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Abstract - 3-field Landau fluid code which is written by the spectral method is parallelized using Message
Passing Interface. The calculation cost of nonlinear mode coupling is most expensive part, so that various
schemes are tested to optimize it. It is found that the best scheme gives roughly 30% faster than the standard
decomposition of do loop.

I. INTRODUCTION

3-field Landau fluid (LF3) model describes the ion tem-
perature gradient driven drift wave (ITG) turbulence in Toka-
mak plasmas[1]. It is applied to investigate the internal trans-
port barrier formation which gives the improved energy con-
finement time[2]. The code is developed using the spectral
method[3] which is parallelized using Message Passing Inter-
face (MPI)[4, 5]. Since the calculation cost of nonlinear mode
coupling is most expensive part, so that various schemes for
the decomposition of do loop are tested to optimize it. It is
found that the best scheme gives roughly 30% faster than the
standard decomposition method.

II. PARALLELIZATION

LF3 code is schematically written by

∂ f
∂t
= L( f ) + N( f , f ), (1)

where f is the vector consist of the electrostatic potential fluc-
tuation, the velocity fluctuation parallel to the ambient mag-
netic field and the ion temperature fluctuation, L( f ) represents
linear term and N( f , f ) represents the convective nonlinearity
which is expressed by the Poisson bracket. The predictor-
corrector scheme[6] is adopted for time integration, namely

f n+1/2 − f n

∆t/2
=

L( f n+1/2) + L( f n)
2

+ N( f n, f n), (2)

and

f n+1 − f n

∆t
=

L( f n+1) + L( f n)
2

+ N( f n+1/2, f n+1/2). (3)

where the superscript indicates the each time step and the
linear term is solved by Crank-Nicolson implicit scheme[7].
Figure 1 shows an example of Fourier spectrum in (m, n)
space where m represents the poloidal mode number and n
represents the toroidal mode number. It consists of resonant
modes q(r) = m/n and off-resonant modes. Here q(r) repre-
sents the safety factor profile. The complex conjugate of these
modes are also taken into account for the nonlinear mode cou-
pling calculation. The resonant mode is given by:

REAL(DP),DIMENSION(2),PARAMETER:: &
SIG(/1.D0,-1.D0/)

DO LZ=1,KZM
DO LY=1,KYM
XRES=ABS(REAL(LZ)/REAL(LY))
IF(XRES .GT. 1/Q(0)*XKMSEL &
.OR. XRES .LT. 1/Q(IRMAX)/XKMSEL) THEN
CONTINUE
ELSE
DO LK=1,2
L=L+1
LKY(L)=LY
LKZ(L)=LZ*SIG(LK)
· · ·
END DO
END DO
END DO

If we choose XKMSEL=1, it means only resonant modes are
taken into account. In addition, we also include off-resonant
modes such as the convective cell modes (n = 0). The non-
linear mode coupling table is constructed as

DO L=0,LMAX ! Parallel version: L=S,E
LX=0
DO L1=-LMAX,LMAX
DO L2=-LMAX,LMAX
MY=LKY(L)-LKY(L1)-LKZ(L2)
MZ=LKZ(L)-LKZ(L1)-LKZ(L2)
IF(MY .EQ. 0 .AND. MZ .EQ.0) THEN
LX=LX+1
LL1(L,LX)=L1
LL2(L,LX)=L2
ENDIF
END DO
END DO
LLMAX(L)=LX
END DO

Using the mode coupling table, the E × B nonlinearity is cal-
culated by

DO L=S1,E1 ! Parallelization: Case IV
DO LL=1,LLMAX(L)
M1=LL1(L,LL)
M2=LL2(L,LL)
!$OMP PARALLEL DO
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Fig. 1. An example of Fourier spectrum in (m, n) space.

DO I=1,IRMAXM
VOLRHS2(I,L)=VOLRHS(I,L)+ RHOS**2 &
*FKY(I,M1)*(VOLG(I,M1))*DPHIG(I,M2) &
-PHIG(I,M1)*DVOLG(I,M2))
· · ·
END DO
!$OMP END PARALLEL DO
END DO
END DO
· · ·
CALL MPI_ALLGATHER(VOLRHS2,COUNT2, &
MPI_DOUBLE_COMPLEX,VOLRHS(0,0),COUNTS2, &
DISP2, MPI_DOUBLE_COMPLEX, COMM1D,IERR)

Figure 2 shows a schematic view of number of non-
linear mode coupling for each Fourier mode L. The four
schemes are tested for the outer loop paralllelization. In the
case (I), the mode pointer L (0 ≤ L ≤ LMAX) which indi-
cates the set of Fourier mode (m, n) is equally decomposed.
In the case (II), the mode pointer is firstly divided by two
groups, then, it is equally decomposed by different order. For
the first group, each process is allocated as 0, 1, · · · ,N and
for the second group, it is allocated as N,N − 1, · · · , 0. In
the case (III), the one dimensional domain decomposition is
applied. Initially, the domain decomposition gives f n(I, L),
where 1 ≤ I ≤ IRMAX and S ≤ L ≤ E. Then, transpose
of f n(I, L) is done to evaluate the nonlinear coupling, where
S ≤ I ≤ E and 0 ≤ L ≤ LMAX. In this case, we need two
MPI_ALLTOALL communications. In the case (IV), we cal-
culate the total number of nonlinear mode coupling, then it is
equally decomposed as much as possible.

Figure 3 shows the benchmark results of each scheme
on PC cluster (VT64 Itanium 2 Server 2000 1.4GHz x 34
CPU, Myrinet). In this benchmark, 16 MPI processes are
used for the benchmark test. Here ITG_NON2.DAT corre-
sponds to case (I) (red circle), ITG_NON22.DAT, case (II)
(blue triangle), ITG_NON23.DAT, case(III) (yellow square)
and ITG_NON24.DAT, case (IV) (green reverse triangle). It
is shown that the case (IV) is roughly 30% faster than the case
(I).

To keep equal load balance on each process, we evaluate
the total number of nonlinear mode coupling and it is divided

Fig. 2. A schematic view of number of nonlinear mode cou-
pling for each Fourier mode L.

Fig. 3. The benchmark results of each scheme on PC cluster.

by total process number, then we search the neighbourhood
of the value which is done by the following program:

LLMAX(0)=LLMAX(0)
DO L=1,LMAX
LLMAXS(L)=LLMAXS(L-1)+LLMAX(L)
END DO
LLTOT=0
DO L=0,LMAX
LLTOT=LLTOT+LLMAX(L)
END DO
LLAV=LLTOT/NUMPROCS
E2=1
DO I=0,NUMPROCS-2
DO L=0,LMAX
IF(LLMAXS(L)-E2+1 > LLAV) THEN
IF(I==0) THEN
LSE(I,1)=0
ELSE
LSE(I,1)=LSE(I-1,2)+1
END IF
IF(ABS(LLMAXS(L-1)-E2+1-LLAV) &
<= ABS(LLMAXS(L)-E2+1-LLAV)) THEN
LSE(I,2)=L-1
ELSE
LSE(I,2)=L
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ENDIF
E2=LLMAXS(LSE(I,2))
EXIT
ENDIF
END DO
END DO
LSE(NUMPROCS-1,1)=LSE(NUMPROCS-2,2)+1
LSE(NUMPROCS-1,2)=LMAX
· · ·
S1=LSE(MYID,1)
E1=LSE(MYID,2)

The nonlinear mode coupling table is also parallelized by
MPI. It is benchmarked on IFERC-CSC HELIOS computer
(BULL/Bullx B510: 2 processors of INTEL Sandy-Bridge
EP 8 cores -2.7GHz). We use 16 node (256 process) for the
benchmark test. For LMAX = 15380, the serial version gives
roughly 3 hours to calculate nonlinear mode coupling table,
however, the parallelized version gives only 93.5 second, it is
quit efficient for large number of Fourier modes.

III. MPI/OPENMP HYBRID MODEL

The performance of threads is measured by fixing the
process number. Japan Atomic Energy Agency (JAEA) su-
percomputer system (SGI ICE X: Intel Xeon E5-2680 v3) is
used for the benchmark tests. Two cases with (A) LMAX =
3890 and (B) LMAX = 9874 are examined. For case (A), the
process number is fixed as 256 processes and for (B), as 512
processes. In case with 4 threads, the factor 2 of performance

Case 1 thread 2 threads 4 threads
(A) 110.0 sec 65.3 sec 54.0 sec
(B) 324.8 sec 198.6 sec 160.6 sec

improvement is obtained. It is shown that MPI/OpenMP hy-
brid model is efficient way to improve the performance of
LF3 code.

IV. EXAMPLE OF SIMULATION RESULT BY LF3

In this section, simulation results by LF3 are shown. The
reversed q profile with q(r = 0.6) = qmin is used. Figure 4
shows the heating source profiles. The Gaussian type of heat-
ing source profile is shown for the central (P = 1, rs = 0,
∆ = 0.2) and off-axis (P = 2, rs = 0.4, ∆ = 0.05) heating,
where S (r) = P exp(−(r − rs)2/∆2). Figure 5 shows the time
evolution of ion temperature profile. The heating source is
applied at t = 2 and the subsequent profile evolution is fol-
lowed. It is seen that the internal transport barrier(ITB) forms
at r = 0.4 for the off-axis heating.

Figure 6 shows the contour plot of temperature fluctua-
tion at t = 20. The poloidal cross section with ζ = 0 is shown.
The strong intensity of temperature fluctuation indicates the
location of heating source (r = 0.4). The large structure de-
velops outside of ITB region.

To clarify the process of strong ITB formation, we should
take account of the Shafranov shift which will be produced by
the heating source. It is left as a future work.

Fig. 4. The heating source profiles for central and off-axis
heating.

Fig. 5. The time evolution of ion temperature.

V. CONCLUSIONS

LF3 code is parallelized using MPI. We analyzed the cost
of each subroutine and found that the calculation of nonlinear
mode coupling is quite expensive. To keep equal load bal-
ance on each process, we calculate the total number of non-
linear mode coupling, then it is equally decomposed as much
as possible. This method gives roughly 30% faster than the
standard case where the total Fourier mode number LMAX is
simply divided by the total process number.
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Fig. 6. The contour plot of ion temperature fluctuation at t =
20.

Fusion for Energy and QST). JAEA supercomputer system is
also used for benchmark tests.

VII. NOMENCLATURE

f=field variable represented by {ϕ, v,T }
ϕ=electrostatic potential fluctuation
v=parallel ion velocity fluctuation
T=ion temperature fluctuation
∂/∂t=the partial time derivative
L=linear operator
N=nonlinear operator : [ϕ, f ]
[, ]=Poisson bracket
∆t=time step size
t=time
q=safety factor
r= minor radius of Tokamak
ζ=toroidal angle
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