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Abstract - The plasma edge in nuclear fusion reactors is simulated using a coupled finite volume / Monte Carlo
code. To unravel error contributions from such coupled simulation technique, a framework for error assessment
has been developed. It was successfully applied to Random Noise simulations, where the trajectories in the
Monte Carlo code are completely uncorrelated each iteration. However, difficulties were encountered in the
estimation of the statistical error and the determination of the onset of steadiness. In this paper, several methods
are examined to deal with these difficulties, leading to practical methods, which can be easily implemented.

I. INTRODUCTION

In next generation nuclear fusion reactors such as ITER
and DEMO, the divertor is designed for controlling particle
and power exhaust from the reactor. In particular, this divertor
has to withstand enormous heat power loads. Moreover, it has
to ensure an efficient removal of the Helium ash. Simulations
of the plasma edge play an essential role in the design of this
component, as well as in the preparation and interpretation of
experiments [1].

Plasma edge codes simulate the transport of plasma and
neutral particles in the plasma edge, i.e. the outer reactor re-
gion where the plasma is in contact with the solid target plates
and vessel and where neutral particles are removed via vacuum
pumps. Plasma particles can be described accurately with fluid
equations that are solved using finite volume methods (FV).
Neutral particles, however, are governed by a kinetic transport
equation that is solved using a Monte Carlo method (MC). To
solve the full set of equations, the plasma and neutral codes
are coupled and iteratively solved. A code used worldwide is
B2-EIRENE [2]. Its latest version, SOLPS-ITER, is the prin-
cipal tool for plasma edge simulations for ITER [3]. In high
recycling and detachment regimes, such as targeted in ITER,
plasma-neutral interactions become very strong. This causes
convergence issues, increases the required computational time,
and complicates the assessment of numerical errors.

Recently, a framework for error assessment has been de-
veloped [4] using a simplified 1D plasma edge model. Similar
conclusions have been found using a simple slab case with
synthetic noise [5]. Several coupling techniques have been
examined and compared to each other with respect to speed
and accuracy. It was found that making use of post-processing
averaging decreases the computational time with an order of
magnitude. Plasma edge simulations are usually run with the
Random Noise coupling technique, where each MC iteration
uses different seeds in the pseudorandom number generator.
When particle and momentum balances remain stationary, the
code is said to be converged and the final iteration is taken
as the solution. To have a sufficiently low statistical error,
many MC particles are used each iteration. By examining all
error contributions, it has been concluded that significantly
fewer MC particles are required per iteration if the average
of the results of many stationary iterations is used. This new

simulation approach was recently tested with a B2-EIRENE
ITER case [6]. The solution could be obtained in an order of
magnitude less computational time without losing accuracy.

To determine the optimal numerical parameters to obtain
a required accuracy in the smallest amount of computational
time, it is important to have reliable methods to estimate all er-
ror contributions. This paper focuses on remaining difficulties
in the understanding of the statistical noise that is present in
Random Noise simulations, i.e. the assessment of the corre-
lation time of simulation results during steady state iterations
and the determination of the onset of steadiness.

The next section introduces briefly the used models and
the implementation. In section 3, the error contributions that
are present in a Random Noise simulation are discussed. Sec-
tion 4 investigates methods to estimate the correlation time and
presents several examples with variables from a B2-EIRENE
ITER simulation. In section 5, methods to determine the tran-
sient are discussed.

II. MODEL AND IMPLEMENTATION

This paper first examines error assessment methods with
a simplified 1D model. This plasma model consists of a con-
tinuity and momentum equation, solved with FV correction
equations. The model is mono-energetic, therefore, no en-
ergy equation is needed. False time stepping and relaxation
factors are used to aid convergence. Both plasma equations
contain source terms from neutral particles that have interacted
with plasma particles in ionization or charge exchange events.
These sources are computed with the neutral model, which
consist of a simplified Boltzmann equation in 1D. Neutral
particles are generated at the target, where plasma particles
recombine to neutrals (the recycling process). While traveling,
neutrals can interact with plasma particles through charge ex-
change, modeled as an elastic collision, and ionization, which
means that the neutral is absorbed and becomes a plasma par-
ticle. For more information about this model, the reader is
referred to [4]. Examples are also shown for a more complex
and realistic ITER case with a partially detached plasma. The
plasma equations include energy equations and are simulated
in 2D with the B2-code. The neutral equation is simulated in
5D (2D space, 3D velocity) with the EIRENE-code. This test
case simulates only Deuterium. More details can be found in
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[6].
Each code iteration consists of one iteration of the FV

code followed by a MC run using that plasma state as a back-
ground. It can be chosen to run the MC code with highly
correlated trajectories between the iterations. This is called
Correlated Sampling. The noise is said to be frozen and the
residuals of the fluid code can decrease to machine accuracy
to obtain a converged solution. Alternatively, with Random
Noise, the MC code is run with different seeds each iteration
such that particle trajectories are uncorrelated. The residuals
cannot decrease but remain fluctuating around a constant level.
To obtain the solution, an average is then taken over several
iterations.

III. ERRORS IN RANDOM NOISE SIMULATIONS

The total numerical error consists of several contributions.
The discretization error is present due to the discretization of
the plasma solution. The convergence error exists because the
residual of the iterations is not negligible. Two error contri-
butions are caused by the finite number of MC particles per
iteration: a deterministic error, which is called the finite sam-
pling bias, and a statistical error, which comes from sampling
in the Monte Carlo procedure from a probability distribution.

1. Deterministic errors

The discretization error, the finite sampling bias and the
convergence error are all deterministic errors. Methods have
been developed to estimate these contributions in Random
Noise simulations [4]. The discretization error can be esti-
mated using Richardson’s extrapolation [7], as is typically
done in FV codes. A similar technique, based on error reduc-
tion rates, can be used to estimate the finite sampling bias and
the convergence error. These two error contributions cannot be
separated from each other, but exhibit the same error reduction
rates and can, therefore, be estimated together.

These estimation methods rely on comparing different
solutions with each other. To determine the deterministic error
associated with the MC noise, it is shown that it suffices to pro-
voke the error using much fewer MC particles than typically
used in plasma edge simulations [6]. The averaging should be
continued long enough to guarantee that the statistical error
is much smaller than the finite sampling bias. Similarly, to
estimate the discretization error, grid refinement is needed.
In that case, it is essential that the solutions that are being
compared have a dominant discretization error. All other error
contributions have to be made sufficiently small by choosing a
sufficiently large number of iterations and MC particles. If the
statistical error is still relatively high, the estimate itself will
be dominated by statistical noise. On the other hand, if the sta-
tistical error is overestimated, a lot of computational time will
be wasted on unnecessary iterations. Therefore, we conclude
that a reliable estimate of the statistical error is extremely
important for these applications.

2. Statistical error

The statistical error εs, originating from the finite amount
of MC particles, stems from a probability distribution with
mean 0 and standard deviation σ. This standard deviation σ
is from the population of means of I iterations. The standard
deviation of the iterations σ1 can be estimated easily as the
sample standard deviation s of all iterations φi:

s =

√√√
1

I − 1

I∑
i=1

(φi − φ)2, (1)

with φ the average of the total number of iterations I. How-
ever, the standard deviation σ is harder to determine. Indeed,
consecutive iterations are not independent of each other. There-
fore, the iterations are correlated and the central limit theorem
has to be adapted to take into account a correlation time T .
With a known T , the statistical error can be easily calculated
as

εs ≈ σ = σ1

√
T
I
. (2)

The correlation time T is a measure for the dependency be-
tween consecutive iterations and can be written as

T = 1 + 2
∞∑
τ=1

ρ(τ), (3)

with ρ(τ) the normalized autocorrelation with lag τ [8, 9].

IV. ESTIMATION OF THE CORRELATION TIME

To estimate T , we examine two approaches: one makes
use of the variances of batch means (equation 2), the other is
based on the autocorrelation (equation 3). First, the methods
are introduced with an example of the simplified 1D model.
Afterwards, three examples are given of the B2-EIRENE ITER
case.

1. Batching method

The first approach makes use of means of M consecutive
iterations and equation 2. The computation of T becomes

T =
σ2

M

σ2
1

M, (4)

where σ2
1 is the sample variance of the iterations, and σ2

M is the
sample variance calculated with batch means of M iterations
(see equation 1). This equation is valid for M → ∞.

The batches can be either non-overlapping, which means
that each new batch starts where the previous one ends, or
overlapping, which means that each new batch starts at a next
iteration. For the same sample size and batch size, the bias
on variance estimates (σ2

M) is approximately equal with both
methods, however, with overlapping batch means, the vari-
ance on the estimated σ2

M is only 2/3 of the variance estimated
with non-overlapping batch means [10]. Figure 1 shows the
obtained estimate of T for several values of M for the plasma
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Fig. 1. Estimate of correlation time T in function of the num-
ber of means per batch M for the target flux in the simplified
1D test case.

density at the target in the simplified 1D model. It is important
that the number of iterations per batch M is chosen sufficiently
large. In this example, the estimated T remains equal when
M ≥ 5 T . If M is chosen too low, the batch means are still de-
pendent on each other and the estimate of T will be inaccurate.
On the other hand, when M is chosen very large, the number of
batch means becomes low and the sample variance σ2

M cannot
be estimated reliably. In this example, many iterations (2 ·105)
are available such that the statistical error on the estimated T
is low.

However, in realistic simulations a relatively small num-
ber of iterations is available. Therefore, the estimate can be
under- or overestimated with this method. An important advan-
tage of this method is that not every variable of interest has to
be stored for each iteration. During the run, batch means and
standard deviations can be calculated and stored, as described
in [6].

2. Autocorrelation method

The second approach to estimate T is based on equation
3. However, because only a finite number of iterations is
available, the infinite sum is truncated at a specific τt:

T = 1 + 2
τt∑
τ=1

ρ(τ), (5)

where the autocorrelation ρ(τ) is estimated using samples
covariances

(
cov(I,I−τ)

cov(I,I)

)
. Figure 2 shows the estimated autocor-

relation function ρ(τ) for the plasma density at the target in
the simplified 1D test case (same case as figure 1). The blue
line shows the autocorrelation calculated with many iterations
(> 1000 T ), while the red line represents the autocorrelation
calculated with few iterations (< 100 T). When few iterations
are available, as often the case in realistic simulations, the
statistical error on ρ(τ) can become large. The two dashed
lines indicate the 2σ confidence interval around ρ = 0. The
correlation time T can be estimated accurately with the blue
line (T = 5.7). However, when < 100 T iterations are used, T
is underestimated (T = 2.5). Moreover, the estimate becomes
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Fig. 2. Autocorrelation ρ in function of the lag time τ for
the target flux in the simplified 1D test case. To calculate
the blue line, more than 1000 T samples are available, while
the red line is calculated with fewer than 100 T samples. The
dashed lines indicate the ±2σ confidence interval around ρ = 0
belonging to the red line.

very sensitive to the truncation point. The higher τt, the more
influence of statistical noise in the calculation of ρ. On the
contrary, if τt is chosen too low, T may also be under- or over-
estimated. Therefore, this method should only be used when
the number of iterations is many correlation times.

To alleviate the influence of statistical noise, a best fit can
be constructed to approximate the autocorrelation ρ(τ) with a
specific function [11]. Typically, an exponentially decaying
function is expected in an iterative process. Therefore, the
values of ρ(τ) that are not dominated by statistical noise can
be used to fit an exponential function. The correlation time is
subsequently estimated using the fitted function instead of the
computed, noisy autocorrelation values. The quality of this
estimate, of course, depends on how well the autocorrelation
function is approximated. If more information is known about
the shape of the autocorrelation function, this can be taken into
account during the fit. This method can be used to obtain the
correct order of magnitude when the available number of itera-
tions is small, as will be shown in the next examples. In figure
2 the autocorrelation function is an exponentially decaying
function multiplied with a periodic function. For this example,
the examined variable has a clear periodic behavior in the
iterations, which is also visible in the autocorrelation function.
Because of this periodic behavior, a fitted exponential does
not give a good approximation for this example.

3. Examples from a B2-EIRENE ITER case

This subsection gives examples of both methods for three
different variables in a realistic simulation. First, attention
is brought to the strategy for storing all variables of interest.
This introduces a practical way to avoid excessive storage
of data without losing too much information to estimate the
correlation time.
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A. Storage strategy

With more dimensions, the number of computed variables
grows quickly. If the values of all these variables have to be
stored each iteration, a huge amount of memory is required.
Therefore, instead of saving the values of each iteration, it is
chosen to save the average and sample standard deviation of
batches of 500 iterations, which can easily be calculated on the
fly, as shown in [6]. This way, the number of stored variables
is reduced 500 times. With these batches, the correlation time
T can be calculated in two steps:

T = T1 · T2, (6)

where T1 is the correlation time of one batch, and T2 the corre-
lation time of the series of batches. The correlation time T1 is
easily calculated with the batching method: σ1 is saved during
the run for each batch, σM (with M = 500) can be calculated
using the batch averages. If the batches are independent of
each other, T2 will be 1. However, this is usually not the case,
therefore, T2 should be estimated with either the batching or
the autocorrelation method. In all examples, 2.5 · 105 itera-
tions (in stationary regime) have been executed. Therefore,
500 batches of 500 iterations each are available.

Before giving some examples, it should be mentioned that
it is not necessary to have a highly accurate estimate of T . The
statistical error scales only with

√
T (equation 2), therefore, a

relative error of for example 10% will influence the estimate
of the statistical error with only 5%. It is, however, necessary
that the order of magnitude is estimated correctly.

It is noted that the correlation time is highly dependent on
the simulation parameters. Especially the chosen time step and
relaxation factors have a large influence. The correlation time
is also extremely variable dependent. In the same simulation,
different variables can have correlation times with different
orders of magnitude, as is shown in the following examples.

B. Example 1: ion density on the outer target

In the first example, the estimation of the correlation time
of the ion density at a location on the outer target is shown.
The estimate for T1 is calculated to be 148. To estimate T2, the
batching method and the autocorrelation method can be used
and result in a satisfying estimate. The figures show results
for total correlation time T .

Figure 3 shows the estimate of T with the batching
method. The available batches (of 500 iterations each) are
grouped together to form bigger batches, overlapping (full
line) or non-overlapping (dashed line). When the number of
non-overlapping batches is less than 30, the result remains
reliable (indicated in dark blue and red). However, when the
batches are larger, the estimates for both the overlapping and
non-overlapping batches become increasingly more affected
by the statistical noise (indicated in light blue and pink). In-
deed, it can be observed that the estimate with non-overlapping
and overlapping batches give radically different results, which
indicates that the estimates are unreliable. In figure 3, it is
observed that the value of the correlation time is still slightly
increasing with M (for the reliable dark blue and red results).
This increase is not steep anymore, therefore, we can conclude
that the order of magnitude of the estimate T ≈ 550 will be
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Fig. 3. Estimate of correlation time T in function of the num-
ber of iterations per batch M for the ion density at a location
on the outer target in the B2-EIRENE ITER case. The full
and dashed lines represent the results with respectively non-
overlapping and overlapping batches. Dark colors (dark blue
and red) represent statistically reliable results. When less than
30 non-overlapping batches are used, results are unreliable
and presented with light colors (light blue and pink).
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Fig. 4. Autocorrelation ρ for the batches (of each 500 iter-
ations) in function of the lag time τ for the ion density at a
location on the outer target in the B2-EIRENE ITER case. The
correlation time T is estimated to be 635 using the exponential
fit.

approximately correct. Notice, however, that even at this point,
where the number of iterations in one batch equals 15 T , the
resulting estimate does not remain constant yet.

Figure 4 shows the calculated values of the autocorrela-
tion ρ (blue) of the batches (of each 500 iterations) with the
2σ confidence intervals around 0 (dashed black). Clearly, only
a few values of ρ contain useful information (outside the 2σ-
lines). The shown exponential fit (red) is calculated with these
values of the autocorrelation and results in an estimated T of
635. This estimate has indeed the same order of magnitude as
the estimate with the batching method.
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Fig. 5. Estimate of correlation time T in function of iterations
per batch M for the ion density at a location on the inner target
in the B2-EIRENE ITER case. The full and dashed lines rep-
resent the results with respectively non-overlapping and over-
lapping batches. Dark colors (dark blue and red) represent sta-
tistically reliable results. When less than 30 non-overlapping
batches are used, results are unreliable and presented with
light colors (light blue and pink). The (inaccurately) estimated
correlation time T is 700.

C. Example 2: ion density on the inner target

Plasma variables on the inner target generally have a much
larger correlation time. An example is discussed for the ion
density. When the correlation time is very large, the batching
method will fail, as figure 5 shows. The last reliable result
provides an estimate of 700, however, the value of T is clearly
still increasing. Also the dashed pink line of the estimate with
non-overlapping batch means indicates that 700 may be a large
underestimation.

Figure 6 shows the calculated values the autocorrelation ρ
(blue) of the batches with the 2σ confidence intervals around
0 (dashed black). Using the fitted exponential (red), the cor-
relation time T is calculated to be 2780, which is more a
trustworthy estimate.

D. Example 3: effective pumping speed

Previous examples analyzed plasma variables, which are
calculated in the FV code. Neutral variables, calculated with
the MC code, typically have a much lower correlation time.
The MC code itself is linear and computes uncorrelated par-
ticle trajectories each iteration. Only the plasma background
creates correlation. The example shown here is the effective
pumping speed, computed at the pump which is not reached
by plasma particles.

Figure 7 shows the estimate of T with the batching
method. The value of T is very low and changes very slowly.
This indicates that the value of the autocorrelation ρ will be
very low but non-zero for a relatively large number of lag times
τ. Because low values of ρ are very sensitive to statistical er-
rors, it is impossible to make an accurate estimate using the
autocorrelation method, as shown in figure 8. It is concluded
that the correlation time for this variable is approximately 2.5.
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Fig. 6. Autocorrelation ρ for the batches (of each 500 iter-
ations) in function of the lag time τ for the ion density at a
location on the inner target in the B2-EIRENE ITER case. The
correlation time T is estimated to be 2780 using the exponen-
tial fit.
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Fig. 7. Estimate of correlation time T in function of the num-
ber of iterations per batch M for the effective pumping speed
in the B2-EIRENE ITER case. The full and dashed lines rep-
resent the results with respectively non-overlapping and over-
lapping batches. Dark colors (dark blue and red) represent sta-
tistically reliable results. When less than 30 non-overlapping
batches are used, results are unreliable and presented with
light colors (light blue and pink). The estimated T is 2.5.
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Fig. 8. Autocorrelation ρ for the batches (of each 500 iter-
ations) in function of the lag time τ for effective pumping
speed in the B2-EIRENE ITER case. An accurate fit could
not be constructed, therefore, the correlation time T cannot be
estimated accurately.

V. ONSET OF STEADINESS

All estimates assume that the iterations are in stationary
regime while taking the average over the iterations. If a tran-
sient is still present, the error on the solution can be affected
considerably. The additional error caused by the transient is
called the initialization bias [12]. It is, therefore, important to
discard the iterations of the transient. This number of itera-
tions is usually determined by visually inspecting the progress
of the value of variables during the iterations [8]. When the
mean of this value appears constant, it is assumed that the
stationary regime is reached.

To facilitate the visual examination of the transient, the
statistical noise can be decreased by making use of averaging.
Welch’s procedure proposes two ways [8]: the first method
makes use of independent replicas or runs, the second employs
a moving average. Multiple replicas are very time-consuming
to simulate and usually unnecessary. A moving average over
several iterations, on the other hand, is a straight-forward post-
processing step that can be extremely useful in decreasing the
statistical error for the purpose of determining the end of the
transient. Moreover, when only batch averages are stored, less
memory is required. Figure 9 shows the batch averages of the
plasma density in a cell at the outer divertor target from a B2-
EIRENE ITER simulation. Because of the sufficiently small
statistical errors of the batches, the transient can be clearly
observed. After approximately 300 batches, the value appears
to be stationary.

Although visual determination of the end of the transient
may be inaccurate, it is generally sufficient [8, 11]. The de-
terministic error due to a small number of transient iterations,
will not highly influence the result if the amount of iterations
in the stationary regime is large. However, when many tran-
sient iterations are included, large errors can be made. A
remaining transient is often indicated by a changing average,
because the initialization bias appears. Moreover, the esti-
mated standard deviation of the statistical error is often larger
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Fig. 9. Batch averages that are kept during the simulation,
each consisting of 500 iterations. The transient disappears
after approximately 300 batches (visual determination).
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Fig. 10. The average in function of the number of batches
used. The errorbars indicate the magnitude of the estimated
standard deviation of the statistical error. With more than 800
batches (less than 200 discarded batches), the influence of the
transient is clearly visible.

than during stationary iterations. This is mostly due to the
estimated correlation time that can suddenly increase when
a transient is still present. In figure 10, the average and the
standard deviation are calculated with an increasing number of
batches, starting from the last batch. When the iterations are in
stationary regime, the average changes little and the statistical
error decreases with the number of batches/iterations. How-
ever, when transient iterations are included, both the average
and the standard deviation can change substantially as seen in
figure 10 when 800 or more batches are included.

Another well-known method of determining the end of
the transient is Schruben’s test procedure for initialization bias
[12]. For this method, visual inspection is not required. This
test determines if the average changes during the run. The
probability is estimated that a test statistic α̂ is more unusual
than the one that is observed if there is no initialization bias
present. When α̂ is smaller than a specified probability αlimit,
the hypothesis that no initialization bias is present is rejected.
Figure 11 shows the values of α̂ calculated for the example
of figure 9: 250 batches should be discarded when αlimit is set
to 0.1. This method works well when the transient is clearly
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Fig. 11. Test statistic α̂ of Schruben’s test for initialization bias
(blue) and the specified limit (red) in function of the number of
discarded batches. At least 250 iterations should be discarded
to avoid an initialization bias.

visible, like in this example. With a less clear transient, taking
larger batches can bring improvement (just like with visual
determination). However, with a large correlation time, this
method sometimes fails to indicate the end of the transient.

While the correlation times can be very different for dif-
ferent variables in the same simulation, the onset of steadiness
is almost equal for each variable. Therefore, it is sufficient to
determine the end of the transient for one (or a few) variables,
where it can be clearly determined and use that value for all
variables.

VI. CONCLUSIONS

This paper focused on two remaining difficulties for es-
timating errors in Random Noise simulations with coupled
FV/MC plasma edge codes. First, the determination of the
correlation time was discussed, which is important to obtain
a reliable estimate of the statistical error. We examined and
discussed advantages and drawbacks for two estimation meth-
ods. If the correlation time is low, the best results are provided
with the batching method, which makes use of averages of
groups of iterations. If the correlation time is high, a bet-
ter estimate is often provided by the autocorrelation method,
which is based on the computation of the autocorrelation of
the variable. Second, several methods have been evaluated for
the determination of the onset of steadiness. This is important
to make reliable error estimates and to avoid an initialization
bias. Generally, visual determination is sufficient. However,
Schruben’s test for initialization bias provides an adequate
alternative.
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