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Abstract - This paper concerns the derivation of the individual and joint statistics of the signals of up to three
fission chambers operating in the current mode, detecting neutrons emitted from a sample containing fissioning
material. The purpose is to develop an alternative method to the traditional pulse detection based multiplicity
counting for the determination of the sample parameters. The underlying theory and corresponding method of
unfolding the parameters of the sample from such continuous signals was recently developed by the authors for
the case when multiple neutrons emitted simultaneously were assumed to be also detected simultaneously in
the same or different detectors. In the present paper the method is generalized by extending it to the case when
the detection of the multiply emitted neutrons occurs with a random time delay individually for each neutron,
such that the delays are independent, identically distributed random variables. It is seen that in the arising
formulas, in addition to the detector pulse shape and amplitude distribution, the properties (parameters) of
the time delay distribution appear as well. At the same time it is also seen that, although at the expense of a
somewhat more involved calibration procedure, the unfolding of the sample parameters from the three lowest
order auto- and cross-cumulants of the detector signals is still possible, in a procedure similar to using the
singles, doubles and triples count rates of traditional multiplicity counting. In contrast to this latter method, the
procedure proposed here is free from the dead time problem, and requires a somewhat simpler data processing.
In particular, being free from the dead-time problem and by the relative insensitivity of the fission chambers to
gamma contributions, especially for the higher order cumulants, makes the method particularly suitable for
the multiplicity analysis of spent fuel.

I. INTRODUCTION

In nuclear safeguards, one of the frequently used non-
destructive assay methods for estimating sample parameters
is the multiplicity counting, based on determining the singles
(S ), doubles (D) and triples (T ) detection rates from the mea-
sured signals of several neutron detectors. Traditionally, these
measurements are performed with thermal neutron detectors
operating in pulse mode and require the use of multi-channel
analyzers as well as various dead time correction techniques
[1, 2]. An alternative method has been proposed recently,
based on fast neutron measurements with fission chambers
operating in current mode [3]. Although the new approach
needs a more involved calibration, it does not require dead
time corrections and has a much simpler data processing pro-
cedure. The fact that no dead time problems are present also
makes the method suitable for measurements on spent fuel,
where high count rates are encountered. The relative insen-
sitivity of fission chambers to gamma contributions and, in
particular, the ability of the higher order moments of the detec-
tor signal for suppressing minority components (cf. the higher
order Campbelling theorems, e.g. [4, 5]) makes the proposed
method a very promising alternative for multiplicity measure-
ments, including measurement on spent fuel. Because of their
small size, fission chambers can be inserted even inside the
fuel assembly in BWRs [6].

A significant limitation of both the traditional and the
newly proposed method is that their underlying theory is based
on a spatial and energy independent mathematical model of
the emission and detection process of neutrons. As a conse-
quence, they are unable to describe inherently the temporal
separation of neutrons: due to the source energy spectrum, the
stochastic nature of the neutron transport, and the difference
in the distances of various detectors from the source, particles
originating from the same emission event (hence being emit-
ted simultaneously) will reach the detectors after a (random)
detection time, different for each neutron. It is worth noting
that, at least in principle, the detection times of the individual
particles may not be totally independent. If the effect is a
result of the difference in the energies (hence velocities) of
the neutrons, the correlations between the energies would lead
to non-zero covariances between the detection times. Such
energy correlations are expected to be small, in particular af-
ter the internal multiplication of the source neutrons in the
sample. However, there is an increasing awareness of the sig-
nificance of the energy correlations of neutrons emitted in a
single fission event, hence in measurements on small sources
with negligible internal multiplication, such energy correla-
tions might play a role. This effect will be investigated in a
future work.

Clearly, the above mentioned time delay between the emis-
sion and detection of neutrons should be taken into account in
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the relevant theoretical expressions. For the traditional case of
pulse counting with thermalised neutrons, the delay is actually
dominated by the slowing down and thermal diffusion, and is
represented by a “detector die-away time”. Quantitatively, it
is accounted for with the doubles and triples gate factors in
the multiplicity formulas [1, 2]. On the other hand, since the
proposed alternative method is based on fast neutron detection
without neutron thermalisation being involved, the difference
in the detection times is several orders of magnitudes smaller
than in thermal detector systems and mainly arise from geo-
metrical factors (different flight lengths to different detectors
or different parts of the same detector), as well as from the
different velocities of the emitted neutrons. The correspond-
ing fluctuations in the detection times are therefore several
orders of magnitude smaller than in thermal detection systems,
so much so that in pulse counting systems no correction fac-
tors (gate factors) would be necessary. Nevertheless, it can
be expected from simple considerations, that the suggested
method of using fission chambers in the current mode is still
sensitive even to such small time delay effects. This is be-
cause the pulse width is rather small (in the range of tens of
nanoseconds), and an arrival time difference equal to or larger
than the pulse width can make two completely overlapping
pulses to totally non-overlapping. In the previous work, no
such differences in the detections times have been taken into
account so far: neutrons emitted simultaneously were assumed
to be detected instantly, hence also simultaneously. Reflecting
these random detection times, however, might result in a sub-
stantially different relationship between the signal cumulants
and the multiplicity rates compared with the model in which
simultaneous detection of simultaneously born neutrons is
assumed.

The objective of the present paper is thus to account for
the fluctuations in the detection times of jointly born neutrons
by extending the theory to account for the different arrival
times of neutrons from the same source event. This will be
achieved by using a random time delay of the detection of each
neutron after their birth, specified by a probability distribution.
It is shown that the S , D and T rates are still uniquely related
to the first three cumulants of the detector signal. In this case
though, as expected, the scaling factors will depend not only
on the detector pulse shape and its amplitude distribution, as
in the previous model, but also on the properties of the random
time delay distribution of the detection event. Nonetheless,
the results also suggest that the non-simultaneous detection
of neutrons from the same source event does not decrease the
potentials of the method for multiplicity counting in a crucial
manner.

II. THEORY

The two substantial elements in a multiplicity counting
measurement are the emission and subsequent detection of
neutrons. Due to the probabilistic nature of the underlying
physical phenomena (including the production and transport of
neutrons as well as the formation of the detector signal), they
need to be described as stochastic processes. The topic of this
section is the mathematical formulation of these processes.

1. Emission Statistics

The emission of neutrons from the sample is completely
independent from the detection process, hence it is the com-
mon starting point for both the pulse-based traditional coinci-
dence counting and the fission chamber signal based method
proposed in [3] and generalized in this paper. A suitable prob-
abilistic model of the emission of neutrons in a heavy-nuclide
sample is provided by the theory of superfission [7, 1, 2],
which describes the emission as a compound Poisson pro-
cess [8].

The source emission events are characterized by an inten-
sity Qs which is given in terms of the fission source intensity
F as

Qs = F (1 + ανsf,1), (1)

where α stands for the so-called α-ratio. The emission of neu-
trons in a source event (spontaneous fission or (α, n) reaction)
leads to a number distribution P(n) of the neutrons leaving the
sample (per source event), which also takes into account the
internal multiplication in the sample. For later use we define
the generating function of this number distribution as

G(z) =

∞∑
n=0

P(n) zn (2)

The first three factorial moments of P(n), which are obtained
from the derivatives of G(z) with respect to z, are given as [7]

ν1 =
M

(1 + ανsf,1)
νsf,1(1 + α), (3a)

ν2 =
M2

(1 + ανsf,1)

[
νsf,2 +

(
M − 1
νi,1 − 1

)
νsf,1(1 + α) νi,2

]
, (3b)

ν3 =
M3

(1 + ανsf,1)

{
νsf,3 +

(
M − 1
νi,1 − 1

)
×

[
3νsf,2νi,2

+νsf,1(1 + α) νi,3
]
+ 3

(
M − 1
νi,1 − 1

)2

νsf,1(1 + α) ν2
i,2

 , (3c)

where M is the so-called net leakage multiplication, whereas
νsf,k and νi,k are the factorial moments of the number of neu-
trons emitted in one spontaneous or induced fission event,
respectively.

In order to simplify the upcoming formulas, it is conve-
nient to introduce the modified factorial moments1

ν̃k = νk (1 + ανsf,1), (4)

hence one has
Qs νk = F ν̃k. (5)

2. Detection Statistics

The probabilistic model of the detection of neutrons
should provide equations for a proper set of quantities that a)
can be expressed as functions of the (known and unknown)

1It has to be mentioned that the word “modified” here is different from its
meaning in the expression “modified factorial moments”, where it means the
nth factorial moments divided by n!.
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sample parameters defined in Section 1., and b) can be deter-
mined from the registered responses of the detectors.

Such a model is based on a simplified experimental setup
in which a neutron-emitting sample is surrounded by three de-
tectors characterized by efficiencies εi (i = 1, . . . , 3), such that∑3

i=1 εi ≤ 1, and by some other parameters specified later. It is
further assumed, that each emitted neutron might be detected
independently by one of the detectors with a corresponding
probability εi, and triggers a response. The actual form of the
response depends on the operation mode of the detectors:

• in pulse mode, the individual detection events are reg-
istered e.g. by counting them within a suitable time-
gate (pulse counting); this forms the basis of the tradi-
tional method of multiplicity counting and is summarized
briefly in Section A.

• in current mode, the time-dependent current (or voltage)
signal is registered with a suitable time-resolution; this
forms the basis of the new method of multiplicity count-
ing and is described in detail in Section B.

With both modes of operation, the observed statistics
of detection is highly influenced by the fluctuations in the
detection times of the individual neutrons, discussed already
in Section I.. Therefore, for any practical applications, this
effect needs to be taken into account in the derivations of the
formulas.

A. Detection in Pulse Mode

The traditional method of multiplicity counting utilizes
the counting statistics obtained from the detectors operating in
pulse mode and characterized by identical efficiencies εi = ε
(i = 1, . . . , 3). Specifically, the k-multiplet detection rates,
that is, the expected number of events per unit time, when
a response is triggered in k detectors (k = 1, 2, 3) within a
suitable time-gate is determined [1]. It has to be mentioned
that it is necessary to turn to these detection intensities, since
the factorial moments of the neutrons emitted in one source
event cannot be measured.

In particular, the first three multiplet detection rates, called
the singles (S ), doubles (D) and triples (T ) rates can be written
as

S = F ε ν̃1, (6a)

D = F
ε2ν̃2

2
fd, (6b)

T = F
ε3ν̃3

6
ft, (6c)

which, besides the sample parameters and the detector effi-
ciency, contain two empirical quantities, the fd doubles and
ft triples gate fractions. These latter represent a “detector
die-away time” accounting for the detection time fluctuations
by compensating the underestimation of the corresponding
multiplet detection rate: since the detection events are counted
within a time-gate initiated by the first (triggering) count and
this time-gate is finite, only a fraction of the coincident detec-
tions will be registered.

By substituting the modified factorial moments (4) into
the expressions (6) of the detection rates, a system of alge-
braic equations is obtained. Using these equations, the three
unknown sample parameters (F, M and α) can be obtained
from the measured values of the S , D and T rates by algebraic
inversion [1, 2]. The corresponding inversion formulas were
shown in the previous paper, hence they will not be given here.

B. Detection in Current Mode

The new method of multiplicity counting, based on a re-
cently developed formalism [9], utilizes the signal statistics
obtained from the detectors operating in current mode. Specif-
ically, the auto and cross cumulants of the stationary signals of
different groups of detectors are determined. In the previous
work, the cumulants were derived assuming the coincident
detection of simultaneously emitted neutrons. The aim of
this section is to provide a similar derivation of another set
of formulas, which now will take into account the fluctuating
detection time of neutrons.

The complete signal of a detector is the sum of the signals
induced by all the detections after a single emission which, in
turn, is a sum of the pulses induced by the individual detec-
tions. In order to structure the following lengthy discussion,
the statistics of the detector signal will be described in three
steps, each utilizing the results of the previous ones: 1. char-
acterization of the response to a single detection; 2. character-
ization of the response to detections from a single emission; 3.
characterization of the response to detections from a series of
emissions.

Let ξ(t) denote the stochastic process representing the
signal of a detector after detecting one neutron originating
from an emission at time t = 0. We shall assume that the de-
tection occurs after a random time τ, which is independent and
identically distributed for each neutron, and is characterized
by a density function u(τ). Each detection induces a stochas-
tic pulse with a deterministic shape f (t), such that f (t) = 0
for t < 0, and with a random amplitude a characterized by a
probability density function w(a). Under these assumptions,
the one-point distribution function H(y, t) of the process can
be written as

H(y, t) = P {ξ(t) ≤ y} = (7)∫ ∞

0

∫ ∞

0
∆

[
y − a f (t − τ)

]
w(a) u(τ) dadτ, (8)

where ∆ denotes the unit step function. The corresponding
one-point density function h(y, t) and its characteristic function
χ(ω, t) reads as

h(y, t) =

∫ ∞

0

∫ ∞

0
δ
[
y − a f (t − τ)

]
w(a) u(τ) dadτ (9)

and

χ(ω, t) =

∫ ∞

0

∫ ∞

0
eıωa f (t − τ) w(a) u(τ) dadτ, (10)

respectively, with δ denoting the Dirac delta function. When
no delay between the emission and the detection is considered,
i.e., when u(τ) = δ(τ), the above forms of h(y, t) and χ(ω, t)
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reduce to the corresponding expressions in [3]. Actually, since
in the stationary state of the process, all quantities are invariant
to an arbitrary time shift, it is not the zero value of the time
delay which counts, rather whether it is deterministic (the
same for all neutron arrivals), or has a random distribution. If
all neutrons are delayed with the same time lapse, the particles
emitted simultaneously will still arrive simultaneously. That is,
if one has u(τ) = δ(τ− τ0), then one still should have formulas
identical with the case of instantaneous detection. Indeed,
using such a delay distribution in (10) leads to

χ(ω, t) =

∫ ∞

0
eıωa f (t − τ0) w(a) da, (11)

and since in the stationary formulas χ(ω, t) is always integrated
from t = 0 to t = ∞, it is easy to see that even (11) reverts to
the corresponding formula in [3]. On the other hand, as will be
seen more clearly on the expressions of the cumulants, if u(τ)
is a random distribution, the arising expressions and results are
different from the previous one. Hence, the theoretical model
presented in this paper can be considered as a generalization
of that proposed in [3].

Let ξk(t) denote the stochastic process representing the
signal of a detector after the (not necessarily simultaneous) de-
tection of k neutrons originating from the same emission event
at time t = 0. Since each detection generates a corresponding
pulse ξ(t), the one-point distribution function Uk(y, t) of ξk(t)
can be expressed with that of ξ(t) as

Uk(y, t) = P {ξ(t) ≤ y1, . . . , ξ(t) ≤ yk} =

H(y1, t) · · ·H(yk, t).
(12)

with the condition y1 + · · ·+ yk = y; this expresses the fact that
although the pulses are generated independently, their contri-
bution to the signal is not independent. As a consequence, the
density function uk of the process ξk can be written as a k-fold
convolution of h:

uk(y, t) =

∫
· · ·

∫
y1+···+yk=y

h(y1, t) · · · h(yk, t) dy1 · · · dyk,

whereas, after utilizing the convolution theorem [10], its char-
acteristic function ζk can be expressed as the k-th power of χ:

ζk(ω, t) = χk(ω, t). (13)

Now, let the stochastic process ηi(t) represent the fluctuat-
ing signal of the i-th detector. Then, the joint distribution of
the signals of all m detectors is defined as

P(y1, . . . , ym, t) = P {η1(t) ≤ y1, . . . , ηm(t) ≤ ym} . (14)

Specifically, we are interested in the statistics of at most three
detectors. Therefore, using a backward type master equation
formalism, integral equations will be formulated for the single
and joint density functions of one, two and three detectors.
By taking their Fourier-transforms, another set of equations
will be obtained for the corresponding characteristic functions,
which will have very simple solutions. Finally, the desired

cumulants will be obtained by differentiating the natural loga-
rithm of the characteristic functions of the stationary detector
signals.

The details of this derivation will be considered separately
for one, two and three detectors. In order to maintain gener-
ality, we shall assume that all detectors are distinct and have
different parameters. As will be seen below, the primary quan-
tities that enter into the expressions of the cumulants are the
modified factorial moments (4) and the spontaneous fission
rate F. These expressions are sufficient to perform the inver-
sion procedure, i.e. expressing the parameters F, M and α in
terms of the cumulants of the detector current and the (known)
factorial moments of spontaneous and induced fission.

The formulas corresponding to identical detectors will
also be presented. As was done in the previous work, it will
be shown that in this special case, the cumulants can also be
expressed in terms of the S , D and T rates of the traditional
method (at least after disregarding the empirical gate factors,
relevant only in an actual pulse counting measurement). Al-
though this step is not necessary, there is a trivially simple
relationship between the multiplicity rates on one hand and
the fission rate and modified factorial moments on the other.
Expressing the S , D and T rates in terms of the cumulants is
thus simple, and it has the practical advantage that the rela-
tionship to the traditional pulse counting methods becomes
transparent, and the known, traditional inversion formulas can
be used also in the proposed method.

As a notational convenience, we introduce a function of
the detection efficiencies of k detectors as

ck(z1, . . . , zk) =

k∑
i=1

εi (zi − 1) + 1. (15)

One detector To obtain the master equation for the density
function p(y, t) of the signal of one detector, the following two
mutually exclusive events are accounted for:

1. there will be no source emission on the interval [0, t);

2. there will be a source emission (following other emis-
sions) on the interval [0, t) producing n neutrons, where-
after the detector detects k neutrons and n − k neutrons
escape without being detected.

With the above considerations, the master equation reads as

p(y, t) = e−Qst δ(y)

+ Qs

∫ t

0
e−Qs(t−t′)

∞∑
n=0

P(n)
n∑

k=0

(
n
k

)
εk(1 − ε)n−k

×

∫ y

0
uk(y′, t′) p(y − y′, t′) dy′dt′.

By utilizing (13), for the characteristic function one obtains

π(ω, t) =

∫ ∞

−∞

eıωy p(y, t) dy

= e−Qst + Qs

∫ t

0
e−Qs(t−t′)

∞∑
n=0

P(n)
n∑

k=0

(
n
k

)
×

[
χ(ω, t′)

]k εk(1 − ε)n−k π(ω, t′) dt′
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which, using (2) and (15), can be further simplified to

π(ω, t) = e−Qst

+ Qs

∫ t

0
e−Qs(t−t′) G

[
c1

(
χ(ω, t′)

)]
π(ω, t′) dt′.

The well-known solution of this integral equation is

π(ω, t) = exp
{

Qs

∫ t

0

[
G

[
c1

(
χ(ω, t′)

)]
− 1

]
dt′

}
,

from which the logarithm of the characteristic function of the
stationary signal can be expressed as

γ(ω) = lim
t→∞

ln [π(ω, t)]

= Qs

∫ ∞

0

{
G

[
c1

(
χ(ω, t′)

)]
− 1

}
dt′.

(16)

As mentioned earlier, since in the above stationary formula,
the characteristic function (and other functions of it) are in-
tegrated from zero to infinity, a constant, deterministic time
delay would lead to the same results as the zero time delay.

The k-th order cumulant of the stationary signal is ob-
tained from the derivatives of (16):

κk =
1
ık

d(k)γ(ω)
dωk

∣∣∣∣∣∣
ω=0

.

Using the explicit form (10) of γ(ω), for the cumulants
up to order three one obtains

κ1 = Fν̃1ε 〈a〉
∫ ∞

0
f (t) dt, (17)

κ2 = Fν̃1ε
〈
a2

〉 ∫ ∞

0
f 2(t) dt

+ Fν̃2ε
2 〈a〉2

∫ ∞

0

[∫ ∞

0
f (t − τ) u(τ) dτ

]2

dt,
(18)

and

κ3 = Fν̃1ε
〈
a3

〉 ∫ ∞

0
f 3(t) dt

+ 3Fν̃2ε
2 〈a〉

〈
a2

〉 ∫ ∞

0

[∫ ∞

0
f (t − τ) u(τ) dτ

×

∫ ∞

0
f 2(t − τ) u(τ) dτ

]
dt

+ Fν̃3ε
3〈a〉3

∫ ∞

0

[∫ ∞

0
f (t − τ) u(τ) dτ

]3

dt.

(19)

It is interesting to compare these results with those ob-
tained for the case of no time delay. It is seen from (17) that
the first cumulant is insensitive to the presence of any time
delay, whether random or deterministic. This is intuitively
clear: since the first cumulant is only related to the total num-
ber of detections, which is determined by the source intensity
and source multiplicity, it does not matter when the individual
detections take place. The second cumulant (18) consists of

two parts. The first one is the same as in the case of the zero
delay case. This is because this term corresponds to the “auto-
correlation” part of the signal, when a pulse is correlated with
itself. This is seen if the integral expression is rewritten as

∫ ∞

0

∫ ∞

0
f 2(t − τ) u(τ) dτ dt (20)

which, by noting that f (t) = 0 for t < 0, using the convolution
theorem and further noticing that u(τ) is a probability density
function whose integral is unity, one arrives to the expression
in the first term of (18).

The second term corresponds to the “cross-correlation”
between two different pulses, which is seen if the integral
expression is rewritten as

∫ ∞

0

∫ ∞

0

∫ ∞

0
f (t − τ1) f (t − τ2) u(τ1) u(τ2) dτ1 dτ2 dt (21)

One can show that the dependence of the integrand on τ1
and τ2 is reduced to that on τ1 − τ2, hence the expression
is invariant to a time shift of the time delay distributions, as
is expected on physical grounds. One can also see that, in
general, the value of this integral is smaller than that in the
first term, due to the fact that pulses arriving in different time
do not fully overlap. This also means that if the time delay
distribution is not taken into account in the formulas, i.e. the
measurement is evaluated with the formulas corresponding to
no time delay, the fissile mass will be underestimated.

The expression for the third cumulant, (18), can be inter-
preted in a similar way. The first term corresponds to the triple
"auto-correlation" when a pulse is correlated with itself twice,
and hence the integral is independent of the time delay distri-
bution; the second term corresponds to the mixed case when
a pulse is correlated with itself and with another (different)
pulse; and finally the last term to the case of three different
pulses, each with its own time delay.

It is also seen in Equations (18) and (19) that, due to
the appearing higher moments, or higher powers of the lower
moments of the detector pulse amplitudes, the second and
third cumulants suppress the minority components, notably the
gamma contributions, similarly to the application of the higher
order Campbelling methods. This decreases the possible bias
of the method in measurements in a high gamma background.

Equations (17) - (19) above can also be expressed with
the multiplet detection rates (6) of the traditional method as

κ1 = S 〈a〉
∫ ∞

0
f (t) dt, (22)

κ2 = S
〈
a2

〉 ∫ ∞

0
f 2(t) dt

+ 2D 〈a〉2
∫ ∞

0

[∫ ∞

0
f (t − τ) u(τ) dτ

]2

dt,
(23)
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and

κ3 = S
〈
a3

〉 ∫ ∞

0
f 3(t) dt

+ 6D 〈a〉
〈
a2

〉 ∫ ∞

0

[∫ ∞

0
f (t − τ) u(τ) dτ

×

∫ ∞

0
f 2(t − τ) u(τ) dτ

]
dt

+ 6T 〈a〉3
∫ ∞

0

[∫ ∞

0
f (t − τ) u(τ) dτ

]3

dt.

(24)

These expressions make it possible to determine the S , D and
T rates from the cumulants. It is important to emphasize that
the expressions used for calculating the D and T rates also
contain the S rate as well as the S and D rates, respectively.
As a consequence, the accuracy of the estimation of D and
T is burdened by the accuracy of the estimation of the lower
order rates.

Two detectors To obtain the master equation for the joint
density function p(y1, y2, t) of the signals of two detectors, the
following two mutually exclusive events are accounted for:

1. there will be no source emission on the interval [0, t);

2. there will be a source emission (following further emis-
sions) on the interval [0, t) producing n neutrons, where-
after the two detectors detect k1 and k2 neutrons, respec-
tively, whereas k0 = n − k1 − k2 neutrons escape without
being detected.

With the above considerations, the master equation reads as

p(y1, y2, t) = e−Qst δ(y1) δ(y2)

+ Qs

∫ t

0
e−Qs(t−t′)

∞∑
n=0

P(n)
∑

k0+k1+k2=n

×
n!

k0! k1! k2!
εk1

1 ε
k2
2 (1 − ε1 − ε2)k0

×

∫ y1

0

∫ y2

0
uk1 (y′1, t − t′) uk2 (y′2, t − t′)

× p(y1 − y′1, y2 − y′2, t
′) dy′1dy′2dt′,

By utilizing (13), for the characteristic function one obtains

π(ω1,ω2, t) =

∫ ∞

−∞

∫ ∞

−∞

eı(ω1y1+ω2y2) p(y1, y2, t) dy1dy2

= e−Qst + Qs

∫ t

0
e−Qs(t−t′)

∞∑
n=0

P(n)
∑

k0+k1+k2=n

×
n!

k0! k1! k2!
(1 − ε1 − ε2)k0 εk1

1 ε
k2
2

×
[
χ1(ω1, t′)

]k1
[
χ2(ω2, t′)

]k2 π(ω1, ω2, t′) dt′,

which, using (15), can be further simplified to

π(ω1, ω2, t) = e−Qst + Qs

∫ t

0
e−Qs(t−t′)

×G2[c2(ω1, ω2, t′)] π(ω1, ω2, t′) dt′,
(25)

The solution of this integral equation is

π(ω1, ω2, t) =

exp
{

Qs

∫ t

0

[
G

[
c2

{
(χ1(ω1, t′), χ2(ω2, t′)

}]
− 1

]
dt′

}
,

from which the logarithm of the characteristic function of the
stationary signals can be expressed as

γ(ω1, ω2) = lim
t→∞

ln [π(ω1, ω2, t)]

= Qs

∫ ∞

0

{
G

[
c2

{
(χ1(ω1, t′), χ2(ω2, t′)

}]
− 1

}
dt′.

(26)

The (k1, k2)-th order cumulant of the stationary signals is then
obtained from the derivatives of (26):

κk1,k2 =
1

ı(k1+k2)

∂(k1+k2)γ(ω)

∂ωk1
1 ∂ωk2

2

∣∣∣∣∣∣∣
ω1=ω2=0

.

In particular, using (10), for the cumulants up to order
three one obtains

κ1,1 = Fν̃2ε1ε2 〈a1〉〈a2〉

∫ ∞

0

∫ ∞

0
f1(t − τ) u1(τ) dτ

×

∫ ∞

0
f2(t − τ) u2(τ) dτ dt

(27)

and

κ2,1 = Fν̃2ε1ε2

〈
a2

1

〉
〈a2〉

∫ ∞

0

∫ ∞

0
f 2
1 (t − τ) u1(τ) dτ

×

∫ ∞

0
f2(t − τ) u2(τ) dτ dt + Fν̃3ε

2
1ε2 〈a1〉

2〈a2〉

+

∫ ∞

0

[∫ ∞

0
f1(t − τ) u1(τ) dτ

]2

×

∫ ∞

0
f2(t − τ) u2(τ) dτ dt.

(28)

Considering the case, when both detectors are character-
ized by the same parameters, Equations (27)–(28) can also be
expressed with the multiplet detection rates (6) of the tradi-
tional method as

κ1,1 = 2D 〈a〉2
∫ ∞

0

[∫ ∞

0
f (t − τ) u(τ) dτ

]2

dt (29)

and

κ2,1 = 2D
〈
a2

〉
〈a〉

∫ ∞

0

∫ ∞

0
f 2(t − τ) u(τ) dτ

×

∫ ∞

0
f (t − τ) u(τ) dτ dt

+ 6T 〈a〉3
∫ ∞

0

[∫ ∞

0
f (t − τ) u(τ) dτ

]3

dt.

(30)

These expressions make it possible to determine the D and T
rates from the cumulants. Unlike the corresponding formulas
(23)–(24) for one detector, they do not contain the S rate.
Hence, the accuracy of the calculated values of D and T will
no longer be burdened by the accuracy of S .
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Three detectors To obtain the master equation for the joint
density function p(y1, y2, y3, t) of the signals of three detectors,
the following two mutually exclusive events are accounted for:

1. there will be no source emission on the interval [0, t);

2. there will be a source emission (following further emis-
sions) on the interval [0, t) producing n neutrons, where-
after the three detectors detect k1, k2 and k3 neutrons,
respectively, whereas k0 = n − k1 − k2 − k3 neutrons
escape without being detected.

With the above considerations, the master equation reads as

p(y1, y2, y3, t) = e−Qst
3∏

i=1

δ(yi) + Qs

∫ t

0
e−Qs(t−t′)

+

∞∑
n=0

P(n)
∑

k0+···+k3=n

n!
k0!

∏3
i=1 ki!

1 − 3∑
i=1

εi


k0 3∏

i=1

εki
i

×

∫ y1

0

∫ y2

0

∫ y3

0

3∏
i=1

uki (y
′
i , t − t′)

× p(y1 − y′1, y2 − y′2, y3 − y′3, t
′) dy′1dy′2dy′3dt′,

By utilizing (13), for the characteristic function one obtains

π(ω1, ω2, ω3, t) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

eı(ω1y1+ω2y2+ω3y3) dy1dy2dy3

= e−Qst + Qs

∫ t

0
e−Qs(t−t′)

∞∑
n=0

P(n)
∑

k0+···+k3=n

×
n!

k0!
∏3

i=1 ki!

1 − 3∑
i=1

εi


k0 3∏

i=1

[
εi χi(ωi, t′)

]ki

× π(ω1, ω2, ω3, t′) dt′,

which, using (15), can be further simplified to

π(ω1,ω2, ω3, t) = e−Qst + Qs

∫ t

0
e−Qs(t−t′)

×G[c3
{
(χ1(ω1, t′), χ2(ω2, t′), χ3(ω3, t′)

}
]

× π(ω1, ω2, ω3, t′) dt′,

(31)

The solution of this integral equation is

π(ω1, ω2, ω3, t) = exp
{

Qs

×

∫ t

0

[
G3

[
c3

{
(χ1(ω1, t′), χ2(ω2, t′), χ3(ω3, t′)

}]
− 1

]
dt′

}
,

from which the logarithm of the characteristic function of the
stationary signals can be expressed as

γ(ω1, ω2, ω3) = lim
t→∞

ln [π(ω1, ω2, ω3, t)] = Qs

∫ ∞

0

×
{
G3

[
c3

{
(χ1(ω1, t′), χ2(ω2, t′), χ3(ω3, t′)

}]
− 1

}
dt′.

(32)

The (k1, k2, k3)-th order cumulant of the stationary signals is
then obtained from the derivatives of (32):

κk1,k2,k3 =
1

ı(k1+k2+k3)

∂(k1+k2+k3)γ(ω)

∂ωk1
1 ∂ωk2

2 ∂ωk3
3

∣∣∣∣∣∣∣
ω1=ω2=ω3=0

.

In particular, using (10), for the only cumulant of order
three one obtains

κ1,1,1 = Fν̃3 ε1ε2ε3 〈a1〉〈a2〉〈a3〉

∫ ∞

0

×

∫ ∞

0
f1(t − τ) u1(τ) dτ

∫ ∞

0
f2(t − τ) u2(τ) dτ

×

∫ ∞

0
f3(t − τ) u3(τ) dτ dt

(33)

Considering the case when all three detectors are characterized
by the same parameters, Equation (33) can also be expressed
with the third multiplet detection rate (6) of the traditional
method as

κ1,1,1 = 6T 〈a〉3
∫ ∞

0

[∫ ∞

0
f (t − τ) u(τ) dτ

]3

dt. (34)

This expression makes it possible to determine the T rate
from the cumulant. Unlike the corresponding formula (30)
for two detectors, it does not contain the D rate. Hence, the
accuracy of the calculated value of T will not be burdened by
the accuracy of any lower order detection rate.

III. VERIFICATION

In order to verify the new detection model presented in
Section B., specific values were selected for the parameters
characterizing the emission and detection processes (discussed
in Section II.). In the possession of these values the cor-
responding statistics of the emission and detection can be
obtained in two ways:

• With theoretical calculations, using the proper formulas
of Section II. The singles, doubles and triples detection
rates can be obtained from Equations (6), after disregard-
ing the gate fractions which are relevant only in the pulse
counting based multiplicity measurements. The low or-
der cumulants of the detector current might be calculated
from Equations (17)–(19), (27)–(28) and (33).

• With the simulation of measurements in an experimental
setup based on the theoretical model of Section II. Ana-
lyzing the simulated detector signals directly, estimated
values of their cumulants can be obtained. When the
detectors have identical properties, also the values of the
singles, doubles and triples rates can be estimated using
Equations (22)–(24), (29)–(30) and (34).

By comparing the calculated and simulated values, the correct-
ness of the derivations presented in Section II. can be checked.

The following parameters of the emission and detection
processes were selected. The source was characterized by an
intensity Qs = 108 s−1 and by an emission number distribu-
tion P(n) given in Table I. All the detectors had the same
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detection efficiency ε = 0.3, and each neutron was detected
independently by one of the detectors after a Gamma(2, 5 ·107)
distributed time delay τ with a corresponding probability den-
sity function

u(τ) = β2 τ e−β τ for β = 5 · 107 s−1; (35)

this resulted in an expected time delay 〈τ〉 = 4 · 10−8 s. The re-
sponse of each detector was characterized by an exponentially
decaying random pulse

f (t) = a e−α t for t ≥ 0 (36)

with a time constant α = 108 s−1 and a Gamma(2, 1) dis-
tributed random amplitude a with a corresponding probability
density function

w(a) = a e−a. (37)

TABLE I. Emission number distribution of the simulated neu-
tron source.

n 0 1 2 3 4 5
P(n) 0.03 0.20 0.35 0.35 0.05 0.02

1. Performing Simulations

For the simulation of measurements, a simple Monte
Carlo tool was prepared with the Python programming lan-
guage [11]. The tool consists of three programs responsible
for the following subtasks:

1. generating a sequence of detection times, by simulating
the source emission as well as the detection process, in-
cluding the random time delay of the individual neutrons
arising from one source event;

2. calculating a time-resolved detector signal, by producing
the detector response for each detection event;

3. estimating the first few cumulants of the time-resolved
signal, using their unbiased estimators.

In order to characterize the uncertainty of the cumulants,
the entire process was repeated 100 times using the same
parameters, from which the average value of the cumulants as
well as their standard deviations were obtained.

In the following, the above listed three steps are discussed
in more detail.

A. Generation of Detection Times

Given a neutron source and an arbitrary number of de-
tectors, a program was created to simulate the emission and
detection of neutrons, in order to produce a sequence of detec-
tion times for each detector in the system.

The actual simulation was performed using three detec-
tors, as illustrated in Figure 1. The detection process was
simulated for a measurement time T = 10−3 s hence, with
the applied source strength Qs, the simulation comprised an
average of T · Qs = 105 source emission events. In practical
applications, however, much longer measurement times are
advisable to be used.

S

D1

D2 D3

Fig. 1. A conceptual scheme of the simulated experiment. A
neutron-emitting source (S) is surrounded by three identical
detectors (from D1 to D3).

B. Production of Detector Signals

Given a sequence of detection times corresponding to
a single detector, a second program was created to produce
a time-resolved detector signal by calculating the detector
responses to the individual detection events.

For each detection at time ti a pulse f (t − ti) was gener-
ated for t ≥ ti using a time resolution ∆t = 10−11 s, and the
complete signal of the detector was calculated as a sum of
these individual pulses. Considering the selected values of
the time resolution ∆t and the measurement time T , the final
signals consisted of approximately T/∆T = 108 points. A
short sample of such a signal is shown in Figure 2.
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Fig. 2. An example of a generated detector signal comprising
of the sum of exponentially decaying pulses.

C. Estimation of Signal Cumulants

Given the time-resolved signals of several detectors, a
third program was created to estimate the auto as well as
cross-cumulants of the signals.

Only the orders of the cumulants discussed in Section B.
were considered, and their actual values were calculated using
their unbiased estimators, the k-statistics [12].
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2. Comparing the Results

Table II shows a comparison of the cumulants obtained
from analyzing the simulated signals as well as from calcula-
tions using the theoretical formulas proposed in Section B.. In
order to better illustrate the temporal separation effect for the
neutrons, the theoretical calculations were performed by both
considering and neglecting the specified random time delay
between the emission and the detection; these two cases will
be referred to as delayed detection and instant detection. The
first two columns identify the actual cumulants displayed in
a particular row of the table. The third and fourth columns
contain the theoretically calculated values for the instant and
delayed detection cases, respectively. In the fifth column, the
simulated values are displayed with their relative uncertainties
at a 95% confidence level. Regarding the presented data, the
following observations can be made:

• Whereas the theoretical value of the first order cumulant
is insensitive to the presence of any time delay, the higher
order cumulants, on the other hand, show a lower value
in the delayed case. This behavior is expected based on
the discussion of the cumulant expressions in Section B..

• The values of the simulated cumulants (obtained by tak-
ing into account the random time delay between the neu-
tron emission and detection) can only be predicted with
the formulas corresponding to the delayed case, which is
a rather obvious conclusion.

• Higher order simulated cumulants tend to have higher
relative uncertainties in general; within the same order,
the cumulants corresponding to more detectors also have
higher relative uncertainties. This is a general property
of the k-statistics, used for estimating the cumulants [12].

TABLE II. Comparison of the cumulants obtained from ana-
lyzing simulated detector signals as well as from theoretical
calculations. The theoretical values are presented for the cases
when the the random time delay is neglected (instant) or con-
sidered (delayed). The relative uncertainties of the simulated
values are given at a 95% confidence level.

order type theory simulation
instant delayed

1 1 1.350 1.350 1.350± 0.06%

2 2 2.709 2.177 2.180± 0.10%
1,1 0.684 0.152 0.152± 0.58%

3
3 9.828 6.116 6.125± 0.20%
2,1 1.692 0.248 0.249± 1.23%
1,1,1 0.324 0.014 0.014± 13.48%

Table III shows a comparison of the singles, doubles and
triples detection rates obtained from “pure” theoretical calcu-
lations and from the simulated cumulants presented in Table II.
The third column contains the type of the rate displayed in a
particular row. In the fourth and fifth column, the theoretical

and simulated values of the rates are presented in the units
of 106 s−1, with the relative uncertainties of these latter at a
95% confidence level. The first two columns identify the cu-
mulants from which the simulated values were obtained. It
is important to note that in some cases, as suggested by the
formulas of Section B., in order to calculate the value of a rate,
the calculated values of the lower order rates needs to be used
(e.g. to calculate the doubles rate D from κ2, the value of the
singles rate S determined from κ1 was used). Regarding the
presented data, the following observations can be made:

• The simulated values of the detection rates shows a good
agreement with the theoretical predictions. This is ex-
pected from the good agreement between the simulated
and theoretical cumulants.

• Higher order simulated detection rates tend to have higher
relative uncertainties due to the higher uncertainty of
the cumulants involved in their calculation. Within the
same order, the detection rates calculated from cumulants
corresponding to less detectors have higher uncertainties,
since the uncertainties from the lower order rates are
carried over in their calculation.

TABLE III. Comparison of the simulated and theoretically
calculated values of the singles (S), doubles (D) and triples (T)
detection rates obtained from cumulants of different orders.
The values are presented in units of 106 s−1. The uncertainties
of the simulated values are given at a 95% confidence level.

order type rate theory simulation

1 1 S 67.500 67.503± 0.06 %

2 2 D 17.100 17.410± 1.62 %
1,1 17.091± 0.58 %

3
3

T 2.025
3.301± 58.73 %

2,1 2.108± 22.79 %
1,1,1 1.997± 13.48 %

IV. CONCLUSIONS

An alternative method has been proposed recently for the
determination of sample parameters from fast neutron mea-
surements using fission chambers operating in current mode.
The mathematical model of the original proposal assumed that
the emitted neutrons are detected instantly which, however,
does not hold for practical cases. To overcome this limitation,
a new, extended model has been developed and presented ac-
counting for a random time delay between the emission and
subsequent detection of neutrons; the considered delay was
independent and identically distributed for all neutrons. Ex-
pressions have been derived for the first low order auto and
cross cumulants of the detector signals. It has been shown,
that when all the detectors are identical (as in the mathematical
model of the traditional pulse counting method), the cumulants
can also be expressed with the traditional singles, doubles and
triples detection rates.
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In order to verify the newly proposed theory, specific val-
ues have been chosen for the parameters of the source and
the detectors. Using these values, simulations have been per-
formed to produce detector signals. The signal cumulants
and the traditional detection rates could then be determined
both from the theoretical formulas and by analyzing the sim-
ulated signals, and their values were compared. It has been
shown that the presence of the random time delay between the
emission and detection has a significant effect on the values
of the cumulants, and the estimated cumulants were properly
described only by the formulas accounting for the delay. It
has been further demonstrated, that the values of the singles,
doubles and triples detection rates can still be determined from
the estimated cumulants of the simulated signals.
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