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Abstract - Many functional properties of different materials can be determined by an understanding of the
local structure and atomic-level disorder. This insight is critical to the nuclear science community as it
directly impacts the quality of materials and forensic science. Reverse Monte Carlo is a general method of
structural modeling that has made it possible to generate three-dimensional structural models whose atomic
configurations are consistent with experimental data. Although data and models are consistent, the specific
structural model acquired from the Reverse Monte Carlo algorithm is a single non-unique solution. Therefore,
multiple runs of the RMC algorithm are required to quantify the variability in model solutions and the material
structures that they are meant to represent. We propose a Bayesian approach to structural modeling that
provides improved estimates of the variances of all atomic coordinates without requiring multiple runs of the

estimation algorithm.

I. INTRODUCTION

Understanding the composition and spatial configuration
of atoms within a material is critical to advance many areas of
science and technology [1]. Knowledge of the atomic disorder
can directly lead to the discovery of new materials with im-
proved properties [2]. In particular, materials that are directly
related to nuclear science could be improved, such as semi-
conductor detectors and scintillators [3, 4]. Understanding
crystalline properties can also be useful to nuclear forensic
science for inferring sample provenance [5, 6].

We can infer the atom location by the Reverse Monte
Carlo (RMC) algorithm [7] which produces a set of plausible
atomic locations consistent with the experimental data. How-
ever, the resulting solution set is not unique. Further, as a
single realization of reasonable locations, it does not include
any formal error quantification. Therefore, we consider the use
of a hierarchical Bayesian framework that quantifies joint un-
certainties of all of the atomic location estimates and provides
a natural way to assess modeling assumptions.

II. ATOMIC STRUCTURAL MODELLING
1. Data Collection

Materials scientists describe the structure of materials in
terms of the patterns that are combined to fill space, known as
unit cells [8]. This substructure is then repeated to create a su-
percell (see example of barium titanate (BaTiO3) in Figure 1).
In BaTiO3, a single barium atom, neighboring titanium atom,
and three adjacent oxygen atoms describe the unit cell. The
complete lattice, i.e. supercell, is then easily constructed by
repeating the pattern of these six atoms throughout the prede-
termined domain. To improve materials, such as those used
in semiconductor detectors and scintillators, scientists must
understand their electrical and mechanical properties. That
understanding comes from measuring the relative distance
between all atoms in the supercell.

Unfortunately, the science of measuring relative atom

distance is challenging due to the sub-microscopic scale of
the measurements. Since direct measurements of distances
are not attainable, diffraction methods are used to determine
pairwise distances between all atoms in a supercell. Diffrac-
tion methods, including X-ray [9], electron [10], and neutron
diffraction [11], involve a sample of material being bombarded
with beams or subatomic particles, resulting in angles and in-
tensity of diffraction. This pattern is then used to quantify the
average number of atoms that occur as a function of relative
distance.
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Fig. 1. Example supercell of barium titanate (BaTiO3). Barium
is grey, titanium is blue, and oxygen is orange. The smaller
cube represents the unit cell structure.

One of the necessary steps in order to translate patterns of
intensity into a function of relative distance involves describing
the global pattern, i.e. the unit cell structure, in terms of
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the angles of diffraction. The peaks of high intensity as a
function of angle identify where common angles of diffraction
exist. By fitting this curve while simultaneously estimating
parameters that control atom positions within a unit cell, the
global structure of the material is estimated. For X-ray and
neutron powder diffraction, a commonly used method of global
structure analysis is Rietveld refinement [12].

Unfortunately, this only provides information about the
average unit cell structure and a material’s properties can only
be fully understood once patterns across and within different
unit cells are illuminated. The RMC algorithm was developed
to close this gap. Although this method is applicable to differ-
ent forms of diffraction data (see [13] for details), to simplify
notation, the following section assumes that the experimental
data was obtained through neutron diffraction.

2. Reverse Monte Carlo

Reverse Monte Carlo (RMC) is an algorithm used for
structural modeling where the result is a finite set of atomic
coordinates (s), that is consistent with experimental data. In
order to estimate s, the algorithm begins with an initial set of
hypothesized atoms locations, which is typically modeled after
a priori information about the general structure of the material.
As discussed, for powder experiments, this information can be
obtained from Rietveld refinement of powder diffraction data,
or by other means of global crystal structure determination.
With the properly constructed unit cell, the initial supercell is
created by replicating the pattern across a user defined domain.

Given this initial configuration, the frequency of distances
between atom locations is averaged and scaled to create the
partial pair distribution functions,

n;j(r)
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where n; J(r) is the average number of atoms of type j at a
distance of between rA and (r+ dr)A from a central atom of
type i, ¢; is the proportion of atoms of type i in the supercell,
and py is the average number density of the material, i.e. the
total number of atoms divided by the total volume of the

supercell (N/V). This information is then summarized into
the total pair distribution function, defined as

G(r) = ) cicsbiblgi(r) — 11, @)
ij
where b; is the coherent neutron scattering length of atom type
i (or the x-ray atomic form factor in the case of x-ray scattering
data). This function is often normalized, thus representing the
data in different units [14]. A few common transformations
are the following:
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The RMC algorithm is an updating scheme that uses a
normalized total pair distribution function to measure discrep-
ancy between potential atomic configurations and the data.

Specifically, denote the hypothesized and scaled total pair dis-
tribution function at iteration ¢ as D'(-) and the measured or

“experimental” scaled total pair distribution function as DF(-).

Although the partial pair distribution functions, and by
extension the total pair distribution function, are continuous
functions of r, experimental data is discretized to facilitate
computation. Therefore, the hypothesized total pair distribu-
tion function must also be similarly discretized to evaluate
pairwise differences. Let {(r;,r; +dr) : [ = {1, L}} be the
set of intervals used to bin the atomic distances. The loss
function which is minimized by RMC is then
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where 0'12)(-) is the variance of the data, defined as a function
of ry.

The updating algorithm is then as follows. Starting with
an initial set of atomic locations (¢ = 0), a single, randomly
selected atom is moved a random distance. An updated )(t2+1
is calculated and the move is accepted with probability: p =
mm(l exp( (Xt o) -x3/ 2)) This update is repeated until
convergence and the final atomic configuration is the set of
estimated locations.

The sequence of binning intervals is somewhat arbitrary,
but guidelines exist to avoid introducing error into the result.
For example, the shortest atomic bond known is 0. 6A [15],
so including intervals below that threshold may not be neces-
sary. The resolution of the most sophisticated instrumentation
is 0.002A [16], so smaller increments will not capture any
additional information.

3. Prior and Related Work

There are several key features of the RMC algorithm that
make it a robust method of atomic modeling, as pointed out by
[17]. In contrast to previous work [18, 19, 20], edge and finite-
size effects are avoided by using periodic boundary conditions
and large supercells, respectively. The result is, at least theo-
retically, independent of the initial configuration since moves
that increase y? are also accepted with some probability. Al-
though our description of the RMC algorithm is in terms of
the total pair distribution function which exists in real space,
the original experimental data observed in reciprocal space
(angles and intensities), can be inserted into the algorithm and
used equivalently, or in combination with real-space data.

To some, a disadvantage of the RMC algorithm is that it
produces a non-unique solution of atomic disorder. There is no
proof that the final y? value will be a global minimum nor that
the true atom distribution has been obtained. [17] argue that
since the true structure of any material can never be known,
an algorithm that produces a non-unique solution is actually
an advantage. While the possibility of multiple solutions can
be seen as an advantage, formal modeling of that variability
remains an open topic.

Current research surrounding atomic structural model-
ing focuses on aspects such as simultaneous estimation of
complex physical properties [21], grouping patterns in the
resulting model [22], or improved computational efficiency
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[23]. In order to minimize the effect uncertainty has on the
final estimates, many practitioners, including those mentioned
above, average results obtained through multiple independent
runs of the RMC algorithm. This strategy can also be used to
gain insight on the uncertainty of the RMC result, albeit in a
fairly informal manner.

Another approach to uncertainty quantification is
achieved by condensing the supercell into a unit cell, cre-
ating a distribution of atom locations within the unit cell (see
[24, 25, 26, 27, 22] for examples). This clearly requires less
computing power than the previous approach and is helpful
for visualization, however variance is only defined globally
instead of locally. Still, many practitioners make no attempt
to address model uniqueness or quantify uncertainties.

Thus, we propose the use of hierarchical Bayesian model-
ing to achieve local uncertainty quantification through a single
run of the estimation algorithm. A Bayesian framework pro-
vides the additional benefit of immediate quantification of the
uncertainty of any function of atom locations as well. [28]
and [29] outlined the use of Bayesian inference in place of
Rietveld refinement to quantify the uncertainty in global struc-
ture with diffraction data in reciprocal space. However, to
our knowledge, no use of Bayesian methodology has been
incorporated when describing the local structure with total
scattering data in real space.

II1. BAYESIAN METHODOLOGY

The Bayesian approach to statistical inference combines
prior information about the parameters of interest with the
likelihood for the data. This is achieved by treating the param-
eters as random variables and making use of Bayes’ theorem
to compute the posterior distribution. Formally, let y be the
observed random variable (D (r) in equation (4)) and 6 be
the set of parameters of interest (all atom locations s and all
other unknowns such as variance parameters). The likelihood
function and joint prior distribution are combined to create
the posterior distribution, p(€ | y) o< p(y | 8)p(6), with which
statistical inference is performed.

1. Overview of MCMC

We approximate the posterior distribution using Markov
Chain Monte Carlo (MCMC) methods. Specifically, we use a
combination of Gibbs [30] and Metropolis-Hastings [31, 32]
sampling. As with RMC, the algorithm begins by setting initial
values for all parameters and proceeds by cycling through the
parameters and performing stochastic updates. After burn-in,
the algorithm produces many samples from the joint poste-
rior distribution which are used to approximate the posterior
distribution and quantify parametric uncertainty.

Convergence of the algorithm is (theoretically) invariant
to the initial values, but we use RMC results as initial values
to encourage convergence. Parameters are updated from their
full conditional posterior distributions, i.e., the distribution
of the parameter conditioned on both the data and all other
parameters in the model. If possible, the sample is simply
drawn from the full conditional distribution in a Gibbs update;
if the posterior is too complicated then it is sampled using

Metropolis-Hastings rejection sampling. For the Metropolis-
Hastings step at iteration ¢, a candidate value 8" is drawn from
a proposal density p(6 | 8*). This candidate is then accepted
by setting #"*! = * with probability

P [ y)p@ | 0*)) ©)
" p(0 | y)p(616))

otherwise, 8! = 6. In our examples below, we run the
algorithm for 2,000 iterations and discard the first 500 as
burn-in, leaving 1,500 samples to approximate the posterior
distribution.

p= min(l

2. Perovskite Model

To illustrate our method, we assume a perovskite struc-
ture, specifically tetragonal BaTiO; (Figure 1), however the
Bayesian framework could be applied to more complex struc-
tures. Perovskite BaTiO3z has become one of the most exten-
sively studied functional materials since the discovery of its
polar behavior in the 1940s [33, 34] due to its high dielectric
constant and room temperature ferroelectric behavior. BaTiO3
has a well-known global structure, described with a tetrago-
nal P4mm space group, with Ba atoms at (0,0,0), Ti atoms at
(1/2,1/2,z), and O atoms at (1/2,1/2,z) and (1/2,0,z). Its polar-
ization at room temperature is a consequence of an average
relative displacement of Ti and O atoms along the c-axis from
centrosymmetric positions in the unit cell [33, 35]. There have
been a series of investigations into the small local deviations
hallmark to its ordering behavior, particularly in regards to
the correlation of atomic displacements in the polarization
direction [35, 36, 22, 37].

Let i = {Ba, O, Ti} be the type of atom, j € {1,...,n;}
index an atom of type i within the supercell, and k € {1, 2, 3}
represent the dimension. Define s;; = (s;j1, Sij2, 8ij3) as latent
coordinates of atom j of type i and p;; = (u;ji, Mij2, Mij3) as the
atom’s coordinates if the atoms adhered to a perfect lattice. We
assume that each atom location follows a normal distribution
with known mean and unknown variance. The variance of
the data measured in real space, o-%), is assumed constant and
modeled with an inverse gamma distribution. The hierarchical
model is then

Observational Model: DE(r)|s ~N (Dg(rl | 5), o%)

Structural Model: sijg ~ N (,u,- jk,Tl.z)

Tl.2 ~ Uniform (0, 0)
0'%) ~IG (a,B)

With priors specified as above, the full conditional distri-
butions for parameters 0'2D and ‘1'l.2 are available in closed-form
and are as follows,

DE(r),s,a,,B) ~
L 1<
IG [a + E’IB + 5 ;[DE(’"I) = Dy(r1 | s)]z]

p(i | DE(),s, 7\ {17},6) ~

3n; L Lsijk — Mij]?
G |5t 1, > AP,

j=1 k=1

Hyperparameter Model:

ploy, |
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Here t1G ¢ 5) represents a truncated inverse gamma distribution,
restricted to the interval (0, §). These parameters are updated
using Gibbs sampling by drawing new values at each iteration
from their full conditional distributions.

The full conditional distribution for s, is not available
in closed form. Its posterior distribution has the complicated
form,

psin | DE(), s\ {sip), 78 07%)

ﬁ ¢(DE(VZ) —GDem | s)) ¢(s,»,-k ;ui,-k),

=1

where ¢(-) represents the probability density function of a stan-
dard normal distribution. We update the atom locations using
a Metropolis-Hastings step as described above with an adap-
tive candidate distribution N(s;, ¥;), where ; is periodically
adjusted to maintain an acceptance rate between 0.25 and 0.5.

3. Comparison of RMC and Bayesian analysis via MCMC

We see three main advantages to the proposed Bayesian
methodology over RMC. The first advantage is a more com-
plete assessment of uncertainty. RMC and MCMC are clearly
similar algorithms, with both relying on Metropolis-Hastings
steps. However, in a Bayesian analysis implemented via
MCMC, the stationary portion of the Markov chain created
through simulation is equal to the desired posterior distribution.
Unlike RMC, where the sequence of updates are discarded
once convergence is met, with MCMC all post-burn-in samples
are used to approximate the posterior distribution. Functions
of the posterior distribution (e.g., the average deviation from
the lattice for each atom type) are proper distributions them-
selves, which allows for testing of complex hypotheses. And,
unlike classical statistical methods, the credible intervals cre-
ated through Bayesian inference are also easily interpretable
as having a set probability of containing the true parameter
value.

The second advantage is that we are also able to compare
models with different mean or variances structures. For exam-
ple, if we are interested in comparing models with and without
equal variance components across all atom types, this could
be achieved by fitting two models (one with assumed equal
variance and one without), and comparing their Deviance In-
formation Criterion (DIC) [38] values. Since separate models
can be fit independently, there is essentially no added compu-
tational cost as it is easily parallelized.

Finally, we allow incorporation of prior knowledge in a
statistically appropriate manner. Substantial prior informa-
tion about atomic structure generally exists, and the Bayesian
methodology provides a seamless way to formally incorporate
this information. Structural modeling is extremely challenging
and often plagued by non-unique solutions, and so incorpora-
tion of prior knowledge can stabilize estimation. In fact, if we
ignore all prior information (i.e., structural and hyperparam-
eter layers of the hierarchical model), fix the error variance
O'ZD, and use only one sample from the posterior distribution,
we have the RMC algorithm as a special case of the Bayesian
analysis.

IV. RESULTS AND ANALYSIS
1. Simulation

In order to test our methodology, we simulated an ideal
BaTiOj structure and jittered the locations of atoms away from
the lattice with variances 0.07%, 0.092, and 0.052 for Ba, Ti,
and O, respectively. The simulated data was constructed by fol-
lowing the equations (1)—(4) and then adding Gaussian noise,
where 02, = Var(G"PF (1)) (3, eibi)* = 0.0027 (3; cibi)'.

The crystal chemistry of the perovskite oxide at ambient
conditions precludes atom location swapping. Global esti-
mates (through Reitveld refinement of atomic displacement
parameters) indicates limited atom movements associated with
thermal vibrations and disorder. Thus, atom movements were
constrained to prevent swapping relative to their original lat-
tice location. Specifically, atom moves beyond 0.4A from the
original lattice were automatically rejected. The correspond-
ing hyperparameter (6 = 0.04) was also chosen to model this
behavior. Prior knowledge on the variance of data was pur-
posely not incorporated to allow the data to drive the posterior
distribution. Therefore, a diffuse prior was selected for o-lzj(r)
by setting @ = 0.5 and determining S8 based on the solution
to argminﬁ[Var(DE (r)) — QB(O.9)]2, where Qg(p) represents
the p-th quantile from an inverse gamma distribution with
a = 0.5. For our simulated data, this resulted in a hyperparam-
eter, 5 = 200.

We assumed that the data originated from neutron diffrac-
tion, but the methodology can be applied to any diffraction data
where a pair distribution function can be defined. For BaTiOs,
the neutron scattering lengths are b = {5.07, -3.438,5.803} x
le—5A and the concentrations are ¢ = {0.2,0.2,0.6} for Ba,
Ti, and O, respectively. The supercell was limited to a cube of
dimension ~ IOA, which implies atom counts of Ba, Ti, and
O equal to 27, 27, and 81, respectively. With a barrier added
around the cube to facilitate using periodic boundary condi-

tions, the supercell volume was ~ 1741/0%3 and so pg = 0.078

atoms per A,

We used 2000 MCMC iterations with a burn-in of 500,
satisfying the diagnostic defined by [39]. Where the RMC
algorithm is aided by an initial configuration determined by
Rietveld refinement, we found the convergence of the MCMC
chains can be greatly accelerated by a few iterations of the
RMC algorithm. We fit both a full model, including different
variance estimates for each atom type, and a reduced model,
assuming that the variances for all atom types were equivalent.

The acceptance rate and convergence in x> value does
not have a theoretical basis. However, guidelines from the
RMCProfile software [40] suggest that the acceptance rate
should plateau at roughly between 0.25 and 0.6 and that the
x? value should no longer exhibit consistent reduction, but
rather should resemble white noise. Practitioners often iterate
well past these guidelines and we do the same, performing
200 x N iterations. Although the RMC algorithm is a rejec-
tion sampling algorithm and, thus, is theoretically protected
against initial configurations, we run the RMC algorithm ten
times. This will allow for direct comparison of estimation
performance and uncertainty quantification given equivalent
computational cost. Assessment of convergence and accep-



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

tance rates of the sampling algorithms are provided in the
Appendix.
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Fig. 2. Posterior distributions for variance parameters esti-
mated from simulated data compared to their true value for
both the full (top) and reduced (bottom) models.

The resulting posterior distributions for the variance esti-
mates for both models are provided in Figure 2, along with the
true values used to generate the data represented by vertical
lines. As expected, the variance for each atom type in the
full model has high posterior density near the true values. Us-
ing a single variance estimate for all atom types, Tfe duced> €
highest posterior probability is quite close to the average atom
variance weighted by atom type frequency, which is 0.0041.
However, this model, by design, cannot capture the different
variance for each atom type. The posterior median for both
distributions of o2, are approximately 0.08 (3; cib)t ~ 17,
while the true value for 0% is 0.0027 (¥; ciby)* ~ 0.568. Our
hypothesis is that 0'%) cannot be effectively modeled in real
space; we mention extensions to reciprocal space in Section V.

As a more formal assessment of model fit, we compared
models with the DIC metric. Given posterior distributions for
both the full (unequal variance) and reduced (equal variance)
models, the DIC metric quantifies whether or not separate
variance parameters for each atom type are truly necessary.
Resulting DIC values were 285.14 and 286.39 for the full and
reduced models, respectively. A lower DIC implies a better fit,
so this confirms the truth that the variances of atom type are
not equal and should be modeled separately.

The resulting atom locations for both the best RMC fit
(designated by lowest x? value) and the Bayesian analysis
assuming a full model are provided in Figure 3, along with the
true locations as determined by the simulation. Of note, the
center of the posterior distributions are typically closer to the
true values. To summarize, we compared the best fitting RMC
estimate, the mean RMC estimate, and the mean posterior es-
timate of every atom location to their true values by Euclidean
distance. This information is summarized in Figure 4.

It is clear that the Bayesian approach consistently re-
duces the error in location estimation as compared to a single
RMC run, even the best fitting RMC output. However, if the
Bayesian approach were to increase the error as compared to

o True
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Fig. 3. Posterior distributions of atom locations for the full
model and point estimates provided by a single run of RMC
compared to the true simulated locations.
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Fig. 4. Error in atom location for all atoms as measured by
Euclidean distance, grouped by method and atom type.

an average of multiple RMC runs, then one would need to bal-
ance improved accuracy against the versatility of the Bayesian
methodology. For this example, the Bayesian approach was
more accurate than the mean of multiple RMC runs for 60%
of all locations, was lower in median error for all atom types.

As mentioned, functions of posterior distributions are
available at an additional computational cost that is negligible.
The posterior mean and 95% credible region for the total
pair distribution function is provided as an example and is
shown in Figure 5, along with the data and the best RMC fit.
Both the RMC and Bayesian approaches provide good fits
to the data, however the posterior mean obtained from the
Bayesian approach shows no discernible difference from the
truth. Also, the Bayesian result includes credible regions, so it
also quantifies the uncertainty in the simulated data.
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Fig. 5. Total pair distribution function for the simulated data, a
single RMC run, and the posterior mean with a Bayesian 95%
credible region.

2. Application

A structural analysis on real BaTiO3; neutron data was
also performed. Given the same hierarchical model as in the
simulation, posterior distributions were obtained and results
are provided in Figures 6-8.
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Fig. 6. Posterior distributions for variance parameters esti-
mated from the observed data for both the full and reduced
models.

In contrast to the simulation, the variance in the data is
substantially larger. This pattern continues to the total pair
distribution function, as the confidence bands in Figure 8
are much wider. The disparity between variances of atom
type again indicates inequality and the DIC values, 3711.25
and 3723.20 for the full and reduced models, respectively,
provides credence to this hypothesis. However, the magnitude
and relative ranking of variability across different atom types
is slightly different in the observed data. Specifically, the
variability in atom location is larger in the observed data and
the variability in titanium atoms is substantially larger than
both that of barium and oxygen atoms. The pattern is clearly
visible in Figure 7, where the barium and oxygen atoms are
fairly stationary, while the titanium atoms have an expanded
space of high posterior probability.
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Fig. 7. Posterior distributions of atom locations for the full
model compared to point estimates provided by a single run
of RMC on the experimental data.

V. CONCLUSIONS AND FUTURE WORK

In conclusion, the use of Bayesian statistics provides a
natural framework to quantify the uncertainty in every atom
location as well as any function of atom location. Model
comparison regarding mean or covariance parameters is also
available, allowing users to determine how best to describe
atom movement within a material. Quantifying the uncertainty
in the data can also be an essential tool for practitioners at-
tempting to determine when their data is of sufficient quality.
An additional benefit of our method is that the error associated
with estimated atomic location is reduced.
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Fig. 8. Total pair distribution function for the observed data, a
single RMC run, and the posterior mean with a Bayesian 95%
credible region.

Although our proposed methodology quantifies uncer-
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tainty in real space, the measured data originates in reciprocal
space and is then transformed into real space. Thus, possible
improvements include modeling the measurement error vari-
ance in reciprocal space and then transforming to real space or
assuming the observational model itself occurs in reciprocal
space. The data in reciprocal space, being count data, is often
assumed Poisson in nature. We look to exploit that behavior
in our hierarchical model, while assessing the assumption that
the variance is proportional to the square root of the measured
intensities [41].

Modeling the variance in both real and reciprocal space
will also allow for comparison of data collected by different
metrologies and under different settings, which would be of
great value to the materials science community.

APPENDIX

The posterior draws and chains of y? values for the
MCMC and RMC algorithms, respectively, for the simulated
data are provided below in Figures 9-10. We also include the
acceptance rates for both procedures in Figures 11-12. Like-
wise, chains and acceptance rates for both algorithms applied
to the observed data are provided in Figures 13-16.

T T T T T T T T
500 1000 1500 2000 500 1000 1500 2000

Iteration Iteration

2
Tea
L

0002 0006 0010

T T T T T T T T
500 1000 1500 2000 500 1000 1500 2000

Iteration Iteration

2
Treduced

00030 0.0040 0.0050
L

00025 0.0040

T T T T T T T T
500 1000 1500 2000 500 1000 1500 2000

Iteration Iteration

Fig. 9. MCMC chains for all variances and both models for
the simulated data.
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model (top) and the reduced model (bottom).
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Fig. 12. Acceptance rates for the RMC algorithm applied to
the simulated data for all ten chains.
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Fig. 13. MCMC chains for all variances and both models for
the observed data.
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Fig. 14. x? values for the RMC algorithm applied to the
observed data for all ten chains.
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Fig. 15. Acceptance rates for all atom locations of the MCMC
algorithm, applied to the observed data, assuming the full
model (top) and the reduced model (bottom).
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Fig. 16. Acceptance rates for the RMC algorithm applied to
the observed data for all ten chains.

ACKNOWLEDGMENTS

The research at NC State was funded by the Consortium
for Nonproliferation Enabling Capabilities (CNEC), which
is sponsored by the Department of Energy, NNSA Office of
Defense Nuclear Nonproliferation, and also National Science
Foundation Grant DGE-1633587. Experimental data was col-
lected at the POWGEN instrument at the Spallation Neutron
Source, a DOE Office of Science User Facility operated by the
Oak Ridge National Laboratory. We also thank Christopher
Fancher, Daniel Olds, Elizabeth Dickey, and Matt Tucker for
their valuable input and suggestions.

REFERENCES

1. C. A. YOUNG and A. L. GOODWIN, “Applications of
pair distribution function methods to contemporary prob-
lems in materials chemistry,” Journal of Materials Chem-
istry, 21, 18, 6464—-6476 (2011).

2. S.J. BILLINGE and I. LEVIN, “The problem with de-
termining atomic structure at the nanoscale,” Science
(New York, N.Y.), 316, 5824, 561-565 (Apr 27 2007),
IR: 20070427; JID: 0404511; ppublish.

3. M. NIKL, “Wide band gap scintillation materials:
progress in the technology and material understanding,”
physica status solidi (a), 178, 2, 595-620 (2000).

4. Y. ARIKAWA, K. YAMANOI, T. NAKAZATO, E. S.
ESTACIO, T. SHIMIZU, N. SARUKURA, M. NAKALI,
T. NORIMATSU, H. AZECHI, and T. MURATA, “Pr 3
-doped fluoro-oxide lithium glass as scintillator for nuclear
fusion diagnostics,” Review of Scientific Instruments, 80,
11, 113504 (2009).

5. K. MAYER, M. WALLENIUS, and I. RAY, “Nuclear
forensics—a methodology providing clues on the origin
of illicitly trafficked nuclear materials,” Analyst, 130, 4,
433-441 (2005).

6. M. J. KRISTO and S. J. TUMEY, “The state of nuclear
forensics,” Nuclear Instruments and Methods in Physics
Research Section B: Beam Interactions with Materials
and Atoms, 294, 656-661 (2013).

7. R.MCGREEVY and L. PUSZTAI, “Reverse Monte Carlo
simulation: a new technique for the determination of
disordered structures,” Molecular Simulation, 1, 6, 359—
367 (1988).

8. M. DE GRAEF and M. E. MCHENRY, Structure of mate-
rials: an introduction to crystallography, diffraction and
symmetry, Cambridge University Press (2007).

9. W. FRIEDRICH, P. KNIPPING, and M. LAUE, “Inter-
ferenzerscheinungen bei Rontgenstrahlen,” Annalen der
Physik, 346, 10, 971-988 (1913).

10. G. THOMSON and A. REID, “Diffraction of cathode rays
by a thin film,” Nature, 119, 890 (1927).

11. C. SHULL, “Early development of neutron scattering,”
Reviews of Modern Physics, 67, 4, 753 (1995).

12. H. RIETVELD, “A profile refinement method for nuclear
and magnetic structures,” Journal of applied Crystallog-
raphy, 2, 2, 65-71 (1969).

13. C. R. A. CATLOW, Computer modeling in inorganic
crystallography, Academic Press (1997).



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

14.

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

217.

D. A. KEEN, “A comparison of various commonly used
correlation functions for describing total scattering,” Jour-
nal of Applied Crystallography, 34, 2, 172-177 (2001).
R. T. SHANNON and C. T. PREWITT, “Effective ionic
radii in oxides and fluorides,” Acta Crystallographica Sec-
tion B: Structural Crystallography and Crystal Chemistry,
25, 5, 925-946 (1969).

J. WANG, B. H. TOBY, P. L. LEE, L. RIBAUD,
S. M. ANTAO, C. KURTZ, M. RAMANATHAN, R. B.
VON DREELE, and M. A. BENO, “A dedicated pow-
der diffraction beamline at the Advanced Photon Source:
Commissioning and early operational results,” Review of
Scientific Instruments, 79, 8, 085105 (2008).

R. L. MCGREEVY, “Reverse monte carlo modelling,”
Journal of Physics: Condensed Matter, 13, 46, R877
(2001).

R. KAPLOW, T. ROWE, and B. AVERBACH, “Atomic
arrangement in vitreous selenium,” Physical Review, 168,
3, 1068 (1968).

. A. RENNINGER, M. RECHTIN, and B. AVERBACH,

“Monte Carlo models of atomic arrangements in arsenic-
selenium glasses,” Journal of Non-Crystalline Solids, 16,
1,1-14 (1974).

W. SCHWEIKA and H.-G. HAUBOLD, “Neutron-
scattering and Monte Carlo study of short-range order
and atomic interaction in Ni 0.89 Cr 0.11,” Physical Re-
view B, 37, 16, 9240 (1988).

J. A. PADDISON, S. AGRESTINI, M. R. LEES, C. L.
FLECK, P. P. DEEN, A. L. GOODWIN, J. R. STEWART,
and O. A. PETRENKO, “Spin correlations in Ca3 Co 2 O
6: Polarized-neutron diffraction and Monte Carlo study,”
Physical Review B, 90, 1, 014411 (2014).

J. NEILSON and T. MCQUEEN, “Representational anal-
ysis of extended disorder in atomistic ensembles derived
from total scattering data,” Journal of applied crystallog-
raphy, 48, 5, 1560-1572 (2015).

B. AOUN, “Fullrmc, a rigid body reverse monte carlo
modeling package enabled with machine learning and ar-
tificial intelligence,” Journal of Computational Chemistry
(2016).

D. NANU, M. TUCKER, W. HAIJE, J. VENTE, and
A. BOTTGER, “Atom configurations in Pd—Au and Pd—
Au-D alloys: A neutron total scattering and Reverse
Monte Carlo study,” Acta Materialia, 58, 16, 5502-5510
(2010).

D. P. SHOEMAKER, R. SESHADRI, A. L. HECTOR,
A.LLOBET, T. PROFFEN, and C. J. FENNIE, “Atomic
displacements in the charge ice pyrochlore Bi2 Ti2 O 6
O’ studied by neutron total scattering,” Physical Review
B, 81, 14, 144113 (2010).

C. YOUNG, E. DIXON, M. TUCKER, D. KEEN,
M. HAYWARD, and A. GOODWIN, “Reverse Monte
Carlo study of Cu—O bond distortions in YBa,Cu306.
9.” Zeitschrift fiir Kristallographie Crystalline Materials,
227, 5, 280-287 (2012).

E. AKSEL, J. S. FORRESTER, J. C. NINO, K. PAGE,
D. P. SHOEMAKER, and J. L. JONES, “Local atomic
structure deviation from average structure of Na 0.5 Bi
0.5 TiO 3: Combined x-ray and neutron total scattering

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

study,” Physical Review B, 87, 10, 104113 (2013).

C. M. FANCHER, Z. HAN, I. LEVIN, K. PAGE, B. J.
REICH, R. C. SMITH, A. G. WILSON, and J. L. JONES,
“Use of Bayesian Inference in Crystallographic Structure
Refinement via Full Diffraction Profile Analysis,” Sci-
entific reports, 6, 31625 (Aug 23 2016), IR: 20160831,
JID: 101563288; OID: NLM: PM(C4994022; 2016/04/28
[received]; 2016/07/22 [accepted]; epublish.

J. E. LESNIEWSKI, S. M. DISSELER, D. J. QUINTANA,
P. KIENZLE, and W. RATCLIFF, “Bayesian method for
the analysis of diffraction patterns using BLAND,” Jour-
nal of Applied Crystallography, 49, 6, 2201-2209 (2016).
S. GEMAN and D. GEMAN, “Stochastic relaxation,
Gibbs distributions, and the Bayesian restoration of im-
ages,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, , 6, 721-741 (1984).

N. METROPOLIS, A. W. ROSENBLUTH, M. N.
ROSENBLUTH, A. H. TELLER, and E. TELLER, “Equa-
tion of state calculations by fast computing machines,”
The Journal of chemical physics, 21, 6, 1087-1092
(1953).

W. K. HASTINGS, “Monte Carlo sampling methods us-
ing Markov chains and their applications,” Biometrika,
57, 1, 97-109 (1970).

H. D. MEGAW, “Ferroelectricity in crystals,” (1957).
M. E. LINES and A. M. GLASS, Principles and appli-
cations of ferroelectrics and related materials, Oxford
university press (1977).

G. KWEIL A. LAWSON, S. BILLINGE, and S. CHEONG,
“Structures of the ferroelectric phases of barium titanate,”
The Journal of physical chemistry, 97, 10, 2368-2377
(1993).

K. PAGE, T. PROFFEN, M. NIEDERBERGER, and
R. SESHADRI, “Probing local dipoles and ligand struc-
ture in BaTiO3 nanoparticles,” Chemistry of Materials,
22,15, 4386-4391 (2010).

M. SENN, D. KEEN, T. LUCAS, J. HRILJAC, and
A. GOODWIN, “Emergence of Long-Range Order in
BaTiO 3 from Local Symmetry-Breaking Distortions,”
Physical Review Letters, 116, 20, 207602 (2016).

D. J. SPIEGELHALTER, N. G. BEST, B. P. CARLIN,
and A. VAN DER LINDE, “Bayesian measures of model
complexity and fit,” Journal of the Royal Statistical Soci-
ety: Series B (Statistical Methodology), 64, 4, 583—-639
(2002).

A. E. RAFTERY and S. LEWIS, “How many iterations
in the Gibbs sampler,” Bayesian statistics, 4, 2, 763-773
(1992).

M. G. TUCKER, D. A. KEEN, M. T. DOVE, A. L.
GOODWIN, and Q. HUI, “RMCProfile: reverse Monte
Carlo for polycrystalline materials,” Journal of Physics:
Condensed Matter, 19, 33, 335218 (2007).

P. E. PETERSON, S. I. CAMPBELL, M. A. REUTER,
R. J. TAYLOR, and J. ZIKOVSKY, “Event-based pro-
cessing of neutron scattering data,” Nuclear Instruments
and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, 803,
24-28 (2015).



