = 1, . . . ,D. Upon defining r = [ri] ∈ RD, p =[
P

(
g1, g2, ψ

†

i

)]
∈ RD and A =

[〈
ψ†i , f j

〉]
∈ RD×B, Equa-

tion (11) is rewritten in vector form as

r = Aα − p (12)

with α =
[
α j

]
∈ RB. It is remarked here that the explicit

dependence of Equation (6) on the source of neutral particles
S allows one to reevaluate the detectors’ readings vector r
without needing to recompute the adjoint angular flux ψ†i .
Furthermore, since this dependence is linear and given the
approximation of S by Ŝ , the readings r are linearly related to
the weights α j of Equation (10), which allows the derivation
of a linear inverse problem.

If for each neutral particle detector a noisy measurement
rm,i is made available, computed by numerical simulation or
obtained through physical experimentation, the coefficients α j
in Equation (10) are to be estimated by the minimization of
the objective function [4]

f (α) = ||r′ − Aα||22, (13)

with r′ = rm − p, rm =
[
rm,i

]
∈ RD.

In this work, only sectionally constant approximations
are considered to the neutral particle source S , thus, given
[0, z0] =

⋃B
j=1[z j−1, z j], a partition of the physical domain, a

function basis is defined as [4]

f j(z) =

{
1, if z ∈

[
z j−1, z j

]
,

0, otherwise. (14)

Since the space generated by the basis functions in Equa-
tion (14) might be too poor for the true space of the particle
source S , the well known ill-posedness of inverse problems
might negatively affect the quality of the reconstruction. This

problem is treated here by searching for Tikhonov regularized
solutions of a minimization problem, i.e, looking for solutions
that minimize the objective function [6]

fλ(α) = ||r′ − Aα||22 + λ2||α||22, (15)

where λ is the Tikhonov’s regularization parameter, here cho-
sen by the Morozov discrepancy principle [6].

IV. AN ANALYTICAL FORMULATION TO
THE ADJOINT TRANSPORT EQUATION

The inversion strategy previously described requires the
adjoint transport equation L†ψ† = S † to be solved for each
detector. A fast, concise and accurate approach is the Ana-
lytical Discrete Ordinates (ADO) method, originally derived
by Barichello and Siewert [1] for the transport equation and
extended by Pazinatto et. al. [2] to the adjoint transport equa-
tion.

Since Equation (5) is linear, the solution ψ† is written as
the solution of the homogeneous equation L†ψ†h = 0 plus any
particular solution. For the sake of simplicity, all physical
parameters are considered constant. If sectionally constant,
the domain is partitioned in regions of constant parameters,
and continuity restrictions are then imposed on the adjoint
angular flux at the interfaces of contiguous regions. Once a
set of N nodes and weights {µi,wi} of a quadrature scheme
are fixed for the interval [0, 1], the angular dependence of the
homogeneous equation is discretized in the directions µ = ±µi
as

∓µi
d
dz
ψ†h(z,±µi) + σψ†h(z,±µi) =

c
2

L∑
l=0

βlPl(µi)dl(z) (16a)

with

dl(z) =

N∑
k=1

wkPl(µk)
[
ψ†h(z, µk) + (−1)lψ†h(z,−µk)

]
. (16b)

Moving on, spectral solutions in the form

ψ†h(z,±µi) = φ(ν, µi)e−z/ν (17)

are sought. After a series of algebraic operations carefully
described in Pazinatto et. al. [2], the homogeneous solution to
the adjoint transport equation is given by

ψ†
±,h(z) =

N∑
j=1

[
a jφ±(ν j)e−z/ν j + b jφ∓(ν j)e−(z0−z)/ν j

]
, (18)

where ψ†
±,h(z) =

[
ψ†h(z,±µi)

]
∈ RN and φ±(ν) =

[
φ(ν,±µi)

]
∈

RN with eigenfunctions defined by

φ±(ν) =
1
2

M−1 (I ∓ νB+) x, (19a)

with M = diag (µi) ∈ RN×N , where x ∈ RN and ν > 0 are such
that

B−B+x =
1
ν2 x, (19b)
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with B± ∈ RN×N written as

B+ =

σI −
c
2

L∑
l=0

βlΠlΠ
T
l W[1 + (−1)l]

 M−1 (19c)

and

B− =

σI −
c
2

L∑
l=0

βlΠlΠ
T
l W[1 − (−1)l]

 M−1 (19d)

where Πl =
[
Pl(µi)

]
∈ RN and W = diag(wi) ∈ RN×N .

For the special case where S † is a constant source, a
particular solution is written as

ψ†p(z, µ) =
S †

σ − cβ0
(20)

and can be easily verified by direct substitution into the adjoint
transport equation. It is noted however that in order to apply
this particular solution, the domain must be divided such that
there are no regions with more than one detector in order to
deal with possible discontinuities on the particular solution.

On the other hand, if S † is a non-constant source, a sys-
tematic approach is obtained by the use of Green’s functions
in infinite medium as derived in [7] by Barichello and Siewert,
and latter extended to the adjoint transport equation. This
particular solution is expressed in terms of the eigenfunctions
φ± defined in Equation (19a) and is written as

ψ†±,p(z) =

N∑
j=1

[
a j(z)φ±(ν j) + b j(z)φ∓(ν j)

]
(21)

where, for an isotropically defined source S †,

a j(z) = c j

∫ z

0
S †(z′)e−(z−z′)/ν j dz′ (22a)

and
b j(z) = c j

∫ z0

z
S †(z′)e−(z′−z)/ν j dz′ (22b)

with

c j = −

N∑
i=1

wi

[
φ(ν j, µi) + φ(ν j,−µi)

]
N∑

i=1

wiµi

[
φ(ν j, µi)2 − φ(ν j,−µi)2

] . (22c)

It should be stressed that this particular solution formulation
allows to deal with source terms defined as piecewise func-
tions, without imposing any restrictions on the domain divi-
sion, which reduces the order of the linear system in compari-
son with the treatment mentioned previously for the constant
case. However, the evaluation of the spatial integrals in Equa-
tion (22) might be costly if they are to be approximated by a
quadrature scheme, an inexistent problem if analytical expres-
sion for the integrals are available.

V. COMPUTATIONAL ASPECTS AND
NUMERICAL RESULTS

All tests were performed on a machine equipped with an
Intel Core i5-4670 processor with 16 GiB of RAM. The mini-
mization of the objective function defined in Equation (15) was
performed by the non-negative least squares nnls subroutine,
available at Netlib1. As a first test problem, the reconstruction
of a polynomial source

S (z) = −
z2

150
(z − 10) (23)

is considered for z0 = 10. The physical parameters are set as
c = 0.99, σ = 1, β0 = 1, β1 = 9/4, β2 = 25/12, β3 = 7/6,
β4 = 9/22, β5 = 1/12 and β6 = 1/132 [2]. It is also assumed
that there is no incoming flux at the boundaries z = 0 and
z = 10.

A set of ten neutral particle detectors are uniformly dis-
tributed within the physical domain with absorption cross-
sections

σd,i =

{
0.1, z ∈ [0.4 + i − 1, 0.6 + i − 1],
0.0, otherwise, (24)

with i = 1, . . . , 10. For each detector, a reading rm,i is com-
puted by Equation (4) using the solution of the transport equa-
tion Lψ = S obtained by the ADO method with N = 4,
thereafter, white noise is applied to the readings in order to
generate 5000 different tests to the problem. Figure (1) shows
the distribution of the maximum error imposed on the readings
rm,i.
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Fig. 1. Measurement errors imposed on the readings rm,i.

For the first test, a partition

[0, 10] =

10⋃
j=1

[ j − 1, j] (25)

is considered in Equation (14) to define the basis functions. In
Figure (2), the dashed line represents the true source S defined
in Equation (23) and the solid lines are the reconstruction Ŝ
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Fig. 2. Reconstruction using partition [0, 10] =
⋃10

j=1[ j − 1, j].
Dashed line is the true source S and solid lines represent the
reconstruction Ŝ .

of minimal relative error from all the reconstructions. As the
graph in Figure (2) indicates, the reconstruction process was
able to recover the shape of the source of neutral particles S .

Next, the transport equation Lψ̂ = Ŝ is solved in or-
der to compute readings r̂m,i with the reconstructed source

Ŝ . Relative errors between the noisy free measurements and
the reconstructions were computed. Figure (3) indicates a be-
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Fig. 3. Relative errors on the reconstructed reading r̂m,i using
partition the [0, 10] =

⋃10
j=1[ j − 1, j].

havior similar between the error in the measurements and the
reconstruction error. It is also highlighted that the maximum
value computed to the Tikhonov’s regularization parameter
was 0.0680.

1http://www.netlib.org/, last accessed in 9/17/2016.

As a second reconstruction test, a partition

[0, 10] =

20⋃
j=1

[0.5( j − 1), 0.5 j] (26)

is considered in Equation (14). Similarly to the previous
reconstruction, the graph in Figure (4) indicates that the recon-
struction process was able to recover the shape of the source
of neutral particles S .
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Fig. 4. Reconstruction using partition the [0, 10] =⋃20
j=1[0.5( j − 1), 0.5 j]. Dashed line is the true source S and

solid lines represent the reconstruction Ŝ .

After the numerical evaluation of the transport equation
using the reconstructed source Ŝ , the relative errors in Fig-
ure (5) were found to be similar to the measurement errors
in Figure (1) and the relative reconstruction for the previous
test case in Figure (3). The maximum value computed to
the Tikhonov’s regularization parameter was 0.0472, slightly
inferior to the previous reconstruction test.

As a third test problem, it is considered the reconstruction
of a localized source piecewisely defined for z ∈ [0, 30] by

S (z) =


0.75, z ∈ [17, 20),
1.00, z ∈ [20, 24),
0.25, z ∈ [24, 26],
0.00, otherwise.

(27)

The particles are assumed to be isotropically migrating
within the slab, a medium with physical parameters set as
c = 0.3, σ = 1 and β0 = 1. As before, it is also assumed that
there is no incoming flux at the boundaries z = 0 and z = 30.

At this time, a set of sixty neutral particle detectors are
uniformly distributed within the physical domain, with absorp-
tion cross section

σd,i =

{
0.1, z ∈ [(2 j − 11/10)/4, (2 j − 9/10)/4],
0.0, otherwise, (28)

with i = 1, . . . , 60. Just as before, for each detector, a reading
rm,i is computed by Equation (4) and, thereafter, white noise
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Fig. 5. Relative errors on the reconstructed reading r̂m,i using
partition [0, 10] =

⋃20
j=1[0.5( j − 1), 0.5 j].

were applied to the readings in order to generate 5000 different
tests to the problem. Figure (6) shows the distribution of the
maximum error imposed on the readings rm,i.
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Fig. 6. Measurement errors imposed on the readings rm,i.

For the reconstruction, a partition

[0, 30] =

60⋃
j=1

[0.5( j − 1), 0.5 j] (29)

is considered in Equation (14). In Figure (7), the dashed line
represents the true source S defined in Equation (23) and the
solid lines are the reconstruction Ŝ of minimal relative error
from all the reconstructions.

The transport equation is evaluated using the recon-
structed source Ŝ in order to calculate the relative errors be-
tween the exact measurements and the noisy ones. Figure (8)
exhibits the maximum relative errors among the sixty measure-
ments for all 5000 tests. The errors were found to be inferior

Fig. 7. Reconstruction using partition [0, 30] =
⋃60

j=1[0.5( j −
1), 0.5 j]. Dashed line is the true source S and solid lines
represent the reconstruction Ŝ .
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Fig. 8. Relative errors on the reconstructed reading r̂m,i using
partition [0, 30] =

⋃60
j=1[0.5( j − 1), 0.5 j].

than the noise added to the measurements as Figure (6) indi-
cates. For this test problem, the maximum value among the
Tikhonov’s regularization parameters was 0.1221, a higher
value than the ones presented on the previous test problems.

According to Equation (28), 60 particles detectors are cur-
rently distributed uniformly within the slab, where 18 of these
detectors are within the positive source range, z ∈ [17, 26].
As a fourth and final test, all of these detectors are removed
with the exception of the ones defined in Equation (28) with
i = 38, 41, 46 and 51, resulting on an underdetermined system
in Equation (13). The distribution of the maximum error added
to the readings rm,i is shown in Figure (9).

For each reconstruction, the transport equation is evalu-
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Fig. 9. Measurement errors imposed on the readings rm,i.

ated with the reconstructed source and the detectors readings
are computed. Figure (10) shows the maximum relative errors
among all detectors between the readings calculated using the
reconstructions and the original source. The maximum value
of the regularization parameter in Equation (15) was the same
as before, 0.1221.
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Fig. 10. Relative errors on the reconstructed reading r̂m,i using
partition [0, 30] =

⋃60
j=1[0.5( j − 1), 0.5 j].

VI. DISCUSSION

The Analytical Discrete Ordinates method was success-
fully applied in a simple source reconstruction model problem,
yielding good results in the sense that errors on the estimated
measurements were found slightly inferior to the noise added
to the real readings. Moreover, the first test problem took an
average of 6.9 × 10−4 seconds per inversion. For the second

test problem, an average of 1.2 × 10−3 seconds was required
per inversion. The third and fourth test problems took an aver-
age of 9.8 × 10−3 and 8.8 × 10−3 seconds per inversion. The
ADO formulation is still open to be tested against probabilistic
approaches to the solution of the adjoint transport problem.
Currently additional tests related to localized sources and al-
ternative forms of errors are being performed as well as the
inclusion of energy dependence in the model problem .
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