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Abstract - Accurate, noninvasive accounting of total uranium and uranium-235 concentration at fuel fabri-
cation facilities continues to present a challenging research problem. The methods used by the International
Atomic Energy Agency are time consuming and require in-field chemistry, with operation by experts. Spectral
X-ray radiography, along with advanced inverse algorithms, is an alternative measurement that could be
completed noninvasively, without any in-field chemistry, and with verification measurements completed in
minutes. The proposed measurement system and algorithms are presented here for the quantification of total
uranium mass. The inverse algorithm uses total variation regularization and adaptive regularization parameter
selection with the unbiased predictive risk estimator. Performance of the system is quantified with simulated
X-ray data and sensitivity of the output is tested against various measurement system instabilities as well as
inhomogeneities in the fuel powder density. Initial findings on the achievable accuracy and precision of this
spectral X-ray method indicate strong potential to meet or exceed IAEA’s targets for quantification of uranium
oxide samples in the field.

I. INTRODUCTION

The in-field verification measurement technology used
by the International Atomic Energy Agency (IAEA) to en-
sure accurate accounting of nuclear material at fuel fabrication
facilities is typically the Combined Procedure for Uranium
Concentration and Enrichment Assay (COMPUCEA) [1]. Hy-
brid K-Edge Densitometry (HKED) is another technique in
use by the IAEA, which can measure uranium concentration
in samples, but is typically used in reprocessing plants and
is installed in a facility permanently. [2]. These methods de-
termine uranium concentration by observing the X-ray trans-
mission around the L- and K-edge of the X-ray attenuation
coefficients, respectively, and both result in the destruction
of the samples via a chemical preparation process. These
methods require carefully controlled dissolution chemistry
and time-intensive data acquisition on the order of 1000s of
seconds. A field-deployable technology that can accurately
and nondestructively determine both total uranium mass and
uranium-235 relative concentration, while reducing data ac-
quisition times by an order of magnitude, would significantly
improve the efficiency and reduce the complexity of IAEA
safeguards approaches at fuel fabrication facilities. Pacific
Northwest National Laboratory is exploring the viability of
spectral X-ray radiography techniques, based on measurement
of the transmitted X-ray spectrum, to meet this challenge in
international safeguards.

In prior work not related to the uranium oxide assay ap-
plication, inverse algorithms for X-ray material discrimination
were developed for use with data from high-rate spectral X-
ray radiography detectors. This was pursued to explore how
multi-modal imaging (images that yield structure and material
composition data) might be useful as attributes or in templates
in an arms control verification context [3]. The key develop-
ment in the previous work was development of an efficient,
robust, and adaptive inverse algorithm to determine material
composition from data obtained from spectral X-ray detectors.
The algorithms developed showed excellent performance in

discriminating and quantifying high-atomic-numbered materi-
als even in layered configurations [4]. Performance was found
to be particularly good when the object contained only three
or four expected materials, consistent with what would be ex-
pected in encapsulated fuel powder verification measurements
at nuclear fuel fabrication facilities. Of particular importance
was the development of a method to optimally select a parame-
ter in the algorithm that results in accurate material estimations
[4]. The adaptive nature of these algorithms could be valuable
for IAEA deployed systems since they wouldn’t require expert
operators. This is a key improvement over the COMPUCEA
and HKED systems, which require operation by expert techni-
cians or inspectors.

Here, we present a model-based feasibility study of the
application of inverse algorithms to the noninvasive quantifica-
tion of total uranium content in fuel powders at fuel fabrication
facilities. Spectral X-ray assay was simulated in MCNP [5]
and assumes a nominal detector response for a cadmium tel-
luride X-ray detector. The inverse algorithms were applied
to the simulated data to determine quantities of uranium (U),
oxygen (O), and gadolinium (Gd) noninvasively. We show that
material parameters (i.e., mass of select elements) determined
from these preliminary explorations exhibit levels of uncer-
tainty similar to those provided by today’s IAEA methods in
the field. In order to test the robustness of the algorithm to
realistic instabilities in a deployed verification measurement
system, the sensitivity of the material estimations to expected
measurement system variations was determined.

II. METHODS

The response of a spectral transmission X-ray system to
an arbitrary object can be described using a modified form of
Beer’s law, paired with a detector response model S (E) [6]:

d(ρ, Ebin,`) =

∫ ∞

0
S `(E)φ0(E) exp

−∑
k

µk(E)ρk

 dE. (1)
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Here, d is the detector output for an energy bin ` and S ` is the
energy-dependent bin sensitivity of energy bin `. The X-ray
flux at the image plane is φ, φ0 is the unattenuated flux, µk is
the mass attenuation coefficient of the k’th material and ρk is
its areal density in a given pixel. The density vector ρ indicates
that the transmitted flux depends on a vector of any number of
materials between the X-ray source and the detector.

From Eq. (1), known assay-system parameters, and sam-
ple material composition, an expected output from a spec-
tral X-ray radiography system can be calculated. This is the
forward problem. The inverse problem is to determine the
material composition from the data output of the radiography
system. For a typical problem, this can be done using simple
least-squares fitting. However, since the material attenuation
coefficients are not strongly unique (other than around the
K-edges), e.g., Fig. 2, it has been shown that least-squares
solutions are quite sensitive to image data noise. Therefore,
regularization was required to accurately determine material
composition [4] by minimizing the cost function F(ρ).

F(ρ) =
1
2

∥∥∥∥∥∥∥ dn(ρ) − dobs√
dn−1(ρ)

∥∥∥∥∥∥∥
2

+ α
∑ √

(Diρ)2 + (Djρ)2 + β.

(2)
Here, the first, least-squares term comparing the modeled de-
tector output d(ρ) to the observed data dobs was normalized
by the square root of the forward problem calculation from the
previous iteration, n − 1. This was done so that the variance
in the high-count (e.g., background) pixel data does not over-
weight the norm, and to simplify the regularization parameter
α selection method. The density vector ρ was expanded to
include all materials of interest for all image pixels. Accord-
ingly, the vector d contains the data for all detector pixels and
energy bins. The minimization of F was done over this entire
vector.

The second term was the total variation regularization,
which smooths the solution by penalizing for sharp variations
between neighboring pixels. This was weighted by α, which
varies the strength of the regularization. The operator matrices
Di and Dj determine the backwards finite difference of the ρ
vector in the row i and column j dimension of the image data,
respectively [7]. These operator matrices were defined so that
the variation across image borders or between the different
materials is not taken into account in the calculation of the total
variation. The term β ensures that the function is differentiable
so that analytical first and second derivatives can be found for
optimization. This term was set to unity in this study.

The minimum of Eq. (2) was found using the Gauss-
Newton algorithm, with the application of a non-negativity
constraint using the projected gradient, reduced Hessian al-
gorithm [8]. The Gauss-Newton algorithm is iterative and
approximates F as quadratic at each iteration and minimizes
that approximation. To accomplish this, the first derivative
(gradient) and second derivative (Hessian), or an approxima-
tion thereof, is required. The Gauss Newton algorithm uses the
Jacobian of the misfit term to approximate its second deriva-
tive H, i.e., H ≈ JT J. Though Newton-type algorithms are not
resistant to falling into local minima, it was found this wasn’t
a problem in practice.

Fig. 1: A simulated X-ray radiograph of an inhomogenuous
fuel powder geometry being inspected (log10-transformed),
for the 100-117 keV energy window on a cadmium telluride
detector. The corners of the radiograph are dark due to the
extent of the conical X-ray beam.
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Fig. 2: The simulated CdTe detector response and attenuation
coefficients used in the modeling study for fuel powder assay.
The attenuation coefficients (left axis) are given as solid, col-
ored lines while the detector response of a simulated 5-mm
thick CdTe detector (right axis) is shown as dashed, gray lines.

The value for α was selected adaptively within the opti-
mization algorithm using the unbiased predictive risk estimator
(UPRE) method, as in [4]. The predictive risk pα is defined as

pα = d(ρα) − d(ρtrue) (3)

where, ρα is the regularized density vector solution from the
algorithm and ρtrue is the true density vector. Since the true
density is not known, the UPRE, a statistical estimator of pα,
was minimized instead. The UPRE was minimized over log(α)
to a tolerance of 0.1.

The algorithm was implemented in Matlab (Mathworks,
Inc., Natick, MA).
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1. Fuel powder verification measurement

Nuclear fuel powder is produced in fuel fabrication facili-
ties before being sintered into nuclear fuel pellets. This offers
an opportunity to inspect a lower-density sample (∼3 g/cm3),
where the attenuation around the K-edges of the sample can be
observed with typical X-ray radiography systems. In this work
it was assumed that the uranium oxide (UO2) powder to be
assayed was placed in a thin-walled plastic or quartz container.
The average density of the powder was well below the theoret-
ical density because there was no specific effort made to pack
or compact the powder. The density of the simulated UO2
fuel powders here was 3 g/cm3, with an option for Gd-loading
(Gd2O3) of 5 w/o. Fuel powder thicknesses of 1, 3, and 5 mm
were simulated to explore if there is an optimal thickness that
balances sufficient X-ray transmission and counting statistics
with a material thickness sufficient to produce strong contrast
in the K-edge signal.

Two types of fuel powder objects were simulated. The
first assumes a uniform mixture of fuel powder such that there
is no variation in powder density within the object. This offers
a best-case with which to compare more realistic simulations.
The second object includes more realistic density variation
where the density has a 20% or 40% variation around the nom-
inal 3 g/cm2 density, either normally or uniformly distributed,
as shown in Fig. 1 for the 100-117 keV energy window. This
simulates the expected variation that could be observed in a
loosely tamped powder sample and was simulated by split-
ting the fuel volume into right parallelepipeds of dimension
0.3 × 0.1 × 0.1 cm3.

The X-ray source was a cone 300 kVp Bremsstrahlung
source with a half-angle of 8.1◦, 11 cm from the middle of
the inspected object. The source spectrum was simulated in
MCNP by transporting electrons onto a tungsten target and
tallying the photon production. The X-ray flux was determined
from a radiography tally at 20 cm from the middle of the
object. The radiography tally was a pixel array of 80 x 80
pixels2 with 0.1 cm pixel pitch. An example of the radiograph
is shown in Fig. 1, for a single energy range on the cadmium
telluride detector. Noise was added to these results assuming
a maximum count of 108 in the background pixels, which
corresponds to a data acquisition time of minutes.

The detector response S `(E) in Eq. 1 was modeled in
MCNP for a 5-mm thick cadmium telluride detector by tally-
ing the energy deposition in a multi-pixel detector medium.
This response S `(E) indicates the probability that an incident
X-ray of a given energy will be detected in an energy bin
` and shows similarity with experimentally determined re-
sponse functions [6]. The simulated detector had 6 energy
bins, placed to observe the material specific K-edges in the
attenuation coefficients µ and the low-energy regions, where µ
shows greater uniqueness for varying materials, as shown in
Fig. 2. The material attenuation coefficients µ (cm2/g) were
obtained from MCNP, which uses the ENDF cross-section
database.

The inverse algorithm requires a set of materials to search
for in the data, determined from the user-provided set of mate-
rial attenuation coefficients µ. This allows flexibility to search
for any number of materials in the data, though increasing the

number of materials also increases the ill-posedness (instabil-
ity) of the problem. Nonetheless, accuracy in quantifying three
or four materials has been demonstrated previously [4]. Here,
a three-material set of {uranium, oxygen, gadolinium} was
used for the uniform fuel powder verification measurement,
to allow flexibility to possible gadolinium loading, which is
typical in nuclear fuel fabrication. For the density varying
simulation, a two-material set was used {uranium, oxygen},
which reduces the ill-posedness of the problem. This was
done since it was expected that the varying density estima-
tions would present a more difficult problem, though it was
subsequently found that a three-material set could also be used
here.

Errors on material composition estimated from the algo-
rithm were determined with the relative error e, where the
material estimation vector ρest, k for material k is compared to
the true ρtrue, k.

ek =
ρest, k − ρtrue, k

ρtrue, k
(4)

The mean and standard deviation of the e vector are reported
as measures of success of the algorithm material estimations.
The results include material estimations from 20 independent
noise realizations of the image data ignoring a 5-pixel-wide
border of the object, to avoid any edge artefacts introduced
by the total variation regularization. This results in the e
vector containing >34,000 elements (i.e., 20 realizations ×
1716 pixels) over which the mean and standard deviations
were calculated. When ρtrue, k = 0, such as when a material
estimated from the algorithm was not actually present, the
denominator in Eq. (4) was set to 1.

For the object simulations that have density variation,
the error reported is on the total mass determined from the
algorithm compared to the actual for each material. Here,
Eq. (4) was modified to consider the scalar total estimated
mass and actual total mass. Notably, the thickness or density
of the bulk material need not be assumed for calculation of
material mass since the algorithm determines material areal
density (g/cm2), which can be used to calculate the mass
directly with a known pixel size and imaging geometry.

2. Verification measurement system variation

Beyond the expected variability in the fuel powder sample
density that was introduced in the previous section, it was ex-
pected there will be other variabilities in the measurement sys-
tem, e.g., in the source spectrum or detector response. These
variabilities will also affect the estimated material composition
since it will affect the accuracy of the detector response S `(E)
and input spectrum φ0(E) in the forward model, Eq. (1).

Three verification measurement system variations were
selected based on what are expected to be the most significant
in a deployed system: 1) Bremsstrahlung X-ray spectrum
endpoint, 2) energy resolution, as measured by the full-width
at half maximum (FWHM), of each detector pixel and 3)
detector pixel gain. Examples of these system variations are
shown in Fig. 3.

Figure 3a shows how inaccuracy in the Bremsstrahlung
X-ray spectrum endpoint will effect the energy spectrum that is
used to inspect the object. In particular, an increased endpoint
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Fig. 3: Variability in the verification measurement system parameters used to test the sensitivity of the algorithm output to the
uncertainty expected in a deployed system. (a) Inaccuracy of the maximum energy of the Bremsstrahlung X-ray beam. (b)
Varying detector full-width at half maximum (FWHM) across the detector pixels. (c) Variability in gain across the pixels of the
detector.

Nominal variation
Endpoint energy 1% (∼2-3 keV)

Pixel gain 1%
Pixel FWHM 0.4 keV

TABLE I: Approximate variations that could be expected from
a typical spectral X-ray verification measurement system.

energy will result in a extension of the energy spectrum that
spreads to higher energies, while a decreased endpoint energy
will result in a compression of the energy spectrum. These
variations cause inaccuracy in the input spectrum φ0(E) in
Eq. 1.

Two variations in the detector response S `(E) in Eq. (1)
were expected to be significant. The first, shown in Fig. 3b,
was the pixel FWHM, which will cause sharper energy bin
boundaries with lower FWHM. The simulated FWHM also
varies with energy such that

FWHM(E) = b + 0.04E (5)

where b is defined based on a nominal FWHM, e.g., b ≈ 4.6
keV for a 7.0 keV FWHM at 60 keV. The second, shown in
Fig. 3c, was the pixel gain, which will extend or compress the
energy bins on the detector due to an over or underestimate on
the gain, respectively. Notably, both the pixel gain and pixel
FWHM can vary across the pixels of the detector so that the
gain or FWHM may not be the same between neighboring
pixels.

The level of these variations expected in the measurement
system, based on device documentation and literature [9, 10],
are shown in Table I.

In order to test the sensitivity of the inverse algorithm to
these expected variations, the algorithm was run with various
levels of variation in the Bremsstrahlung spectrum and detec-
tor response. Regarding the variation in the Bremsstrahlung
spectrum, this was done by shifting the spectrum endpoint
according to a sample from a normal distribution with mean
300 keV and some defined standard deviation. This spectrum

shift affects all pixels on the detector in the same way. In
contrast, the detector response may vary from one pixel to the
next. Therefore, the variation in detector gain and FWHM was
simulated by sampling these parameters pixel-by-pixel from a
normal distribution with 0 mean and few standard deviations
near those shown in Table I.

In order to isolate the sensitivity to each given measure-
ment system variation, the simulated measurement case used
for these studies was the 3-mm thick UO2 fuel density, with-
out image noise. A two-material set {uranium, oxygen} was
used here. The sensitivities were tested with α = 103.7, which
was found to be optimal according to the UPRE parameter
selection method.

III. RESULTS AND ANALYSIS

Results from the inverse algorithm are shown in Fig. 4
for the uniform 3-mm material thickness and the relative error
of the estimations, Eq. (4), are summarized in Table II. The
results show bias on the mean estimated uranium content of
≤ 0.01% with a standard deviation of < 0.1% for all cases.
Importantly, the algorithm can also determine gadolinium (Gd)
content directly with a minimal impact on the uranium accu-
racy, allowing greater flexibility for measurement of typical
fuel compositions.

Results from the variable density simulations are shown
in Fig. 5 for the 20% normally distributed and 40% uniformly
distributed density cases. These results are also summarized
in Table III. Here, the relative error was reported on the total
mass determined from the algorithm compared to the true
value in the simulated sample. The effective mass can be
calculated from the algorithm output by multiplying the pixel-
wise material estimations in g/cm2 by the area projected in
the sample plane on the detector plane. Given the simulated
image geometry in this work the 0.1 × 0.1 cm2 pixel area was
0.038 × 0.038 cm2 in the object plane. Note, since the object
has a finite thickness of 0.3 cm this projected area was the
average of the projected area from the front and back of the
fuel powder volume.
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eU (%) eO (%) eGd (%)
UO2 3-mm 0.00 ± 0.04 -0.89 ± 4.88 0.01 ± 0.01

UO2 3-mm, with Gd 0.01 ± 0.05 -0.48 ± 5.60 0.01 ± 0.58
UO2 1-mm -0.01 ± 0.05 -0.25 ± 6.42 0.00 ± 0.01
UO2 5-mm 0.01 ± 0.07 -2.76 ± 7.03 0.02 ± 0.04

TABLE II: Relative error (e) on material estimations for simulated measurements of samples assumed to have uniform density.
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Fig. 4: Material estimations from the uniform 3 g/cm3, 3-mm
thick fuel powder verification measurement without (a) and
with (b) Gd loading of 5 w/o. Accuracies are summarized in
Table II.

The results show bias on the mean estimated uranium
mass of less than 0.2% with a standard deviation of less than
0.002%, even with a large density deviation of 40%. The 40%
density variation may overestimate that which will be seen in
practice. The bias on the material estimation was likely due to
the X-rays passing through multiple material density voxels,
as they may be approaching the sample at some small angle,
due to the divergence of the beam. Also, the standard deviation
was lower here since the mass result is essentially a sum of
the density estimations from a number of pixels, effectively
cancelling out the positive and negative variations seen in the
material estimations from pixel to pixel.

Sensitivity of the estimated uranium estimation with re-
spect to variations in the measurement system are shown in
Table IV. The variation levels shown are the mean and stan-
dard deviation of the normal distribution sampled to simulate
the given variation. The uranium error mean and standard
deviations quantify both the bias and degradation in precision
of the measurement from these system variations.
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Fig. 5: Material estimations from the UO2 fuel sample with
density variation of (a) 20% normally distributed and (b) 40%
uniformly distributed. The results are summarized in Table
III.

Density distribution Estimated U mass error (%)
20% normal 0.068 ± 0.001
20% uniform 0.086 ± 0.001
40% uniform 0.182 ± 0.001

TABLE III: Relative error on total uranium mass using simu-
lations with varying density.

Biases, indicated by the mean relative error, caused by
variation in the spectrum endpoint and pixel FWHM were
minimal, while the bias caused by variation in the pixel gain
was significant, though still less than 1%. The bias on gain
shifting was likely due to the energy bins surrounding the
uranium attenuation coefficient K-edge, e.g., Fig. 2. Negative
gain shifts will cause greater uranium underestimation than
the uranium overestimation caused by positive gain shifts, due
to the asymmetric energy bin size on either side of the K-edge.
This could be mitigated with a different energy bin structure.

Apart from the effect on the bias, the results also indicate
a reduction in uranium estimate precision with measurement
system variations, indicated by the standard deviation of the
uranium relative error. The results show that precision was
not significantly degraded with variation in the pixel FWHM,
though precision was degraded with variation in the spectrum
endpoint and especially so with variation in the pixel gain.
This lines up with expectations since the inverse algorithm
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Variation Level eU (%)

Spectrum endpoint 300 ± 2 keV 0.01 ± 0.23
300 ± 3 keV 0.01 ± 0.35

Pixel FWHM 7.0 ± 0.4 @ 60 keV 0.00 ± 0.04
7.0 ± 0.8 @ 60 keV −0.03 ± 0.09

Pixel gain 1.0 ± 0.005 −0.18 ± 0.93
1.0 ± 0.01 −0.6 ± 1.8

TABLE IV: The sensitivity of the uranium (U) estimated from
the algorithm to variations in the measurement system.

relies on spectral information to estimate material composition.
Any shift in that spectral information, either from the source or
the detector, will affect the material estimations. Variation in
pixel gain, again, was shown to especially affect the material
estimations since shifts of the energy bins will significantly
affect the spectral information acquired on the detector, e.g.,
Fig. 3c. Spectral shifts around the attenuation coefficient K-
edges, on which much of the uranium quantification depends,
cause a significant effect.

It should be noted that these sensitivity results assumed
that the detector response function S `(E) for each pixel on the
detector was not fully known. For any one of these measure-
ment system variations, a full characterization of the detector
response that captures these pixel-to-pixel variations reduces
the relative error values to those shown in Table II. Further-
more, the use case for this technology is to quantify uranium
content in the entire sample, which effectively means taking
an average of uranium estimations across many pixels. This
means that biases in the results are more important than the
precision.

The biases observed in the sample density variation and
detector gain variation indicate that these variations should be
mitigated in an measurement system design, wherever possible.
This can be accomplished with careful sample preparation and
accurate, pixel-by-pixel, detector response characterization,
respectively.

IV. CONCLUSIONS

Using simulated data and a flexible, adaptive inverse algo-
rithm, we have preliminarily explored the feasibility of using
spectral X-ray radiography to perform nondestructive verifica-
tion measurements on fuel powder samples in fuel fabrication
facilities. Material composition was estimated in the algo-
rithm, which can be directly related to material mass by using
known assay-system and sample-geometry parameters. Initial
findings on the achievable accuracy and precision of this spec-
tral X-ray method indicate strong potential to meet or exceed
IAEA’s target for the assay of uranium oxide samples in the
field (0.28%). Importantly, the method introduced here offers
nondestructive assay in a fraction of the time required by the
current IAEA methods, and requires no on-site chemistry work
or specialized user expertise.

In order to simulate the expected variations that will be
seen in a deployed verification measurement system, system
parameters of interest were varied and resulting algorithm ac-
curacy and precision were reported. Variations in the system

that were studied were: sample density inhomogeneity, X-ray
source endpoint, detector response FWHM, and detector re-
sponse gain. It was found that the algorithm is most sensitive
to sample powder density variation and detector response gain.
In practice, these effects could be mitigated through measure-
ment system design; by limiting sample powder variation (e.g.,
by tamping the powder in the holding container) and by de-
termining to high-accuracy, the pixel-by-pixel gain variation.
Importantly, a well characterized measurement system and
detector response will result in the highest accuracy material
estimations.

While the results presented here are encouraging, it re-
mains to be seen how well the an experimental system will
perform. From the sensitivity studies presented here, it ap-
pears that the biases and standard deviations on the material
estimations caused by system variations are relatively small,
indicating the feasibility of the measurement system for non-
invasive nuclear fuel powder quantification under IAEA safe-
guards. To this end, verification measurement system design
and optimization is underway, as is acquisition of spectral
X-ray data with an experimental measurement system.
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