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Abstract - This paper derives integral representations for the multiplicity distribution of neutrons 

leaked from a multiplying assembly and the multiplicity distribution for those leaked neutrons that are then 
detected by a measurement system. The probability generating function (PGF) of the leaked neutron 
distribution is governed by Böhnel’s equations, and an equivalent set of equations for the PGF of the 
detected neutron distribution is also given. This paper presents a method that utilizes functional power 
series for solving these two sets of equations for the respective PGFs and inverting those PGFs to arrive at 
the underlying multiplicity distributions.  

 
I. INTRODUCTION 
 

Neutron multiplication by fission chains is a branching 
process. In the point-kinetic approximation, all neutrons 
have the same probability p of inducing fission instead of 
escaping from the nuclear assembly. In addition, all induced 
fissions emit independently and identically distributed 
numbers of fission neutrons. Both the induced fission 
probability p and the induced fission multiplicity 
distribution are assumed to be independent of location and 
incident neutron energy. The basic data for the point-kinetic 
model is therefore 

p, the probability that any given neutron will induce 
a fission. 

q[n], the probability that any given induced fission will 
emit n neutrons. 

qs[n], the probability that any given spontaneous fission 
will emit n neutrons. 

A random number of neutrons from a single fission 
chain will manage to avoid inducing any fissions and 
escape, or “leak”, from the nuclear assembly instead. The 
branching process model can be analyzed to deduce the 
probability distribution for the number of leaked neutrons. 
Typically, multiplicity distributions are sought for neutrons 
leaking from two different types of fission chains: 

f [n], the probability that n neutrons will escape from a 
fission chain seeded by a single neutron. 

fs[n], the probability that n neutrons will escape from a 
fission chain seeded by a random number of 
neutrons emitted by a single spontaneous fission. 

The analysis of branching processes is easier when 
working with probability generating functions (PGF) rather 
than directly with probability distributions. The PGF for a 
general discrete probability distribution θ[n] is defined to be 
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In all that follows, we will adopt the convention that PGFs 

are written using capitalized letters, e.g. Qs(s) is the PGF for 
qs[n]. Along with several other useful properties, the 
factorial moments for a random variable can be easily 
computed from a PGF: 
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In addition, the original probability distribution θ[n] can be 
recovered by using [1] 
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In the point-kinetic approximation, the PGFs for leaked 

neutron multiplicities are governed by Böhnel’s 
equations [2]: 
 
 ( ) ( )( ) 1 ( )F s p s pQ F s= − +   (4) 

 ( )( ) ( ) .s sF s Q F s=   (5) 
 
In principle, these functional equations can be solved for 
F(s) and Fs(s). Then equation (1) can be inverted by any one 
of several means to yield f [n] and fs[n]. 

However, equation (4) is deceptive; it cannot be solved 
using elementary algebraic manipulations. On the other 
hand, formula (2) can be applied to equations (4) and (5) to 
produce a sequence of coupled equations for the 
distributions’ factorial that can be solved iteratively by 
elementary means [2]. For some applications, these factorial 
moments are sufficient [3]; and this is where the situation 
remained for many years after the publication of Böhnel’s 
original paper in 1985. 

However in recent years, new methods have been 
applied to Böhnel’s equations that yield solutions for the 
full PGFs. In 2006, Enqvist, et al. [4,5] obtained the 
underlying multiplicity distributions f [n] and fs[n] from 
Böhnel’s equations in a method similar to Böhnel’s method 
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for finding the factorial moments. Enqvist, et al. applied 
formula (3) to Böhnel’s equations, rather than formula (2), 
to get a sequence of coupled equations for f [n] instead of 
the factorial moments obtained by Böhnel. The first 
equation in the sequence is a non-linear equation in f [n] 
alone. For n1, each equation is linear in f [n], but non-
linear in f [n'] for n'n. When solving each of these 
equations recursively, all the non-linear terms are already 
known from the solution of the previous equations. Thus for 
n1, each equation reduces to a linear expression in f [n] 
alone. The first equation must be solved numerically, but 
after that, each subsequent equation can be solved 
algebraically, yielding closed-form expressions for f [n]. 
The fs[n] multiplicity distribution is obtained in a similar 
manner. However, the complexities of these expressions 
mount rapidly. For large n, they can be practically found 
only by resorting to a symbolic computation software 
package, such as Mathematica [6]. 

In 2012, Prasad and Snyderman published a power 
series solution whose coefficients involve multinomial 
expansions [7]. The underlying multiplicity distribution is 
recovered by identifying f [n]  with the coefficient for the sn 
term in the power series solution for F(s). 

Finally, just last year (2016), Chambers, et al. published 
a paper in which they solve Böhnel’s equations for F(s) 
numerically, using a root-finding algorithm [8]. Next, they 
compute the characteristic function ( )fφ θ for f [n] from the 
PGF by evaluating ( )( ) .i

f F e θφ θ = Then the characteristic 
function for the fs[n]  distribution is computed directly from 
φf by ( )( ) ( ) .s s fQφ θ φ θ=   Finally, they recover the 
multiplicity distributions by applying the fast Fourier 
transform to ( )fφ θ and ( ).sφ θ  Chambers, et al. also 
calculate the measured neutron multiplicity distribution 
similarly. 

Although generating functions lie at the intersection of 
combinatorics and analysis, Prasad and Snyderman’s 
method is arguably combinatoric at its heart, given its 
reliance on recursion and multinomial expansions (and also 
in light of their extensive discussion of its combinatoric 
properties.). The method of Chambers, et al. is essentially 
algebraic and numerical, whereas the method of Enqvist, et 
al. is mostly algebraic. 

This paper presents a fourth method for finding neutron 
multiplicity distributions that, in contrast, is more purely 
analytic. 
 
II. SUMMARY OF THE MAIN RESULTS 
 

The application to Böhnel’s equations of the method 
described below (and different from that employed in 
reference [7]) for finding power series solutions of 
functional equations leads to the following integral 
representations for the leaked neutron multiplicity 
distributions: 

 

 ( )
( )

1

[0]

1
[ ] , 1,

2 ( )

o

n

n

w

f z

p dw
f n n

ni w pQ wπ
=

=

−
= ≥

−

⌠

⌡


   (6) 

and 
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where zo is the particular root of the equation 
 
 ( ) 0z pQ z− =   (8) 
 
that lies in the open disk | | 1.z <  

These are very well behaved proper integrals; they are 
evaluated over a finite length contour which never 
encounters singularities. Therefore they lend themselves to 
very fast, trouble-free numerical integration. Numerical 
integration procedures included in standard numerical 
computation packages are capable of carrying out these 
quadratures very efficiently. 

In addition, the availability of these packages makes the 
evaluation of equations (6) and (7) extremely easy to 
implement in code. For instance, the computation of the 
entire multiplicity distribution, fs, can be performed in as 
little as eight lines of MATLAB code [9]. 

Another attractive feature of these representations is 
that the dependence on the parameter p is given analytically. 
Hence the parametric dependence of the neutron multiplicity 
distributions can be studied analytically. Moreover, 
derivatives with respect to p can also be taken analytically, 
which is useful for applications like curve fitting and 
statistical parameter estimation. 

In actual measurements, not every leaked neutron is 
actually detected, because the detector efficiency ε is less 
than 100%. Since each neutron detection is the successful 
outcome of an independent Bernoulli trial, the detected 
neutron multiplicity distribution is 

 

 ( )[ ] 1 [ ]n mm
s

n m

n
g m f n

m
ε ε

∞
−

=

 
= − 

 
∑ . (9) 

 
Unfortunately this is an infinite series that converges 

rather slowly. Therefore an integral representation for g[m], 
similar to equations (6) and (7), would be useful. 
From Böhnel’s equations, it is easy to derive functional 
equations for G(s), the PGF of g[m]: 
 ( )( ) ( )( ) 1 1 ( )m mF s p s pQ F sε ε= − − + +   (10) 
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 ( )( ) ( )s mG s Q F s=   (11) 
 
Then the application of the same methodology leads to the 
following integral representation for g[m]: 
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where zo is the particular root of  
 
 ( )( )1 1 ( ) 0p z pQ zε − − + − =   (13) 
 
that lies in the open disk | | 1z < . 
 
 
III. OUTLINE OF THE DERIVATIONS 

 
1.  A Method for Solving Functional Equations 
 

Consider this prototypical problem: 
 
Given two functions, 1( , )R s t and 2 ( )R t , solve the general 
functional equation 
 

 ( )1 , ( ) 0R s sΘ = ,  (14) 
 
for Θ(s) and also compute ( )2 ( )R sΘ . 
 

Often it is not possible to solve Eq, (14) for Θ(s) by 
elementary means, but sometimes we are fortunate and can 
rearrange Eq. (14) to arrive at an expression with the form 
 

 ( )( )s H s= Θ . (15) 
 
Clearly, the function H is the inverse of the function Θ that 
we seek. To simplify working with H rather than the still 
unknown Θ, let us make the following change-of-variable 
 

 ( )z s= Θ , (16) 
 
so that  
 

 ( )s H z= , (17) 
 ( )2 2( ) ( )R s R zΘ = . (18) 
 

Now suppose we could somehow express both the 
identity function, u(z) = z and 2 ( )R z  in terms of H(z) such 
that 
 

 [ ]1( ) ( )z u z H z= = H ,  (19) 

 [ ]2 2( ) ( ) .R z H z= H  (20) 
 
Then we could substitute equations (15) and (16) into 
equations (19) and (20) to perform a change of variable 
from z back to s and thus arrive at expressions for Θ(s) 
and ( )2 ( ) :R sΘ  
 

 [ ]1( )s sΘ = H ,  (21) 

 ( ) [ ]2 2( )R s sΘ = H .  (22) 
 

Therefore, all that remains to be done is to find the 
formal expressions 1H  and 2H . These expressions can take 
the form of a functional series involving powers of H(z), 
which in turn, can be found using the following theorem. 
 
THEOREM 1  Given  

(a) functions f(z) and Η(z), 
(b) a closed contour C, 
(c) a closed, simply connected domain Ω̂ ,  

let Ω be the interior of C, and 
 { }: ( ) ( ) .o z H z H w w CΩ = ∈ Ω < ∀ ∈  
If 

(i) f(z) and Η(z) are analytic everywhere on C and Ω, 
(ii) ˆ ,oΩ ⊆ Ω   
(iii) Η(z) has exactly one zero in Ω, and it is simple, 
(iv) Η(z) has no zeros on C,  
(v) ( )H z′  has no zeros in Ω̂ , 

then 

 
1

ˆ( ) ( ) ( )no n
n

f z f z A H z z
∞

=

= + ∀ ∈ Ω∑ ,  (23) 

where 

 1 ( )
2 ( )n n

C

f w
A dw

ni H wπ
′

= ⌠

⌡

,  (24) 

 
and zo is the zero of Η(z) that lies in Ω. 
 

Thus if H(z) satisfies the criteria set out in this theorem, 
we can expand u(z) = z and 2 ( )R z as 
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Then substituting equations (15) and (16) into equations 
(25) and (26)  yields, finally, 
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Theorem 1 is similar to what has come to be known as 

“Teixeira’s theorem” [10,11,12,13], a classical result in the 
theory of complex analysis. Depending on the author, 
slightly different preconditions are quoted in the statement 
of the theorem. Some authors require f(z) and H(z) to be 
regular, while others only require them to be merely 
analytic. Some authors state the theorem for a fixed z, while 
others allow z to range over all of Ω, the interior of the 
integration contour. Prompted in part by this lack of 
consistency, Theorem 1 was developed to have 
preconditions adapted to our particular problem. 
 
2. Finding the Leaked Neutron Multiplicity 
Distributions 

 
The problem of solving Böhnel’s equations (4) and (5) 

has the same form as the prototypical problem (14). 
Furthermore, equation (4) can be rearranged to yield 
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Thus we can use the previous section’s method. Making the 
substitution ( )z F s=  yields the function 
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If we choose any 0 < δ < 1 and define 
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then it is possible to show that H(z) meets the criteria in 
Theorem 1. Thus Theorem 1 can be applied, ultimately 
leading to 
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where 
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and zo is the root of equation (8). 
 

But by the definition (1) for probability generating 
functions, 
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Since power series representations are unique, we can 
identify the coefficients in equations (34) with the 
coefficients in equations (32), thus proving equations (6) 
and (7). 
 
3. Finding the Measured Neutron Multiplicity 
Distribution 
 

The problem of solving functional equations (10) and 
(11) also has the same form as the prototypical problem  
(14). Rearranging equation (10) and making the substitution 

( )sz F s=  yields 
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If { }: | | 1C z z= = and { }ˆ : ( )z H z δΩ = ≤  as before, then it 
can be shown that ( )H z  meets the criteria in Theorem 1 
also. Furthermore, the zero, zo, of ( )H z  is the root of 
equation (13).  
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To prove equation (12), all the same steps that were 
followed in solving Böhnel’s equations, above, are now 
repeated here, except that: 

(a) ( )H z  is substituted for H(z). 
(b) The root of equation (13) is used for zo instead of 

the root of equation (8). 
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