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Abstract - High-dimensional-nonlinear function estimation using large datasets is a current area of interest
in the machine learning community. Applications permeate throughout the analytical sciences, where ever-
growing datasets are providing more information to the analyst. This paper leverages the existing relevance
vector machine, a sparse Bayesian version of the well-studied support vector machine and expands the method
to include integrated feature selection and automatic function shaping. These innovations produce an algorithm
that can distinguish variables useful for predicting a response from variables that are unrelated or confusing.
The technology has been tested using synthetic data, initial performance studies have been conducted, and a
model has been developed that is capable of making position-independent predictions of the core-averaged
burnup using a single specimen drawn randomly from a nuclear reactor core.

L. INTRODUCTION
1. Need for Complex Function Estimation

Discovery of relationships between observable phenom-
ena and prediction of future behavior or unobserved internal
behavior of a physical system is the central focus of the an-
alytical sciences. As instrumentation has become more so-
phisticated, measured datasets have grown. While this growth
has increased the available information encoded in large, com-
plex datasets, data interpretation and analysis has accordingly
become more complex. Thus, function estimation has been
passed to the arena of machine learning, where complex func-
tions relating measured quantities to responses of interest are
estimated using statistical analysis.

Machine learning and multivariate statistical analyses
have been demonstrated in nuclear security applications. Orton
et al. demonstrate the use of linear principal components anal-
ysis to discriminate between normal and off-normal chemistry
process conditions in aqueous reprocessing scenarios using
gamma-ray spectra collected of the aqueous phase following
separation [1, 2]. Models implicitly correlate spectral regions
to gamma-emitting fission products sensitive to nitric acid and
tributyl phosphate concentrations, informing the analyst of
nuclides of interest and spectral regions of interest. Further
research extended this technology to predicting spent nuclear
fuel burnup and reactor type classification using k-nearest
neighbors, linear and quadratic discriminant analyses, support
vector machines, and partial least squares regression [3].

The support vector machine (SVM) is a state-of-the-art
machine learning algorithm capable of learning complex high-
dimensional nonlinear relationships [4, 5]. However, the SVM
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has several shortcomings. First, only the best estimate of the
function response is calculated when applied to new data, and
it is unclear what the output of the SVM represents statistically.
The lack of a probabilistic framework is especially problem-
atic in classification problems, where the difference between
class membership may be subtle, and predicting the relative
probability that a test sample belongs to each possible class
would more accurately represent the state of knowledge than
single-point estimates. External routines have been developed
to give probabilistic context to the SVM’s output; however,
it would be desirable to integrate uncertainty quantification
natively into an algorithm without additional computational
burden. Furthermore, the SVM makes no effort to identify
and select variables/features that are most useful for making
predictions. Separate algorithms may be employed to analyze
the dataset to determine the variables with the most predictive
power [6]. Such routines introduce computational burden be-
yond training the SVM model, and many selection algorithms
are agnostic to the model when ranking and/or selecting vari-
ables. A variable that may be useful when passed to one model
may not be useful when passed into a different type of analy-
sis. Ideally, feature selection should be coupled to the specific
prediction task and method.

2. Reactor Characterization

As a motivating example, we consider the determination
of core-average burnup of a nuclear reactor core given a poten-
tially limited sample of specimen(s) of irradiated fuel drawn
randomly from the core during or after operation. The compo-
sition of irradiated fuel depends on coupled variables, includ-
ing the initial fuel composition (e.g., matrix and enrichment),
position within the core (i.e., the neutron flux and neutron spec-
trum), and time. We seek to discover multi-nuclide signatures
capable of predicting one or more of these variables with no
knowledge of the other variables. This paper describes the ini-
tial efforts to predict core-averaged burnup from a single fuel
specimen with no knowledge of other operating conditions.
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3. Proposed Improvement: Relevance Vector Machine

In this paper, we leverage an alternative to the SVM called
the relevance vector machine (RVM) [7]. We describe research
and development efforts to extend the capabilities of the RVM
to include online basis shaping, integrated feature selection,
and quantification of the uncertainty in predictions made by
trained models. The results of applying the extended RVM to
synthetic example data are described, along with a real-world
application: learning multivariate signatures to predict the
core-average burnup of irradiated nuclear fuel using the iso-
topic concentrations from a single specimen drawn at random
from the core.

The remainder of the paper proceeds as follows: Sec-
tions II. and III. give an overview of the RVM and subsequent
rapid training algorithm as developed by Tipping [7, 8] and
the extension we have made to integrate feature selection and
basis shaping parameter optimization, respectively. Section IV.
summarizes methods to evaluate the uncertainty in predic-
tions made by the RVM and discusses unique concerns arising
from the RVM formulation. Sections V. and VI. discuss the
results from applying the extended RVM for discovery of
nuclide/reactor-state relations and conclusions, respectively.

4. Notation

Several conventions of notation and terminology are
adopted herein. Measured inputs to a model will be vectors
of d variables, x € RY. When analyzing irradiated nuclear
fuel, variables are concentrations of nuclides in a particular
specimen drawn from some position within the core after a
specified irradiation time. Each vector is called an observation,
and sets of observations are indexed with subscripts, {x,-}ﬁ .
and collected into N x d dimensional matrices, X € RV*4_ for
input to the RVM. Individual variables/components of vectors
are indexed using superscripts (i.e., x'). Thus, the collection
X1, X2,..., Xy are the N specimens drawn from the reactor
(each of which is a collection of d nuclide measurements),
x a2, ..., x% are the d measured nuclide concentrations in
every observation, and x] is the concentration of the j™ nu-
clide in the i"* specimen. The response (i.e., quantity to be
predicted), also called the target, is denoted by the vector ¢'.

II. RELEVANCE VECTOR MACHINES

The RVM is an alternative to the SVM that uses Bayesian
statistics to derive a sparse, probabilistic model capable of
learning qualitative and quantitative relationships [7]. This
section briefly reviews the original development of the RVM
for regression problems and the subsequent accelerated train-
ing algorithm [8].

1. Model Formulation

When applied to regression problems, the RVM aims to
estimate an unknown function between predictors, x, and tar-
gets, t. The algorithm analyzes a set of training data with

'We use the term target to differentiate the measured value(s), which is
observed with error, from the true response y, which is assumed to be perfectly
described by the function to be estimated by the learning algorithm.

known predictors and target values and estimates the underly-
ing function using a linear basis-function expansion:

M
1= f)+ €= wndn(0) + e, (1)

m=1

where each ¢;(x) is an arbitrary function, € is unknown mea-
surement noise, and w; are weights to be determined.

If we assume independently and identically distributed
Gaussian noise, € ~ N(e|0, %), we may write the probability
of observing the training measurements given the training
inputs (i.e., the Bayesian likelihood function) as

_||r—wTd>||§) o

ptlw,o) = (ZK)_N/zo'_N exp
202

Here we have collected the basis functions evaluated at each
of the training observations into a matrix [®],,, = ¢,,(x,) and
specify the i’ basis function evaluated at the training points
P

Following standard hierarchical Bayesian analysis, we
specify a prior distribution for the values of w. We use a mean-
zero Gaussian distribution with hyperparameters a € RY:

M Q, W2
powla) = @02 [ oy exp (—%) SN©

m=1

The mean-zero Gaussian prior preferentially drives the weights
towards zero, and the independent entries of the hyperparame-
ter @ control how strongly each entry of w is driven to zero. If
some entry w,,, = 0, the basis function ¢,,(x) is not used in the
function estimation shown in Equation (1), and the expansion
is sparse. The basis functions retained in the final model are
called relevance vectors.

The Gaussian prior is conjugate to the likelihood, giv-
ing an analytically tractable posterior distribution. As shown
by Tipping [7], combining Equations (2) and (3) gives the
posterior distribution

pw|t,a,0)
Z[-1/2 w—w="w-p

= (2m) VD2 X {_ ) }’ 4)

where O
T=(c0"0+4) (5)
u=o030" (6)

and

[Ali = a;, [A];j=0. (7N

By virtue of the explicit calculation of the posterior dis-
tribution for the weights, we obtain a distribution for the esti-
mated function. In the case of regression, we obtain predicted
targets and associated uncertainty outputs. For classification
problems, we obtain probabilities of class membership.

As discussed in Tipping and Faul [8], solving for the best
estimate o amounts to maximizing the marginal likelihood

1
(@) =~ [Nlog2n + log C1 +7C™'1]. ®)
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where C = 021 + DA~ DT,

After optimizing Equation (8), Equations (6) and (5) are
solved to specify the posterior distribution for the weights,
w, and the best estimates of the weights are substituted into
Equation (1) to give the estimated function.

Lastly, we define the basis functions, ¢(x). While the
functions are arbitrary, in the absence of problem-specific
information?, kernel functions using the input training are the
most convenient and general. Kernel functions are localized
to the range of predictor values in the training data (i.e., they
are scaled to the problem) and have interesting connections to
nonlinear mappings of the input data. Using kernel transforms
allows the RVM to estimate highly nonlinear functions. There
is a wealth of research in the literature concerning kernel
functions, their interpretation, and connection with functional
analysis (see [9, 10]). In any model, the set of basis functions
is formed by evaluating the desired kernel against each of the
training vectors so each training observation corresponds to a
basis function: x,, = ¢,,(x).

The i basis function generated using the Gaussian kernel
is

d
$i(x) = K(x, x) = exp (—UZ (« - x{)z], ©)
j=1

where 7 is a scalar shaping factor that must be tuned. The
optimization of 7 is discussed in Section III..

2. Constructive Optimization

In the original development of the RVM, an iterative up-
dating procedure was used to maximize Equation (8); how-
ever, two key observations allow a much faster constructive
procedure. Updating the basis-shaping parameters adds com-
plexity and computational burden (see Section III.), making
fast optimization of Equation (8) a requirement for practical
application.

Decomposition of £(a) As shown in Tipping and Faul [8],
the matrix C may be decomposed into a portion relating to a
the i" basis function, C;, and a portion built with the remaining
functions, C_;.

C=01+0A'®" (10)

=1+ Y Oay (@) 4w (@) D)
j#i

=C_+ C{i (12)

This decomposition is propagated through the calculation of
the determinate and inverse in Equation (8):

1 ( i\ =1
ICl =1C-il 11 + ;" (@) Cl o] (13)
. AT
c-lof ((D’) c!
C =Cl-——7F—— (14)
@ + (@) 1o

2For example, if the function to estimated were assumed to be periodic,
sinusoidal function families would be a logical choice for basis functions.

Finally, Equation (8) is rewritten as

L) = L(a_) + % loga;—

(((Di)T c:! 1)2

(e + (@) cloi) |

log (ai + (@) c:}q>f) N (15)

This decomposition allows the change in the marginal likeli-
hood caused by inclusion or deletion of a basis function to be
calculated.

Optimal Values for @; As shown in Faul and Tipping [11],
the optimal values for @; given in the bracketed term above
may be explicitly calculated:

((cbf)T C:}cbi)2

(@) =) - (@) -l

P =

if ((cD")T C:}r)2 > (@) clof

a; =

k)

2
if ((qn")T C:}z) < (@) clo. a6

The second case arises when a basis function ¢; explains
less of the residual with that function excluded® than the degree
of overlap with the functions currently in the model. In other
words, ¢; does not greatly improve the prediction accuracy
and carries the same information as basis functions already
included in the model. In this case, the optimal value of «;
is infinite, corresponding to a delta distribution about zero
for the corresponding weight—c.f., Equation (3). Thus, the i
basis function is not utilized when a; = oo and may be deleted.
Removing basis functions gives rise to sparsity in terms of
the basis functions, and any functions used in the final trained
model are called the relevance vectors.

Using these two observations, a constructive algorithm
relying on adding and deleting basis functions while adjusting
a values is used to accelerate optimization of L(a@). A flow
chart for the constructive optimization of L(«) is shown in the
“Initialization” and “a-updating” portions of Figure 3. This
algorithm was implemented by Tipping in a prototype Matlab
code called SPARSEBAYES [12].

II1. EXTENSION TO SPARSE BASIS SHAPING

The performance of the RVM depends on the basis func-
tions used to construct the function estimate. Consider a

N\ . . . .
3See the term ((1)’) C:[,l t, the inner product of the particular basis function
with the existing model and vector of target/measured training responses.
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function of two variables, where one variable is not im-
portant for prediction of the response, such as the function
f(x', x2) = Vx'+sin(x"), shown in Figure 1. The ground-truth
function (surface) and noisy synthetic training data sampled
from this function (blue dots) with the second variable x? ran-
domly distributed are shown. Figure 2, shows two estimated
functions using the training data in Figure 1: n = 2.0 in Fig-
ure 2a, and 1 = 0.05 in Figure 2b. In Figure 2a, the model is
overfit, and the estimated function closely tracks the training
data but is unlikely to generalize to new data. In contrast, the
estimate shown in Figure 2b does not capture the periodic
behavior of the function.

o 1 2 3 4 5 5 J .

Fig. 1: Motivating example for the need of integrated basis
shaping. A function of two variables, where one variable is
not useful for prediction, is shown (surface) along with noisy
data (blue dots) used to train RVM models shown in Figure 2.

As suggested by the results presented in Figure 2, the
predictive power of the RVM depends on the proper choice
of n in the formation of the basis functions. Ideally, less
useful variables should be identified and removed from the
model. The basis scaling factor associated with the remaining
variables could then be optimized for each variable in order to
maximize model fidelity.

Discovery of useful predictive variables and tuning model
parameters are typically performed with feature selection pro-
cedures and cross validation, respectively [6, 13]. These
analyses often require additional model development, post-
processing, and application of heuristic criteria. As suggested
by Tipping [7], it is possible to integrate tuning of unique
values for each variable during RVM training. Equation (17)
modifies the kernel/basis function definition shown in Equa-
tion (9) by redefining i as a d-dimensional vector with an
independent entry for each variable:

d
K(x, x,,) = exp {— Z Mk (xk _ x/r;)z] 17
k=1

Tipping asserted this capability to be prohibitively com-
putationally expensive, but we have overcome this challenge
by integrating a rapid approach for integrated feature selection
and model tuning using a probabilistic interleaving of a par-
tial optimization routine. A unique value of 7, is assigned to

(a) An overfitted function

(b) Fitted function fails to capture periodic behavior

Fig. 2: Two examples of poorly fitted functions as a result
of choice of . The estimated functions are shown with the
surface plots against the training data, which are shown in
dots. In both cases, a single value of  was used for both input
variables, x! and x?; however, x? is not useful for prediction,
and retaining this variable skews results.

each input variable (e.g., nuclide concentration or channel in
a gamma-ray spectrum). After each a-update loop, a second
loop is entered, and the vector n € RY is updated using a
gradient descent algorithm.

The gradient of the likelihood function in Equation (8),
L(@) with respect to 7,

T
an=(——---—) , (18)
is computed analytically with Equation (19),

oL i i ar oo
Onk DL Ok

n=1 m=1

N M
=3 D0, (2 - Y (19)

n=1 m=1

where D = (C't"C~' = C71) ®PA~!, and @O is the matrix
of basis functions currently used in the model (i.e., the associ-
ated « values are finite), shaped by the current value of the
vector. The new index, i, denotes the current iteration of the
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constructive alpha-updating iteration (the outer loop shown
in Figure 3). Using this gradient, n may be updated using
gradient descent [14] with a backtracking line search (BLS) to
select the near-optimal step size at each n-updating iteration.

As shown in Section I1.2., the optimal values for a and the
associated progress of the constructive optimization algorithm
depends on the basis functions, and the basis functions are
determined through the static training data and (now) dynamic
basis shaping factors, 1. Each time 7 is updated, the basis
functions must be reevaluated. Because of this dependence
between « and 7, there is substantial cross-talk between the
two terms and the associated optimization routine loops (see
Figure 3). Therefore, 7 is only partially optimized after each
a-update iteration in order to preserve momentum in the opti-
mization of . During initial studies, several features of the
algorithm were observed:

1. The algorithm is sensitive to multicollinearity,*

2. The entries of i converge to near their final, near-optimal
values much faster than the entries of @, and

3. Entries 17, and n; move towards similar values with op-
posite signs, yielding canceling values and non-unique
solutions for 7.

To overcome the challenges outlined above, the gradi-
ent descent algorithm was changed to gradient projection to
enforce non-negativity of the entries of 7, i.e.,

=0, k=1,2,...,d. (20)

In addition, the interleaving of the n-updating loop was
changed to be probabilistic. Inspired by simulated anneal-
ing, the inner loop is entered with some probability that de-
creases as a-updating loops are performed. The final flowsheet
for training the extended RVM, which builds on the original
SparSEBAYES implementation, is shown in Figure 3. This new
code is called SB(n).

Each time the value of 7 is changed, the entire basis ma-
trix, @, is recalculated, and the basis vectors currently included
in the model (i.e., those with associated a; # o0) are extracted.
The value of 7 is updated during gradient calculations, at each
iteration of the iterative BLS routine used to select the step size
within the gradient projection algorithm, and upon finishing
the inner n-update loop shown in Figure 3.

Using SB(7), the motivating example shown in Figure 1
was analyzed again, and the results are shown in Figure 4. The
algorithm was able to determine x? is useless for prediction,
and x> was discarded by setting 77, = 0. The remaining 77; was
optimized to maximize the marginal likelihood with respect to
n as shown in Equation (19), and the true generating function
is successfully reconstructed (see the surface in Figure 4). The
estimated function tracks very well with the noisy training data
(dots). The red dots are the training observations correspond-
ing to basis functions that are not discarded by the constructive

4If some basis functions are too closely aligned, either because some
subset of training observations are too similar or a subset of variables are
collinear, the matrix C in Equation (19) is no longer positive definite, and the
Cholesky decomposition used to robustly invert the matrix fails.

optimization algorithm and are used in the final RVM model.
The final model is sparse in terms of basis functions (5 RVs
are used) and variables (one half of the input variables are
discarded).

IV. EVALUATION OF UNCERTAINTY
1. Standard Approach

After training the model (i.e., optimizing Equation (8)),
the posterior distribution is obtained for the weights w that
define the function estimate in Equation (1), f(x). Given a set
of measurements collected of a test specimen, x.., a prediction
of the response is made by evaluating the function f(x.). The
uncertainty associated with this prediction is estimated by
summing in quadrature the irreducible error, o (see [13]), with
the uncertainty in the weights in the trained model:

u(f(x))? =0+ T2, (1)

where J is the Jacobian matrix and X is the posterior covariance
matrix implicitly evaluated at the test point, x.. As discussed
in Hastie et al. [13] and shown in Equation (3), o quantifies
the variation in the measurement noise. Evaluating the terms

of the Jacobian gives
of
X=x, 6W_ j

From the definition of f shown in Equation (1), the partial
derivatives above are equal to the basis functions (shaped with
the optimized 1) evaluated at the test point, @) = ¢, (x.), m =
1,2,..., M. Thus,

N
u(f)? =+

i=1 1

of
(o

N
j=

)z,»,-. (22)

u(f(x,))* = o + OI30,. (23)

The typical magnitude of the entries in @, is related to
the distance between the test point and the training data

d(x., X) = inf {[lx, — xll2 [ x € X}, (24)

which quantifies the similarity between the training and
test/unknown observation in the L, sense. As shown in Equa-
tion (17), if the test and training observations are very similar,

the quantity 3¢_, (xk - x’,‘ygz will be small, the basis function
evaluations in Equation (23) will be large, and the uncertainty
in the prediction associated with x, will also be large. As the
distance increases, the opposite situation arises, and the esti-
mated uncertainty may decrease. Thus, predicted uncertainties
are expected to increase as the training and testing data be-
come more similar. The dependence of model performance on
the size of the training set is demonstrated in Figure 5, which
shows the absolute error in prediction (bias) and the prediction
uncertainty as calculated using Equation (23).

Using a dataset of approximately 8000 observations, each
with 90 dimensions, random subsets of data were selected and
used to train a model with the extended RVM. The remaining
observations were used to test the model and quantify the
average absolute error in prediction and associated uncertainty.
To remove effects of the training set selection, this process
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Estimated Function with SB(n)

Final 7 = (0.2127 0)

[ A A A e e e
LT T T ————7r—+
7 8 9 10 11

ot 2 3 4 5

Fig. 4: Results of estimating two-dimensional function with
one trivial value using SB(7;7). The algorithm successfully
removes x”, which is not useful for prediction and adjusts the
shaping parameter associated with x' to optimize predictions.
The surface shows the estimated function (c.f., Figure 1), and
the dots show the training data. The relevance vectors are
shown in red.

was repeated 50 times, and the results were averaged. Using
this procedure, the effect of training set size on the bias and
uncertainty of the predictions made by the extended RVM
were explored, and the results are shown in Figure 5. The
details of the data used in this experiment are further discussed
in Section V.1..

2. Empirically Determined Uncertainty

As described above, there may be issues when using Equa-
tion (23) to compute the standard uncertainty in the predictions
made using a RVM model. We consider an alternative method
for computing uncertainty estimates. Given a large dataset,
a subset is randomly chosen to use as training data. Once
training is complete, predictions are made on the remainder
of the data, the empirical cumulative distribution function for
the absolute error in prediction is generated, and a bound for
the prediction error is estimated such that the expected error
in prediction falls below the bound with a desired probability.

Prior to training the model, the dataset is split into train-
ing and testing sets. The training set is used to find the near-
optimal values of @ and 5 using the methodology of Sec-
tion III., and predictions are made on the test set. The absolute
error in the predictions are binned into a histogram, {Hy(9;};,
where ¢; is the absolute error in prediction discretized into bins.
The histogram {Hy(6;)}; is renormalized to give a discrete ap-
proximation for the distribution function for the absolute error
in predictions made when using a model trained using N train-

025 Bias and Uncertainty as Training Set Size Changes

Average Error in Prediction
Average Calculated Unceratinty
0.20

015

0.10

0.05

Value [GWd/MTIHM]

0.00
-0.05

-0.10
0 50 100 150 200 250 300 350 400 450
Number of Training Specimens

Fig. 5: The behavior of the error in prediction and uncertainty
calculated with Equation (23) as a function of the number of
observations included in the training set. Both quantities are
averaged over the testing observations and 50 replicate trials.

ing observations, fy(6):
Hy(6; .
In(d) = 5 n Q) i=1,2,....J.
Swes 519 (Hy (1) = Hy(6)))
j

(25)

The significance level a,;, defines a critical error rate below

which predictions are expected to fall,

Fn@) = ) fu(6)) (26)
j=1
Fn(Oerir) =1 - Qg — Ocrit (N’ a'sig)- 27

This approach has been used to define critical values and limits
for analytical chemistry applications [15] and constitutes Type
A uncertainty evaluation in line with the “Guide to Expression
of Uncertainty in Measurements” [16].

The above routine is repeated at different values for N,
and used to fit a function that estimates J.,; at run time given
the size of the training set used to train the model. Thus, for a
model generated using N training observations, we specify a
significance level a;, and determine a critical value 6.,;(aig)
such that the model’s predictions will come within d,,;; of the
true value with probability 1 — a;,:

]P)[lf(-x*) —t| < 0cril =1 - Ussig. (28)

This conclusion is only valid for test specimens drawn from
reactor conditions that are consistent with the training and test
sets used to develop the 6.,(N, @) curve.

V. REACTOR ANALYSIS WITH THE EXTENDED
RVM

This section describes initial numerical studies intended
to understand the performance of the extended RVM and the

SNote, a small abuse of notation: the probability density function fi (&)
here is not related to the function estimated by the RVM in Equation (1).
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SB(7n) implementation described in Sections III. and IV.. These
initial studies were performed in tandem with algorithm de-

velopment; however, the final developed method and testing
results are described separately to ensure clarity.

1. Data Generation

A dataset of isotopic concentrations of irradiated nuclear
fuel as a function of position and irradation time within a re-
actor was generated with a set of depletion calculations. The
model was a quarter-core of a gas-cooled, graphite-moderated
reactor. The isotopics were tracked in 995 material regions (5

axial regions and a roughly 16x 16 grid in the X'Y-plane) using
the TRITON [17] routine within SCALE 6.2 and saved at 19
time points ranging from 0 to 700 days of constant-power oper-
ation. These irradiation times correspond to core-average bur-
nup values ranging from 0 to approximately 1| GWd/MTIHM.
The spatially resolved neutron spectrum and flux were calcu-
lated using continuous-energy neutron transport performed
using KENO-VI [18]. Figure 6 shows the geometry of the
model. The results of these simulations gave 8910 unique fuel

compositions® to use for training and testing RVM models.
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the trained model was applied to the testing data to predict
the core-average burnup associated with each material. Prior
to training, the matrix of training predictors X was standard-
ized (i.e., each column was mean-centered and normalized
to unit variance) to remove scaling effects. Without this pre-
processing step, nuclides with small concentrations such as
fission products with low yields’” would be overwhelmed by nu-
clides with large concentrations such as >>U and >*3U. These
statistics are saved and used to standardize the test data.

Predictions were compared to the known irradiation times,
and several performance measures were calculated:

1. The average absolute error in prediction made on the
training set, - XV, [t — £(x)l,

2. The average absolute error in prediction made on the
testing set,

3. The average relative error in prediction made on the test-
ing set, y— > New

e | = fa) /il

4. The number of relevance vectors (basis functions retained
in the model), and

5. The number of nonzero entries of  (number of useful

variables for prediction).

Several experiments were conducted to assess the behav-

ior of the extended RVM when applied to the reactor core
characterization problem, described in the following sections.

3. Testing Kernels

The dependence of the calculated uncertainty on the dis-

Simplified
Quarter-Core

Fig. 6: Quarter-core gas-cooled, graphite-moderated reactor
core model generated in TRITON/KENO to generate spatially
resolved isotopics during constant-power reactor operation

from O to 700 days, giving a core-average burnup of 0 to 1.05
GWd/MTIHM.

2. Model Training, Testing, and Profiling

For all numerical experiments, the complete dataset gen-
erated in KENO-VI was split into training and testing data.
The training data were used to train the RVM model, and

%Due to radial symmetry, approximately half of the 995 x 19 = 18905
calculated nuclide composition vectors were not unique and were discarded
from analysis.

tance between the testing and training data as described in
Section IV. and Equation (24) suggests that changing the ker-
nel function used to develop the basis functions could improve
the model by reducing the uncertainty in predictions. Three
kernel functions were tested: the Gaussian kernel, the Lapla-
cian kernel, and the heavy-tailed basis function. All three
functions are similar, but two major differences are the kurto-
sis and the rate at which the function decreases with distance
from the mean. Figure 7 shows plots of each function in R
Of the three functions, the Gaussian kernel dies away with
distance from the mean most rapidly. The heavy-tailed kernel
has the highest kurtosis (i.e., it is the most sharply peaked).
To assess the performance of each kernel, a random sub-
set of 300 observations was selected from the data generated

in KENO-VI. The subset was selected and used to train a
model with each kernel, predictions were made on the re-
mainder of the data, and these results were used to calculate
the performance metrics listed above. Using a modest num-
ber of observations accelerates model training and produces
medium-fidelity results, while allowing replicates to be rapidly

generated and studied. Table I summarizes the results, and
three trends are apparent.

"These nuclides typically are found on the edges of the bimodal peaks
in fission product yield curves and are more sensitive to changes in yield
that may arise from changes in neutron spectrum or material composition.
Accordingly, these “wing" fission products are likely to be useful in analyses.
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o

(a) Gaussian kernel

(b) Laplacian kernel

(c) Heavy-tailed kernel

Fig. 7: Three basis functions used for developing RVM models.

First, when using the Gaussian kernel, predictions ex-
hibit large variance with an average relative uncertainty of
30% in predictions on the testing data. When using the Lapla-
cian and heavy-tailed kernels, the uncertainty calculated us-
ing Equation (23) decreases to 2.70% and 0.23%, respec-
tively. The sharp decrease is likely due to greater kurtosis
of these functions relative to the Gaussian function (i.e., there
is greater large difference between the peak function value at
the mean/center and the tails). The large kurtosis implies that
the basis functions evaluated at the test points, @, in Equa-
tion (23), are very small, and the sensitivity coefficients in
Equation (23) are small.

Second, while the training error was consistently small in
models using all three kernels, large increases in the testing
error (error in predictions made on the testing set) relative to
the training error (error in predictions made when applying
the trained model to the training data) were observed when
using more peak basis functions. The testing bias increased
relative to the training bias by a factor of 4 and 678 when using
the Laplacian and heavy-tailed kernels, respectively. These
large increases in bias indicate the RVM models built using
the Laplacian and heavy-tailed functions are overfitted and
will likely not generalize well to new data. In contrast, the
biases on the training and testing data were very consistent
when the Gaussian kernel was used.

Third, models built with peaked basis functions are less
sparse than the model built using Gaussian kernel basis func-
tions. Models built with Gaussian kernels retained an average
of 7 variables as indicated by the number of nonzero entries
of the n vector, and 10 basis functions, which are associated
with finite entries in the vector « leading to nonzero weights
in Equation (1). In contrast, the models built using the Lapla-
cian and heavy-tailed kernels used significantly more variables
and basis functions. In general, sparse models are more eas-
ily interpretative, require less measured data to apply to new
samples, and are more likely to generalize to new data more
readily than complex models. One goal of the current research
is to discover nuclides that are most useful for making differ-
ent reactor characterizations independent of other unknown
quantities—specifically nuclides capable of determining bur-
nup independent of core position (which is coupled to neutron
flux, spectrum, etc.). The integrated feature selection included

in the extended RVM makes signature discovery possible, but
using the Laplacian or heavy-tailed kernels leads to dense
models that do not adequately differentiate between useful and
uninformative variables.

Given these results, the Gaussian kernel is used for the
remainder of the work presented herein.

4. Prediction of Core-Average Burnup

A high-fidelity RVM model to predict core-average bur-
nup was developed using 650 training specimens extracted
from the dataset described in Section V.1.. After training, all
but 9 training observations were discarded (i.e., 9 relevance
vectors were derived) and only 10 nuclides were retained (see
Section V.4.C.). Once trained, the model was applied to the
remaining synthetic specimens generated in the complete gas-
cooled, graphite-moderated dataset (see Section V.1.), and the
results were used to assess model performance. The burnup
predictions, calculated uncertainties associated with predic-
tions, and important predictive nuclides as identified during
the integrated feature selection are discussed in the next three
sections, respectively.

A. Prediction Results

Once trained, the RVM model was applied to each of 8260
testing specimens individually to make core-average burnup
predictions along with associated uncertainty calculated with
Equation (23). The burnup predictions versus the true values
are shown in Figure 8. On average, the absolute error in
prediction is 0.0062 GWd/MTIHM, and no major trends in the
errors are observed. Since the testing specimens are sampled
from all positions within the core and no associated trends
in prediction error are observed, the multivariate signature
autonomously developed with the extended RVM is position-
independent. In other words, the quality of the predictions is
invariant to the average neutron flux and spectrum associated
with position within the core.?

8The position invariance is only valid within the bounds of variables
currently considered. For example, cooling time is not considered in the data
and models developed to date.
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TABLE I: Summary of RVM performance with three forms for basis functions. After selecting training and testing data, a
seperate model was built using basis functions derived from each kernel function, the model was used to make predictions on the
testing data, and the results characeterized using several performance metrics. The results suggest models built using Laplacian
and heavy-tailed kernels are overfitted (the testing error is much greater than the training error) and are less sparse in terms of the

number of RV and nonzero entries in 77 (important variables).

Gaussian Laplacian Heavy-Tailed
Relative Testing Uncertainty [%] 30.03 2.7 0.23
Training Bias [GWd/MTIHM] 0.0067 0.0019 0.0001
Testing Bias [GWd/MTIHM] 0.0072 0.0079 0.0407
No. 7, #0 7 79 77
No. RV 10 96 289

Core-Averaged Burnup Predictions with Single Specimens

Predicted Burnup [GWd/MTIHM]

0.0 0.2 04 0.6 0.8 10 12
True Burnup [GWd/MTIHM]

Fig. 8: Predicted versus actual core-average burnup. Pre-
dictions are made using the isotopic composition of a single
simulated specimen. The average absolute error in prediction
over the entire range of true values (0 to 1.05 GWd/MTIHM)
is 0.0062 GWd/MTIHM, the average relative error is 4.47%,
the average relative uncertainty is 9.39%, and the maximum
error is 0.0470 GWd/MTIHM.

B. Uncertainty

During initial studies, the absolute error in prediction av-
eraged over the testing set(s) was observed to change with
the number of observations used in training the model (see
Figure 5). As N increases and the set of available basis func-
tions becomes more dense (i.e., the domain and image of the
estimated function f(x) is covered with finer resolution), the
average absolute error in predictions made on testing data de-
creases while the uncertainty in those predictions increases.’

9This phenomenon is clearly related to the well-studied bias-variance
tradeoft [13].

Figure 9 shows the average values of the absolute error in
prediction and the uncertainty calculated with Equation (23)
at each true burnup value. On average, the relative uncer-
tainty in predictions was 9.4%; however, at every true value,
the computed uncertainty (orange) is significantly larger than
the difference between the predicted and actual core-average
burnup (green). The consistency of the trend and size of the
difference suggests an overprediction in the uncertainty as cal-
culated by Equation (23); however, the reason for this behavior
is not currently known.

0.040 Overprediction of Uncertainty

Average Error in Prediction

Average Calculated Unceratinty
0.035

0.030
0.025
0.020

0.015

Value [GWd/MTIHM]

0.010
0.005

0.000
00 02 04 06 08 1.0 12

True Burnup [GWd/MTIHM]
Fig. 9: The uncertainty calculated with Equation (23) and the
absolute error in prediction. Points show the average value at

each unique core-average burnup value.

Figure 10 shows the empirical probability density for the
absolute error in predictions made using the same model used
to generate Figures 8 and 9. Approximately 98% of all predic-
tions are within 0.02 GWd/MTIHM of the true values. Using
a confidence value of a;, = 0.05, the critical error in predic-
tion value is 0.015 GWd/MTIHM (i.e., it is expected a priori
that predictions made with this model will fall within 0.015
GWd/MTIHM of the true core-average burnup 95% of the
time). Nominally this corresponds to an expanded uncertainty
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with a coverage factor of 2,' implying the standard uncer-
tainty is approximately 0.0075 GWd/MTIHM. This standard
uncertainty estimate is significantly smaller than the values
calculated with Equation (23) shown in Figure 9.

120 Empirical Distribution for Expected Error in Prediction
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Absolute Error in Prediction [GWd/MTIHM]

Fig. 10: Empirical distribution of absolute error in prediction.

C. Feature Selection Results: Important Nuclides

After training the extended RVM model to predict core-
average burnup, only 10 of the 90 tracked nuclides were re-
tained in the model (i.e., only 10 of the 90 entries of the
vector are nonzero once the algorithm converges and termi-
nates). The final basis shaping factors, 7, associated with
these 10 selected nuclides are shown in Figure 11. The magni-
tude of each bar gives the relative importance of each nuclide
for making burnup predictions. Surprisingly, the actinides
and cesium isotopes traditionally used for burnup determina-
tions in nuclear safeguards applications are not selected by the
RVM. Currently, it is unclear why the selected nuclides pro-
duce a predictive signature and why the actinides and cesium
are neglected. It is possible that additional nuclides input to
the extended RVM for training may be informative, but the
model seeks to find the sparsest multivariate signature while
optimizing predictive fidelity. Therefore, if two nuclides give
similar information (e.g., respond identically to neutron flux,
neutron spectrum), one nuclide will be retained while the other
is discarded.

VI. CONCLUSION
1. Summary

We have developed an extension to Tipping’s relevance
vector machine [7] that includes integrated feature selection
and basis shaping via a second embedded optimization prob-
lem (see Figure 3). We have tested the technology on a two-
dimensional synthetic noisy dataset, and demonstrated the
extended RVM’s ability to estimate a nonlinear function and
distinguish predictive from uninformative variables to develop

19Using a coverage factor of 2.0 loosely corresponds to reporting 20~ uncer-
tainties.

0009 Relative Importance of Nucldies for Robust Burnup Predictions

0.008
0.007
0.006

0.005

o
o
S
=

Basis Shaping Factor

0.003

8 1| (11T

Cd-113 Ce-144 Eu-151 Gd-152 Gd-155 Nb-93 Rh-105 Sm-147 Sm-149 Xe-135
Nuclide

Fig. 11: Nonzero values of 7 (see Equation (17)) for a model
trained with 650 training specimens to predict core-average
burnup (see Figure 8). Only 10 of the 90 input nuclides were
assigned nonzero values and retained in the model. Somewhat
surprisingly, Cs, U, and Pu nuclides were not determined
to be ideal for making position-independent predictions of
core-average burnup. The magnitude of the entries shows the
relative importance of the associated nuclide.

an optimal multivariate signature. The RVM’s performance
on the number of specimens used to train the model has been
examined; an inverse relationship was shown between the
prediction bias and prediction uncertainty as more training
specimens are used.

Using a three-dimensional spatially-resolved depletion
simulation for a gas-cooled, graphite-moderated reactor per-
formed with SCALE 6.2, the extended RVM has been used
to develop a model capable of making position-independent
predictions of core-averaged burnup using a single specimen
randomly drawn from the core. Predictions fell within 0.0062
GWd/MTIHM from the true value (which ranged from O to
1.05 GWd/MTIHM), with an average relative uncertainty of
approximately 9.4%. It was observed that the models currently
developed to date exhibit excess variance (calculated uncer-
tainties far exceed observed bias), and consideration has been
given to alternative methods to estimate prediction uncertainty
(c.f., Section V.2.).

2. Further Work

To date, the primary focus of the research has been de-
veloping the extended RVM, synthetic reactor data, and asso-
ciated code infrastructure. The application of the developed
models to reactor characterization has been limited to predict-
ing core-average burnup using ideal, noise-free data. In the
future, application-specific research will be performed, which
is outlined below.
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A. Bagging to Reduce Variance

As shown in Figures 9 and 10, the extended RVM as
currently applied to reactor characterization is a relatively low-
bias, high-variance method (i.e., the errors in prediction are
significantly smaller than the calculated uncertainty). Bagging
is a resampling method that is well suited for such models.
The training data are repeatedly sampled to generate bootstrap
training sets, and a model is trained on each bootstrap set. This
ensemble of models is then applied to new testing samples,
and the results are averaged together to produce a single esti-
mated response. Assuming each model exhibits little bias (see
Figure 8), the average responses from an ensemble of models
will be at least as good as the results from individual models,
and the variance will be reduced. If the bootstrap samples
have identical variance o and pairwise correlation p > 0, then
the variance of the average result of an ensemble of B models
will be

VIf(x)] = po? + %02, (29)

and the uncertainty in prediction will be reduced by a factor
as large as 1/ VB [13].

B. Noisy Data

In real-world applications, several types of noisy data are
expected: random variation associated with measurement un-
certainty (both independent and correlated), systematic biases,
missing data, and gross error. Methods have been developed
to simulate these types of noise in the ideal synthetic data
analyzed to date. Generating replicate training data with dif-
ferent noise realizations will produce models that are robust
to measurement noise and systematic biases. It is currently
unclear how to apply models to test specimens with missing
measurements. A common approach is to fill in missing val-
ues with mean values taken from the training data; however,
this approach may limit the position invariance of the RVM
predictions since specimens taken from the extreme positions
of the core (e.g., the periphery) have isotopic compositions
that differ significantly from dataset averages.

C. Simpler Signatures

Fission product signatures derived during model training
by the integrated feature selection rely on 5-10 fission prod-
ucts, but it may not be feasible to make reliable measurements
of each nuclide during real-world analyses. Therefore, ongo-
ing research will attempt to identify the smallest subset of the
identified nuclides that preserve model fidelity to determine
which nuclides are the most analytically economical. The
most useful nuclide to add to an existing experimental pro-
tocol depends on the nuclides already analyzed as there are
significant conditional dependencies. To learn and best dis-
play this dependency, an analysis tree will be constructed that
captures the best nuclide to add to any set of nuclides to best
improve model fidelity. From this conditional tree, positive
and negative synergistic effects between nuclides will be stud-
ied, and the optimal nuclides to analyze given experimental
constraints will be identified.

D. New Predictive Models

To fully characterize a reactor core during/after operation,
additional characteristics will be predicted. These include
cooling time, initial enrichment of the fuel, and irradiation
time (with burnup this specifies nominal power level). Re-
search will investigate the most useful nuclides for making
such predictions, as well as a method to design an analysis
protocol to determine multiple variables (i.e., serial analysis
with ideal models chosen by previous analyses or a single
model trained on a multivariate response). Furthermore, as
limited high quality fission product measurements is antici-
pated, reducing the number of nuclides required for analysis
will be an emphasis of future research.
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