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Abstract - The point kinetics model for the emission of neutrons relies on several assumptions including that
all neutrons are emitted from a single location. With the advancement of active neutron imaging systems,
methods for determining the amount of fissile material, enrichment, and multiplication are constrained by
the exclusion of extended geometry in the point kinetics model. This work begins to bridge between point
kinetics and image reconstruction methods so that estimates of enrichment and multiplication can be derived
throughout a geometry of large and shielded fissile materials. A theory for building this image reconstruction
method is developed and inverse problem methods are applied to reconstruct the total and fission neutron
macroscopic neutron cross sections for simulated data.

I. INTRODUCTION

The current state of the art in characterization of uranium
assemblies relies on either point kinetics, a simplified version
of nuclear transport theory, or imaging systems using either
passive or active neutron interrogation. Measurements taken
by Active Well Coincidence Counters (AWCC) are excellent
in characterizing small arrangements of unshielded uranium
in the point kinetics model. Tagged neutron interrogation
imagers, such as the Associated Particle Neutron Imaging
System (APNIS) developed at Oak Ridge National Labora-
tory, have enhanced the spatial resolution of neutron imaging
measurements [1]. However, for characterizing the proper-
ties of large and fissile assemblies of uranium surrounded by
shielded materials, both AWCC and current neutron imaging
methods have limitations. By developing algorithms which
incorporate a model of neutron transport directly into imaging
reconstruction methods, the state of the art for characterizing
large uranium assemblies can be advanced.

AWCC analysis methods rely on a point kinetics frame-
work in which all fission emissions are assumed to have orig-
inated at a single position [2]. This simplification leads to
a small set of equations which return uranium characteris-
tics from neutron coincidence and multiplicity measurements.
Errors are primarily due to the inability to account for the
geometric dependence of the assembly which can be mitigated
by limiting to small sample sizes. When the bias of a known
geometry has been measured beforehand, a predetermined sys-
tematic correction can be applied [3]. Conversely, estimating
uranium characteristics from imaged data acquired by tagged
neutron interrogation systems relies on detailed and extensive
Monte Carlo studies requiring several skilled scientists and
excessive computation times [4]. Neither of these methods
allow for the rapid, in-field use on unknown items needed for
scenarios in nuclear material control and accountability.

To bridge between point kinetics and the need for Monte
Carlo studies a framework which incorporates the response
of neutrons created from induced fission chains into image
reconstruction has been developed. This framework begins
with the transmission of an initial neutron from active interro-
gation and calculates the probabilities for detecting either one

or additional neutrons emerging from the shielded assembly.
The probability for creating a single fission or a fission chain
is then related to the detection of one or more neutrons in a
neutron imaging detector array. Inverse problem methods are
used to reconstruct the geometry and characteristics of fissile
material providing a better estimate for uranium characteristics
in large and shielded assemblies.

A toolkit for quickly modelling transport of interrogating
neutrons through material has been developed. The purpose
is to calculate the response of voxels of materials quickly to
be used in reconstruction of an entire assembly. It is a 2D
neutron transport model which calculates the probability of
a neutron interacting – either being removed or initiating a
fission over a path in an assembly of different materials. This
is done by decomposing the geometry of the assembly into a
series of discrete line segments as shown in Figure 1. Each
line segment stores the direction of a normal vector and the
macroscopic neutron cross sections on each opposite side of
the line segment.
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Fig. 1. A 2D geometry displaying from above the boundary
of a uranium casting (green) surrounded by other non fissile
materials. The arrows represent the normal vector for each line
segment. An intersecting ray is shown (blue) with intersecting
segments and intersections outlined.
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This toolkit is used to create to create simulated data and
responses for transmitted neutrons and those from induced
fission. Inverse methods are then used with the responses to
estimate the fissile material from the data.

1. Overview

φ θ

Neutron Generator (A)

Neutron Detection (B)

Detector Array

Detector Angle θ=  0.32 (rad), Neutron Angle φ=  -0.19 (rad)

Fig. 2. A diagram showing the neutron starting position (A),
travelling to the detector array (B). The interrogating neutron
path is determined by the angle relative to the detector array
center φ, and the relative angle θ of the detector array with
respect to the x-axis.

The model begins with the transmission of an active in-
terrogation neutron with fixed energy E = 14.1 MeV, corre-
sponding to a DT neutron generator. The neutron direction
is measured and begins travel along a ray AB where A is the
neutron generator location and B a later position of the neutron
if unimpeded by material. A diagram of the setup is shown in
Figure 2. In practice the angle φ is measured using a position
sensitive alpha detector behind the DT neutron generator [1].

Opposite of the neutron generator is a position sensitive
neutron detector array measuring whether the neutron was
transmitted or impeded. This model assumes fission neutrons
have been accurately identified, distinguished from scatter
neutrons by kinematics, timing, and energy.

Two additional assumptions in this work are that the only
fissile material present is enriched uranium, and a simplifica-
tion that all neutron fission chains are a fixed length νn which
is only valid for low enriched materials. Future extensions of
this model will relax this assumption.

The observed quantities are, for an interrogating neutron
travelling in a known direction, the probability across the de-
tector plane of recording a transmitted neutron and of detecting
one, two, or more fission neutrons. The model relates these
with the unknown neutron attenuation coefficient µ and the
portion due to induced fission reactions µ f . Both µ and µ f are
at the interrogating neutron energy and both are recovered as
a two dimensional image of the material.

Assuming the fissile material is enriched uranium only, µ f
can be related to the percentage of enrichment, f235, through

the following expression

f235 =
2AUµ f

σ235Naρ
− 1 (1)

where AU is the isotopic weight of uranium, σ235 the
microscopic uranium cross section, Na avogadro’s number,
and ρ the bulk density.

II. THEORY

1. Neutron Detection Model

A. Transmitted Neutron Detection

For material with a total macroscopic cross section for
neutrons, µ, the probability of transmission for a path (A, B),

Ptransmission(A, B) = e−
∫ B

A µ(x,y)ds (2)

can be computed quickly by calculating the intersections along
path A,B with material boundaries decomposed as line seg-
ments as shown in Figure 1. With the points of intersections
known, the computation for the attenuation integral can be
calculated directly as a sum [5],

e−
∫ B

A µ(x,y)ds =
∑

i

|Ii − B| (µi,in − µi,out) sgn(A − Ii · Ni) (3)

where Ii is the ith intersection position, µi,in and µi,out the
attenuations on either side of the material boundary, and Ni
the normal vector at the intersection from the material surface
boundary.

Measuring Ptransmission over the detector array for varying
orientations gives a sinogram over φ and θ as shown in Figure 3
for the object in Figure 1.
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Fig. 3. A transmission sinogram of the object in Figure 1. The
sinogram is done over the (θ, φ) space as defined in Figure 2.

B. Induced Fission Neutron Detection

In tagged neutron interrogation systems a neutron gen-
erated from a source, located at S (θ), travels in a measured
direction φ. Opposite the source S (θ) lies an array of neutron
imaging detectors, D(θ, φ). As the neutron travels into the
assembly it can either be removed by absorption or scattering,
or for fissile materials it may create a fission or fission chain at
a location (x, y). This creates additional neutrons which can be
measured by D(θ, φ). The probability for detecting k neutrons
generated by a fission at (x, y) can be expressed as:

P(x, y | k) = Pin(x, y | S (θ)) Pfission(x, y) Pout(x, y | k) (4a)
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Pin(x, y | S (θ)) = e−
∫ (x,y)

S (θ) µ(s) ds (4b)

Pfission(x, y) = µ f (x, y) ds (4c)

where Pin is the probability of neutron transmission into the
assembly from the neutron source S (θ) to (x, y), and Pfission
is for the source neutron initiating a fission at (x, y) within a
material with a macroscopic fission cross section µ f .

The transport of k fission neutrons out of the assembly to
an arrangement of detectors D(θ, φ) is expressed as

Pout(x, y | k) =
∑

n

νn(x, y)
(
n
k

)
Pdetect(x, y)k(1 − Pdetect(x, y))n−k.

(5)
The number distribution of neutrons from a fission or fission
chain within fissile material initiated by a source neutron at
(x, y) is νn(x, y). For a single fission this is just the Terrell
distribution for that isotope [6]. For fission chains, the effects
of self multiplication and neutron reflection by surrounding
materials results in a wider distribution compared with the
Terrell distribution.

The probability of neutron escape (5) is weighted by a
binomial distribution of each fission neutron escaping the ma-
terial and being detected with independent probability Pdetect.
The detection probability includes the transport out of the ma-
terial weighted by the detector solid angle fraction Θ integrated
over the detector plane:

Pdetect =

∫
Θ(x, y,D(θ, φ)) e−

∫ D(θ,φ)
(x,y) µ(s) dsdφ (6)

For Pdetect and Pin, the path attenuation integrals are calculated
using the 2D neutron transport toolkit used in Figure 3.
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Fig. 4. The total probability of detecting either one (top) or
two (bottom) neutrons from fission for a given orientation
of source neutron direction. The measurement is based on
the geometry shown in Figure 1. The colorscale is a relative
probability intensity of P(x, y | k) for k = 1, 2

A measurement of the neutron probability for k = 1, 2
(4a) is shown in Figure 4. This is for the uranium casting in
Figure 1 irradiated with a fan beam of source neutrons and
measured over a scan of 180 degrees.

III. RESULTS AND ANALYSIS

1. Model Response

For an unknown assembly of shielded uranium it is de-
sired to reconstruct an unknown image, X, of both the total
macroscopic cross section µ(x, y) and the component due to
fission µ f (x, y). This is done by decomposing the image into
an array of pixels, applying the neutron detection model on
each pixel, and determining which arrangement best matches
the data by using inverse problem methods.

Three response matrices are calculated for the transmis-
sion, single, and double neutron measurements. The measure-
ment can be represented by the linear system:

Aresponse Xassembly = Ymeasurement (7)

due to the linear properties of the radon integral transform for
the transmission measurement [7], and the linear coefficient of
µ f in Equation 4c of the neutron single and double measure-
ments. To recover an unknown configuration Xassembly many
inverse methods such as the Moore-Penrose pseudo-inverse or
Tikhonov Regularization can be applied.

A. Transmission Model Response

The modelling of the transmission response Atrans
(θ,φ) is done

by discretizing the image plane into a grid of pixels, where
each pixel is a defined unit size with attenuation of 1 unit path
length as shown in Figure 5. For each pixel the attenuation
is calculated for different orientations of the source neutron
position and detector array angles (θ, φ). The radon transform
of each pixel is stored over all neutron source and detector
orientations. Any measured radon transform can then be de-
composed into weighted sums of the radon model response
pixels.
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Fig. 5. The decomposition of the image space into pixels,
a single pixel is shown in blue. Transmission responses are
created for each individual pixel. For illustration the pixels are
enlarged by a factor of four.

B. Fission Model Response

The fission neutron single (k = 1) and double (k = 2)
responses Ak=1

(θ,φ), A
k=2
(θ,φ) use the same setup as the transmission

response in Figure 5. Since the Pin and Pout terms in the single
and double fission neutron probabilities rely on calculating
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Fig. 6. The transmission response matrix Atrans
(θ,φ) for the pixel

shown in Figure 6.

the attenuation to and from a point (x, y) the transmission
reconstruction must be done first. The response for each pixel
is calculated for each orientation R(θ, φ) of the neutron source
and detector array as

Ak
(θ,φ) =

∫
R(θ,φ)

P(x, y | k)

=

∫
R(θ,φ)

Pin(x, y | S (θ)) Pout(x, y | k) µ f (x, y) ds (8)

where the representation of Pfission has been substituted. The
path integral is over the portion of the neutron source path
which intersects the response pixel. The orientation of the
neutron path R(θ, φ) is determined by the angles as shown in
Figure 2. The elements of Ak

(θ,φ) are normalized such that a
value of 1 indicates all neutron attenuation in the pixel is due to
fission, µ f (x, y) = µ(x, y). The response of detecting a single
fission neutron (k = 1) or a pair of fission neutrons (k = 2) is
calculated over all neutron source and detector orientations for
every pixel.
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Fig. 7. Ak=1
(θ,φ) (above) and Ak=2

(θ,φ) (below) are shown for a pixel.
The overall shape is from the transmission portion, the high-
lighted region toward the center from the increased detector
solid angle for those orientations, and the banding due to self
shielding of the assembly by surrounding materials.

With a set of response matrices for the transmission, sin-
gle fission, and double fission neutrons calculated, methods
from solving inverse problems are used to recover the un-
known image of the material and the fissile component.

2. Transmission Estimate

The transmission measurement is used with the previously
described Atrans

(θ,φ) for transmission to recover the image of the

total cross-section µ. However, since Atrans
(θ,φ) is sparse and ill-

conditioned a unique solution to Equation 7 will not exist [8].
To favor solutions which are stable, Tikhonov Regularization
is applied where a penalty, α, on the norm of the unknown
image is applied. The reconstruction of µ reduces to a least
squares problem

min

∥∥∥∥∥∥
[
Atrans

(θ,φ)
α I

]
µ(x, y) −

[
Ytrans

0

]∥∥∥∥∥∥2

2
(9)

where Atrans
(θ,φ) is from Figure 6, Ytrans is the data as shown in

Figure 3.
The solution can be calculated analytically as

µ̂(x, y) =
(
Atrans

(θ,φ)
T Atrans

(θ,φ) + α2I
)−1

Atrans
(θ,φ)

T Ytrans (10)

where α is a penalty coefficient [9].
The result of applying Tikhonov Regularization for the

transmitted neutrons is shown in Figure 8. Once a response
matrix has been calculated a reconstruction can be done easily
for many images. More advanced methods such as Total
Variation Imaging can also be applied for images of several
homogenous materials [8].
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Fig. 8. Reconstruction of the total macroscopic neutron at-
tenuation cross section using the Tikhonov reconstruction of
Equation 10.

3. Single and Double Neutron Estimate

The same Tikhonov reconstruction as used for transmis-
sion is then applied on the single and double detected fission
neutron measurements and responses. This is done jointly by
solving for a single image of the µ f /µtotal fraction with the
single and double fission neutron responses shown in Figure 7.
The least squares system to solve is

min

∥∥∥∥∥∥∥∥∥

Ak=1

(θ,φ)
Ak=2

(θ,φ)
α I

 µ f

µ
(x, y) −

Yk=1
Yk=2

0


∥∥∥∥∥∥∥∥∥

2

2

(11)

with an analytic solution,

(µ̂ f /µ)(x, y) =

(
Ak=1

(θ,φ)
T

Ak=1
(θ,φ) + Ak=2

(θ,φ)
T

Ak=2
(θ,φ) + α2I

)−1

(
Ak=1

(θ,φ)
T

Yk=1 + Ak=2
(θ,φ)

T
Yk=2

) (12)
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The resulting image of the µ f /µ fraction is shown in
Figure 9. The fission component of the macroscopic cross
section is reconstructed for the uranium casting and in the
correct location and at the correct simulated enrichment of
10%. These images use the Terrel fission distribution for νn
[6].
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Fig. 9. Reconstruction of µ f /µtotal fraction using the solution
in Equation 12. The reconstruction correctly shows the simu-
lated enriched uranium casting cross-section at an enrichement
level of 10%.
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Fig. 10. L-Curve criterion plot for the reconstruction of Fig-
ure 9. The red dot corresponds to the point of highest curvature
and is the best choice for α.

For both reconstructions in Figures 8 and 9 the α pa-
rameter is an unknown variable. In practice it is common to
determine an optimal α value through the L-Curve criterion
[8], in which the log of both the solution norm, and the norm
residual are plotted against each other as a function of α. The
optimal α is at the point of highest curvature as shown in
Figure 10.

IV. CONCLUSIONS

This work has developed an image reconstruction method
which incorporates neutron transport. This extends beyond
the simpler transmission model and reconstructs single and

double neutron measurements from induced fission.
Extensions of this work will allow νn to vary continuously

according to a free parameter relating to fission chain length,
which will account for additional fission neutrons created from
self multiplication and reflection by surrounding materials.
Non-linear methods must be applied for self multiplication
and reflection as µ f will no longer be a linear coefficient in
Equation 4c.
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