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Abstract - Passive neutron interrogation and neutron multiplicity counting is becoming a standard procedure
in material control and accountability, due to the relative transparency of structure materials to neutron flux,
making it very effective in measuring non pure, poorly characterized samples.
Currently, all applicable neutron multiplicity counting methods assume that both the detection efficiency and
the neutron die away time are system parameters, independent of the sample. Thus, if the detection efficiency
of the system is reduced due to neutron absorbers in the sample, the measurement will be very biased.
In the present study we develop, through both theory and implementation, new method for detecting a
concealment of neutron counts (for instance, due to the presence of an absorbing matrix elements, such as Cd
or B in the sample), manifested through a reduced effective detection efficiency. One of the attributes that make
the proposed method appealing, is that it does not require any additional operators and may be easily applied
to any standard NMC counter.

I. INTRODUCTION

1. Preliminaries

Measuring and quantifying Special Nuclear Materials
(SNM), which undergo spontaneous or induced fission, by
detecting neutron radiation emitted from it, typically referred
to as passive neutron interrogation, is of high importance
in nuclear research and industry. Due to the presence of
additional neutron sources other than the spontaneous fissile
material- mainly (α, n) reactions and induced fission in
odd isotopes- higher moments of the count distribution are
sampled, and the different sources are quantified by solving
an inverse problem [1]. Such general considerations are often
referred to as Neutron Multiplicity Counting (NMC).

In recent years, due to the relative transparency of many
structure materials (proving to be very useful when measur-
ing poorly characterized, unpure samples), passive neutron
interrogation and neutron multiplicity counting, is becoming
a standard tool in the nuclear safeguard, safety and security
community. In respect, we see many work done in recent
years improving the existing methods, in terms of simulation
methods[2, 3], spatial corrections [4], uncertainty analysis and
quantification [5] and more.

Currently, all applicable NMC methods assume that the
detection efficiency (defined as the probability of a neutron to
be detected) is a system parameter, independent of the sample.
Thus, if the detection efficiency is compromised, the outcome
of the measurement is bound to be biased.

The outline of the present study is to introduce, through
both theory and implementation, new method for detecting a
reduction in the detection efficiency.

One of the attributes that make the proposed method
appealing, is that it does not require any additional operation
and may be easily applied to any standard NMC counter.

The paper will be arranged in the following manner: in the
remainder of the present section we give some general back-
ground on NMC and describe the motivation for the present
study. In section II. we develop the theoretical background for
the method and section III. we give a detailed description of
the method. Section IV. is devoted for experimental results
and in section V. we conclude the study.

2. Neutron Multiplicity Counting

Neutron measurements of SNM involve detecting the
neutrons that are emitted from the sample, which originate
in fissions inside the SNM. Passive neutron measurements,
which are the subject we are concerned with in this study,
refer to neutrons originating from spontaneous fissions in
the sample (as opposed to Active measurements, referring to
neutrons from induced fissions by an external neutron source
[6]).

For most nuclear materials used in the industry today
(mainly various isotopes of Uranium and Plutonium), the
spontaneous and induced fission neutron yield (per second
per mass unit) are well known. Thus, in a well calibrated
system, one can, theoretically, measure the rate of neutrons
emitted from the sample-S , and then deduce the mass through
a simple proportion.Practically, two problems often arrizee:
First, in a typical measurement, the neutron flux emitted from
a SNM sample is highly affected by additional, background
(non-fission) processes, mainly the (α, n) reaction. This leads
to the necessity of differentiating the fission neutrons rate, S f
from the background neutrons rate, S bk.

A second problem are the induced fissions. As stated, we
are dealing with passive measurements, where no external
source is applied in order to induce fissions in the sample.
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However, as spontaneous fissions begin to occur, neutrons
created by these fissions can induce further fissions in the
sample, which leads to the creation of a "fission chain". This
phenomena is called Multiplication, and can be quantified
by the Leakage Multiplication factor, denoted as ML. The
mathematical modelling of the neutron contribution due to
induced fission chains was developed by Bohnel [7] via the so
called "super fission" model.

To summarize, if one intends to measure a SNM sample
and calculate its mass by passive means, 3 characterizing
parameters are needed:

1. S , the total rate of neutrons emitted from it.

2. S f , the rate of fission-only neutrons emitted from the
asmple. For convenience, we will express this parameter
using U, the ration between fission neutrons to the total
neutron rate (U = S f /S ).

3. ML, the multiplication factor.

Technically, this is typically done by sampling three moments
of the neutron count distribution, and then solving a set of
three (non linear) equations with three unknowns [1, 8]. When
solving the set of equations associated with the three unknowns
S ,U and ML, the detection efficiency is assumed to be a system
parameter. Theoretically, the detection efficiency can be pre
calibrated using well defined neutron source. Practically, for
most commercial systems (such as the PSMC and AWCC),
the detection efficiency is well known [9, 6].

3. Motivation

The risk of a drop in the detection efficiency was
recently described in [10], reporting the difficulties arising in
implementation of NMC methods in the Fukushima-Daiichi
decommissioning. In particular, the presence of the neutron
absorbers, originating from the damaged reactor’s regulation
system, cause a reduction in the effective detection efficiency.
Clearly, as the use of NMC methods grow, the risk of a
measurement biasing due to neutron shielding in passive
interrogation grows along. Moreover: in current high
efficiency detection systems, the sample cavity is separated
from the detection system by a thin Cd layer, aimed to prevent
neutrons moderated in the moderating media surrounding the
detectors to re enter the sample and create induced fissions.
There for, a reduction in the neutron count may be caused by
the mere presence of a moderator inside the sample cavity,
such as polyethylene or even lead. Currently, the most well
know method for detecting (and correcting) a biasing in the
detection efficiency due to neutron shielding is the "add a
source" method [11]. On one hand, the add-a-source method
not only detects a reduction of the detection efficiency due
to the presence of a neutron absorber, but also corrects the
detection efficiency. On the other hand, the add-a-source has
three disadvantages: first, the performance of the method
depends on the spatial configuration of the tested sample.
Second, a well calibrated neutron source must be available,
and finally, it is very time consuming since the measurement

must be repeated 3 times.

There for, a simple method, that does not require any
additional measurement (or materials), only new analysis, but
can inform us if the detection efficiency has dropped, might
prove to be very useful as a preliminary step to the add-a-
source method.

II. THEORETICAL BACKGROUND

1. The SVM method

The SVM method, introduce by the author in [8], is a new
method for analyzing the results from a passive neutron in-
terrogation measurement, by correlating the first three central
moments (the Mean, Variance and Skewness) of the number
of detections in a given time interval with the measurement
parameters. The first three central of the number of detections
is sampled in the following manner: the measurement is "bro-
ken" into N consecutive gates of duration T (T is, typically 2
or 3 die-away times [8]) and the number of detection in the nth

gate is denoted by Xn, quadn = 1, 2, . . .N. Then, the mean
(E), variance (V) and skewness (S k) are sampled by:

E =
1
N

N∑
j=1

X j, V =
1
N

N∑
j=1

(X j−E)2, S k =
1
N

N∑
j=1

(X j−E)3

In the present context, "measurement parameters" refer to
the following:

1. The source intensity- S .

2. The ratio between the total source intensity and the spon-
taneous fission source intensity U.

3. The neutron die-away time 1
λ
.

4. The detection efficiency Pd

5. The kth factorial moments of the spontaneous and in-
duced fission multiplicities Di f ,k,Ds f ,kk = 1, 2, . . . (re-
spectively).

6. the fission probability of a neutron-p f . Often, the fission
probability p f is replaced by the leakage multiplication
factor ML, defined by ML =

1−p f

1−p f Di f ,1

Notice, out of all the measurement parameters, three are
unknown: U, S and ML. Once S and U known, then the
spontaneous fission rate is nothing more than S f = U × S

The correlation is done through the following set of equa-
tion:

S Dg,1(U,ML) =
E

PdT
(1)

S Dg,2(U,ML) =
(V − E) λ

P2
d(e−λT − 1 + λT )

S Dg,3(U,ML) =
(S k − 3V + 2E) 2λ

P3
d(e−2λT + e−λT − 3 + 2λT )

.
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where T is the duration of the time interval in which the de-
tections are counted Dg, j(U,ML) ( j = 1 . . . 3) are the gen-
eralized factorial moments written in terms of the source to
noise ratio U and the leakage multiplication factor ML, given
explicitly by (see [8]):

Dg,1(U,ML) = (U(Ds f ,1 − 1) + 1)ML

Dg,2(U,ML) = M2
L

(
UDs f ,2 +

ML − 1
1 − Di f ,1

(U(Ds f ,1 − 1) + 1)Di f ,2

)
Dg,3(U,ML) = M3

L(UDs f ,3 +
ML − 1

1 − Di f ,1
(3UDs f ,2Ui f ,2

+ Di f ,3(U(Ds f ,1 − 1) + 1))

+ 3
(

ML − 1
1 − Di f ,1

)2

D2
i f ,2(U(Ds f ,1 − 1) + 1)) (2)

The SVM formalism and the Multiplicity formalism may
be correlated by the following formulas:

S ingles =
E
T

Doubles =
V − E

e−λT − 1 + λT
λ

Triples =
S k − 3V + 2E

4e−λT − e−λT − 3 + 2λT
2λ

The actual implementation is done in the following manner:
first, we divide the measurement into consecutive time inter-
vals of length T (which we will refer to as the target interval)
and then evaluate the mean, variance and skewness (third cen-
tral moment) of the number of detections. Then, we solve
three equations with three unknowns (S , U and ML) as de-
fined by 2 and 1. Once the set of equations is solved, the mass
is proportional to S f = S × U, and the proportion coefficient
is the reciprocal of the spontaneous fission rate (per gram).
For instance, when measuring Pu samples, a typical number
for the fission rate is approximately 473.5 events per gram per
second [1].

2. Analytic derivation of the Kurtosis and the Quadruples
rate

As stated, the idea presented in the study is to add one
more equation- the fourth central moment- to our set of equa-
tions, allowing us to consider one more unknown. In the
Multiplicity formalism, the natural choice for the fourth equa-
tion would be the Quadruples rate, and in the SVM, the fourth
central moment, defined as:

K = E
(
(x − E(x))4

)
(3)

would be the natural choice. The notation K stand for
"Kurtosis"1. In the present study, the derivation of the
formulas will be done in the SVM formalism. Still, the fi-
nal results will also be presented in the Multiplicity formalism.

1It should be stated that in most literature, the Kurtosis is not defined
exactly as is 3, and is normalized such that Kurtosis of a Poisson distribution
is equal to the mean.

Our first goal, then, is to write an explicit formula for the
fourth central moment of the number of detections in terms of
the system parameters.

From a technical point view, obtaining an analytic expres-
sion for the for central moment is done in two steps:

1. Derivation of the fourth moment in terms of the general-
ized factorial moments: In [8], this was done for the first
three central moments, and the expansion to the fourth
central moment may be achieved using the exact same
argumentation.

2. Derivation of the fourth generalized factorial moments
Dg,4(U,ML): Once again, for the first three factorial mo-
ments this was done in [7], and derivation of the fourth
moment can be done in a very similar manner.

From a mathematical and theoretical point of new, there are is
nothing really new here, all that is really done is an extension
of the work presented in [8] and [7] to the fourth moment. Yet,
practically, some of the computations are fairly complicated.

STEP 1: Derivation of the fourth moment in terms of
the generalized factorial moments
Following the exact same argumentation presented in [8], the
fourth central moment of the distribution may be written as:

K = I1 + 7I2 + 3I2
1 + 6I1I2 + 6I3 + 3I2

2 + I4 (4)

where:

Ik = Pk
dDg,k

∫ ∞

0
(1−e−λT−U0(t−T )(1−e−λ(t−T )))kdt; k = 1, . . . , 4

The first 3 integrals were computed in [8], resulting with:

I1 = PdDg,1T, I2 = P2
dDg,2

e−λT − 1 + λT
λ

I3 = P3
dDg,3

e−2λT + 4e−λT − 3 + 2λT
2λ

and through direct calculations we obtain:

I4 = P4
dDg,4

∫ ∞

0
(1 − e−λT − U0(t − T )(1 − e−λ(t−T )))4dt

= P4
dDg,4

e−3λT
(
2 − 9eλT + 18e2λT − 11e3λT + 6λTe3λT

)
6λ

Which completes the first step.

STEP 2: Derivation of the fourth generalized facto-
rial moment
In the following, we compute analytic expressions for the
fourth generalized factorial moment. Formal non explicit
formulas were previously introduced [12]. For sake of
completeness, we give the full analysis.

For a multiplying system, the generalized factorial mo-
ments are defined as the factorial moments of the number
of neutrons emitted in the entire neutron chain, initiated by
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a source event. The analytic expression for the generalized
factorial moments is defined in the following manner: define
h(x) =

∑∞
n=0 xnan as the probability generating function of

the number of neutrons emitted due to a single neutron, and
then evaluate the first four factorial moments of {an}

∞
n=0 by the

following:

d1 = h′(1) =
1 − p f

1 − p f Di f ,1
(5)

d2 = h′′(1) =
p f Di f ,2(1 − p f )2

(1 − p f Di f )3

d3 = h(3)(1) =
p f (1 − p f )3

(1 − p f Di f ,1)4

(
Di f ,3 + 3D2

i f ,2
p f

1 − p f Di f ,1

)
d4 = h(4)(1) =

p f

1 − p f Di f ,1
{Di f ,4

(
1 − p f

1 − p f Di f ,1

)4

+ 6Di f ,3

(
1 − p f

1 − p f Di f ,1

)2 p f Di f ,2(1 − p f )2

(1 − p f Di f ,1)3

+ 4Di f ,2
p f (1 − p f )4

(1 − p f Di f ,1)5 ×(
Di f ,3 + 3D2

f (2)
p f

1 − p f Di f ,1

)
+ 3Di f ,2

(
p f

Di f ,2(1 − p f )2

(1 − p f Di f ,1)3

)2

}

Notice, d j, j = 1, . . . , 4 depend only on the induced fission
probability and the induced fission factorial moments.

Next, we define H(x) =
∑∞

n=0 xnan as the probability gen-
erating function of a number of neutrons emitted in the entire
neutron chain, initiated by a single source event. Following
the exact same argumentation as in [7], the generalized 4th fac-
torial moment is given by Dg(4) = H(4)(x)|x=1. Or, explicitly:

Dg,4(U,ML) = UDs f ,4d4
1 + 6UDs f ,3d2

1d2 + 3UDs f ,2d2
2

+ 4UDs f ,2d1d3 +
(
UDs f ,1 + 1 − U

)
d4 (6)

Implementation of 5 in 6 gives an explicit formula for
Dg,4 = Dg,4(U,ML), which concludes the second step (notice,
5 is written of p f rather than ML, but the transformation is
trivial).

Finally, through algebraic considerations, we obtain that:

K(X) = 6E(X) − 11Var(X) + 6S k(X) + 3Var2(X) + (7)
P4

dS Dg,4(U,ML) ×
e−3λT

(
2 − 9eλT + 18e2λT − 11e3λT + 6λTe3λT

)
6λ

As we can see, the expression for K(X) is constructed of two
parts: the first part is an algebraic combination of the first
three central moments, and the second, which we denote by
Q, and refer to as the Quadruples rate, is given by:

Q = P4
dS Dg,4(U,ML) × (8)

e−3λT
(
2 − 9eλT + 18e2λT − 11e3λT + 6λTe3λT

)
6λ

These formulas form the theoretical basis of the method intro-
duced in this study, which will be described in details in the
next section.

III. DETECTING NEUTRON SHIELDING USING THE
QUADRUPLES RATE

1. Theory

Once the first four central moment are sampled, Q may
be realized in two different manners. First, we can directly
sample Q using the equality

Q = K(X)−
(
6E(X) − 11Var(X) + 6S k(X) + 3Var2(X)

)
(9)

We will denote the value of Q obtained via equation 9 as Qm
("m" for "measured)".

A second realization may be obtained in the following
manner: Once the first three central moments or sampled, we
can solve equations 2 and 1 and then insert the values of of
S ,U and ML (together with the system parameters Pd and λ)
in equation 8. We will denote the value of Q obtained in this
form as Qc ("c" for "calculated").

Since the value of Qc is explicitly dependent of Pd, a com-
parison between Qc and Qm links the 4th central moment of
the count distribution and the detection efficiency Pd. Unfor-
tunately, calculating Pd directly from the Kurtosis (or, equiva-
lently, Q) is not applicable: since Pd by definition is less the 1,
and Q is proportional to P4

d, the equation is ill posed from a
numeric point of view.

On the other hand, we can use the sampled value of the
Kurtosis for a "go/no go test" regarding Pd: Is the effective
efficiency of the system equal to the declared one? The
concept is as follows: If a SNM sample is placed in a matrix
consisting of neutron absorbing materials (Such as Cd of B), a
constant fraction of neutrons emitted from the sample will
be absorbed prior to being detected by the system. This is
equivalent to reducing the effective efficiency of the system.
Theoretically, Qc and Qm should be equal (up to measurement
uncertainties). However, if the effective efficiency of the
system differs from the declared value (as is the case when the
sample is placed in a neutron absorbing material), the values
are expected not to be equal. Thus, a strong discrepancy
between Qc and Qm can serve as an indication for a deviation
from the declared detection efficiency - the presence of
neutron absorbing materials in the sample.

Two remarks are due: first, the fact the Pd is in the fourth
power is now favorable, since it amplifies the reduction when
transforming from Pd to Q. For instance, if the the Pd is re-
duced by 20%, then Q will be reduced by approximately 60%
(assuming all other parameters are not changed dramatically),
and if Pd is reduced by 30%, then Q will be reduced by ap-
proximately 80%. Second, from a theoretical point of view,
it might be the case that equation 8 is an algebraic combi-
nation of equations 2. While we did not prove analytically
that this is not the case, the conditions for this to happen are
extremely strong. For instance, the Jacobian matrix of the set
of equations defined by 2 and 8 combined mast have a zero
determinant every where.
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2. How good is good enough?

As stated earlier, the main idea is to compare two different
realizations of Q: Qm and Qc. On the other hand, even if the
values would theoretically be equal, from a practical point
of view, the actual numeric values will always be subjected
to experimental uncertainties, creating a biasing between the
values. Thus, the "go / no go" condition will not be of the form
Qm = Qc, but rather a condition onD = |Qm − Qc|/Qm < ε. If
D < ε, then we deduce that the sample is not shielded, and if
D > ε, then we deduce that the sample is shielded. We will
refer to ε as the tolerance of the procedure. As in any " go /
no go" classification, choosing the tolerance balances between
to type of false result: "false negative"- the procedure decides
that the sample is not shielded when it is, and "false positive",
when we deduce that the sample is shielded, when in fact it
is not. Clearly, there is always a trade-off between the false
positive and the false negative: As ε increases, we reduce the
chance of a false positive, but at the price of increasing the
risk of a false negative (and vise verse). Thus, one of the aims
of this study, is to optimize the tolerance ε, and quantify the
trade-off between the false positive and the false negative.

IV. EXPERIMENTAL RESULTS

The present section is devoted for experimental imple-
mentation of the method introduced, followed by a discussion
on the optimal value of the tolerance ε. The experimental
results will be divided into two different settings. In section
1., we have taken a set of 5 standard measurements, and
sampled the difference between Qc and Qm in two situations:
first we have sampled Qc and Qm without any additional
manipulation, and then we have sampled Qc and Qm after an
artificial "shielding" was inflicted, by randomly removing a
certain fraction of the detections.

In section 2., we implement the method on a set of 7
additional measurements, where the sample was covered by
a Polyethylene cup, creating an observable reduction in the
count rate.

1. Experiment 1: non shielded measurements

A. Experimental Setting 1

The initial validation of the formulas presented above was
tested on a set of 5 measurements, acquired using 3 standard
neutron coincidence counters: JCC31 [13], AWCC [1] and
the PSMC [9]. The measurements were taken at the PERLA
facility in the JRC laboratory, Ispra, Italy. The characteristics
of each system and measured samples are listed in the table
I. All samples, except sample number 1, consist of pure Plu-
tonium with varying isotopic composition. Sample number 1
also contains a small fraction (3.6%) of Gallium.

For each of the following measurements, we have
emulated a shielding effect, by randomly deleting a
fraction F of the counts. This was done for F = 0 (no
reduction at all) and F = 0.1, 0.2, 0.3, 0.4, 0.5. For each
value of F, the effective detection efficiency is given by Pd×F.

B. Experimental results 1

As described, for each value of F, we have computedD
as defined in section 2. Theoretically, for F = 0,D = 0 as well.
In practice, this is never the case. The measurement is always
subjected to numeric, systematic and statistical uncertainties.
On the other hand, we should expect that as F grows, the
biasing will also grow. The experimental results for all samples
are shown in table II and figure 1.

Fig. 1. The value ofD with respect to the fraction of detection
lost F.

As we can see, this prediction theD increases with F is
met in all the samples. Still, the true question is not whether
or not we will observe an increase in D, but is the increase-
ment large enough to establish a value of ε that will strictly
determine if the sample is shielded or not.

The answer, naturally, depends on F. For small values
of F (10%), the shielded and non shielded signals are hard
to discriminate. But for F = 0.2 and more, by choosing
D > 0.15 as the "no go" criteria, we have a 100% success rate
both in terms of false positive and false negative.

2. Experiment 2: shielded measurements

A. Experimental Setting 2

Once the initial testing proved satisfying, we have imple-
mented the proposed method on a set of 7 measurements in
which the sample was shielded. All mesurements were done
using a standard PSMC at the JRC laboratory, in Ispra, Italy.
Measurements were conducted on a set of 4 Pu samples, all of
them having (approximately) the same mass of 6.6[gr Pu],
differing only in the isotopic composition.The effective 240Pu
mass of each sample is given in table III.

The samples were measured in 3 different configurations:

1. plain measurements of SNM samples.

2. the samples were placed inside a small polyethylene cup.

3. the samples were placed inside a large polyethylene cup.

The small polyethylene cup had a diameter of 10 [cm] and a
total wight of 0.5 [kg], and the large cup had a diameter of
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sample total Pu 240Pu Counter detection detector die-away
No. mass [g] effective mass [4] type efficiency Pd time [µsec]

1 4.79 1.108 PSMC 54% 50
2 20.57 5.41 AWCC 33% 50
3 49.7 6.51 AWCC 33% 50
4 6.7 1.4 JCC31 16% 50

TABLE I. Experimental setting for the un-shielded measurements.

F = 0 F = 0.1 F = 0.2 F = 0.3 F = 0.4 F = 0.5

1 6 20 37 59 109 167
2 10 10 27 54 82 140
3 13 15 27 63 73 191
4 12 16 21 39 59 146

TABLE II. Experimental results for the un-shielded measurements.

15 [cm] and a total wight of 1.6 [kg]. As mentioned earlier,
althoguh no absorber was added to the samples, the presence
of a moderator around the sample has created a shielding due
to the Cd lining between the sample cavity and the detector
rings. The small cup reduced the count rate by roughly 9%,
and the large cup has reduced the count rate by 38%.

B. Experimental results 2

Table IV summarizes the differences between QM and Qc
(in percentage) for all 7 measurements.

As we can see, the results are even more distinct than in
the previous section: using a 10% tolerance yields full dis-
tinction between the shielded and non shielded measurements,
with a 0% false positive / negative.

V. CONCLUDING REMARKS

In the study, we have introduced a new mathematical
method for detecting a shielding of the sample measured
in a neutron coincidence counter. The detection is done by
observing a drop in the detection efficiency, translated into a
biasing between two different realizations of Q. Theoretically,
the method can be generalized into a correction of the
detection efficiency- but in practice this might create very big
biasing in the corrected efficiency, since the corresponding
equations are numerically ill posed.

The method was tested in two settings: in the first setting,
the sample was not shielded, but the count rate was reduced
artificially, and in the second, the sample was covered by a
polyethylene cup, creating a reduction in the count rate.

In the first setting, results indicate, that a 20% biasing
between QC and Qm is a clear indicator of a neutron shielding,
and a clear distinction between a shielded and a non shielded
measurement appears once the drop in the count rate is 20%
and more. In the second setting, which is more similar to an
actual shielding, results indicate that even a 10% shielding
can be detected.

One possible reason for the difference between the results
is that the second setting was only measured using a PCMS
counter, which has a very high efficiency to begin with (54%).

Since the method does not require any change of the
system configuration, and can be easily implemented on any
existing facility (assuming that the data acquisition is done
in LIST mode), it can serve as an effective tool to determine
whether additioanl measurements are required using the "Add-
A-Source" method.
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sample 1 2 3 4

Effective
240Pu mass [gr] 1.58 1.18 0.98 39

TABLE III. Effective 240Pu mass of the measured samples.

Non shielded small large
measurement cup cup

Sample No.1 5% 17% 91%
Sample No.2 2% 24% 87%
Sample No.3 7% 28% 85%
Sample No.4 1% 18% not measured

TABLE IV. Measured values ofD (%) for all 7 measurements.
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