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Abstract - We introduce a benchmark of an electromagnetic gyrokinetic model, dFEFI. dFEFI solves the 
gyrokinetic equation, closing the system with the Poisson and induction equations. We here present a 
comparison of linear properties with those done by GS2. We examine the nonlinear turbulence with 
different box-sizes of Ly/Lx. For the lower Ly/Lx cases, the turbulence exhibits so bursty that higher standard 
deviation is estimated. The probability distribution function (PDF) analysis indicates that the bursty 
behavior can be related to the electron heat transport.  
  

 
I. INTRODUCTION  

 
Achievement of magnetized fusion plasma reactors 

requires a good confinement. However, observed anomalous 
transport prevents from the successful fusion reaction. 
Anomalous transport is believed to originate from some 
excitation of micro- or macro-instabilities.  To solve these 
issues, numerical simulation of the plasma turbulent 
transport is now put on a main program on the achievement 
of ITER and DEMO scenario.  

Some of recent focus on the anomalous transport put on 
the shortfall problem [1,2,3], i.e. the mismatch of 
ion/electron heat diffusivity of various simulations, in 
comparison with experiments; even those obtained from the 
various simulation codes do not match with each other.   

We here present a benchmark of the electromagnetic 
gyrokinetic simulation code, involving electron and ion 
species, dFEFI [4]. dFEFI is the delta-f version of a 
gyrokinetic model advancing a distribution function f for 
both electrons and ions. dFEFI applies Hamada coordinate 
with a shifted metric, and fixed boundary condition on the 
radial coordinates, apart from other flux-tube local 
simulation codes. There is a claim that the turbulence 
simulation on the periodic boundary arises a mode with 
radially zero-wavenumber. The mode is really a fake in 
physics [5]. Therefore, validation of the nonlinear 
turbulence with the fixed boundary can be alternative to deal 
with the shortfall problem. Furthermore, existing 
simulations omit perpendicular simulation boxes in order to 
save the computational resources. However, due the 
constraint of the periodicity on the toroidal direction, the 
omission causes incorrect wave coupling and thus leads to 
premature of the estimation of turbulence transport. 
Therefore, correct simulation box is necessary for the 
accurate comparison. In addition, the radial propagation of 
the geodesic acoustic mode (GAM) [6], driven by the 
Reynolds stress of the turbulence, enhancing the turbulence 
spreading [7,8], can introduces a non-local effects on the 
turbulence transport. Once GAM is excited and starts to 

propagate toward the boundary, periodic boundary will 
make propagation coming back from the opposite side, 
while the fixed boundary can shrink the propagation (or may 
reflect on the boundary). The behavior of the propagation 
will differ between the two kinds of boundaries. Thus, the 
fixed boundary local simulations have a potential to better 
assessment, since we correctly treat GAM nonlocal 
dynamics.   

So far we have successfully reproduced the cyclone-
base parameter benchmark, in comparison with other 
numerical simulations, GS2 [9]. We will focus on the basic 
results on the dFEFI calculation compared with other 
simulation codes.  

The reminder of this paper is organized as follows. In 
Sec. II, we introduce the model of dFEFI and the main 
features briefly. In Sec III, we examine the cyclone-base 
parameter on dFEFI. Here, we introduce linear and 
nonlinear dynamics of ITG turbulence. In Sec IV, we 
introduce a test on the box-size problem, i.e. the aspect ratio 
of the radial direction to the nominal. In Sec. V, we 
summarize this paper and remark on the local simulations.  

 
II. DESCRIPTION OF DFEFI 

 
dFEFI calculates a basic set of the delta-f gyrokinetic 

equation together with the Poisson and induction equations, 
as follows:  
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f0 is the driving force given by profile gradients. Here, 
the gradients are fixed in time.  
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The profile is is fixed as a parameter LTi, LTe, Ln, and FM.  

 

The Poisson Bracket is defined as  

,  (6) 

with a and b denoting two of the phase coordinates. The 
zero-th order Hamiltonian and the Maxwellian are given by  

. (7) 

Here, m, e, n, T are the species background parameters 
of mass, charges, density and temperatures, respectively. z is 
parallel velocity and w is magnetic moment.  

dFEFI applies Hamada coordinates with field-
aligned[5].  Suppose the coordinate (V, θ, ζ), where V is the 
volume labeling of the radial direction, θ is the poloidal 
direction, and ζ is the toroidal direction. The Jacobian is 
unity, i.e.  

.   (8) 

  The toroidal and poloidal periodic boundary condition can 

be given by 

 f(V,θ+2π,ζ)=f(V,θ,ζ), f(V,θ,ζ+2π)=f(V,θ,ζ).  (9) 
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Fig. 1, A schematic cartoon of the field-aligned 
coordinates. The magnetic flux coordinates (θ, ζ) is 
replaced with the field-aligned (ϑ, ξ). 

Fig.3 Plotting of the frequencies of modes for 
various mode wave number kyρs in diamond marks. 
For comparison, results in GS2 are also plotted in 
rectangular marks. 

Fig.2 Plotting of the growth rate of modes for various 
mode wave number kyρs in diamond marks. For 
comparison, results in GS2 are also plotted in 
rectangular marks.  



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering, 
Jeju, Korea, April 16-20, 2017, on USB (2017) 

Here we replace the coordinate into field-aligned 
coordinates (V, ϑ, ξ), where  is the magnetic field direction 
and x is the nominal direction. The periodic condition can 
be written as 
f(V, ϑ+2π, ξ−2πq)=f(V, ϑ, ξ), 

f(V, ϑ, ξ+2π) =f(V, ϑ, ξ).   (8) 

Next, we rescale the coordinates, (x,y,s) defined by x=(V-
V0)/V’, y=-ξV’/L||, and s= L||. Here x is the radial labeling 
with regard to volumes, y is the perpendicular direction and 
s is the toroidal direction. In a local computation, the 
necessary geometrical information is reduced to the 
following quantities:  

 (6) 

where gij is for the metric, bs is for the magnetic field, 
and K{x,y} is for the curvature operator. Here L⊥ is the local 
perpendicular profile scale used to normalize the dynamical 
equations of the model.  

We apply an arbitrary shift αk depending only on x, to 

the y coordinate,  
 
yk=y-αk(x), 
gk

xy=gxy-α’kgxx.     (7) 
 

We still keep field-aligned coordinates,  
 

   (8) 
 

Thus, gk
xy=0 is identically satisfied.  

 
III. BENCHMARK OF ITG TURBULENCE WITH 
CYCLONE BASE PARAMETER 
 

We here introduce the simulation results on the ion-
temperature-gradient (ITG) driven turbulence with cyclone-
base parameters [9]. Poloidal section is assumed to be 
circular. The macro parameters are a/R=0.184, L⊥ /R|=0.145, 
Te/Ti=1.0, q=1.4, .  

 r0=0.5a0; the system is 
essentially electromagnetic, but very low beta. Grid 
numbers are (Nx,Ny,Ns,Nz.Nw)=(128,128,32,32,16).  

For box size, we set Ly/Lx=4.0, which is relevant to the 
core plasma physics. We estimate Lx is comparable to the 

gij (s) =∇i ⋅∇j   for {i, j} = {x, y},

bs (s) = B0

B
,
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Fig.4: Contour pictures of |eφ/Ti|2  on space of (x,y).  Up to t=300, modes are linear, while at t=400, nonlinear evolution of 
modes appear.  
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typical perpendicular characteristic length, L⊥. That is also 
comparable to the characteristic length of the density 
gradient, L⊥~Ln=(dln n/dr)-1. For the box size in y-direction, 
physically relevant parameter would be Ly~2πr0/q~4Lx.  

In simulation, we take minimum ky ρs=0.025, which 
determines y-domain size in ρs unit. Here, 
Ly=2π/0.025~251ρs, and thus Lx=Ly/4~63ρs. Profile 
gradients are given by R/Ln=2.2, R/LTi=6.9, and R/LTe=6.9. 
We used Helios supercomputer with 32 nodes, taking 
30,000 steps (t~60(cs/ L⊥) for Δt=0.002 for 24 hours machine 
time. Parallelization is applied on x, s, and z discretization.  

Fig. 2 shows plots of the linear growth rates of the 
each modes, as a function of kyρs. As a comparison, we also 
plot the linear growth rate obtained from a flux-tube code 
(GS2) with radial periodic boundary condition. 
Qualitatively dFEFI reproduces a similar peak of modes 
with kyρs =0.3, to that of GS2. Quantitatively, in higher 
wave number modes (kyρs >0.3), the growth rate of GS2 

exhibits higher, while in the lower wave number modes 
(kyρs < 0.3), dFEFI exhibits higher growth rates.  

Fig. 3 shows plots of the real frequencies of modes, as 
a function of kyρs. The real frequencies estimated by dFEFI 
matche with those estimated by GS2. The frequency goes 
negative, i.e. corresponding to the accordance with ion 
diamagnetic frequency. This indicates that the growing 
mode is related to ion-temperature-gradient (ITG) mode.  

Fig. 4 shows a contour of the electric potential 
|eφ/Ti|2  for the case of linear (t=100) through nonlinear 
(t=400) phases, with each interval of 100 (L⊥/cs).  Up to 
t~300, systems are linear; radially coherent modes 
grow.  

Fig. 5 shows a time evolution of the ion heat 
diffusivity χi in the nonlinear saturation phase. Turbulence 
saturates after t=300 (cs/ L⊥). Averaged turbulence level is 
χi~1.7(Ln/ρics). The result is consistent with the 
benchmark of other gyrokinetic simulations [10]. 

Figs. 6 show plots of the power spectra of the 
potential and density fluctuations at linear and 
nonlinear phase. At t=300 (cs/ L⊥), in the linear phase, 
peak is observed at kyρi=0.3 where is also the peak of 
linear growth rate in Fig. 2.  At t=400 (cs/ L⊥), in the 
nonlinear phase, the peak of the mode shifts lower wave 
number, indicating the inverse cascade, which is generally 
seen in the fluid dynamics.  
 
IV. DYNAMICS OF THE BOX-SIZE PROBLEM 
 

In this section, we investigate the dynamics of 
turbulence. We here take physically irrelevant 
parameters for the cyclone-base parameter. 
Particularly, box-size dependency, Ly/Lx will relate to 

Fig.6 Plots of the power spectra of potential and density fluctuations at (a) linear t=300 (cs/ L⊥), and nonlinear t=400 
(cs/L⊥). A peak is observed at kyρi=0.3 for the linear phase while in the nonlinear phase the peak shifts lower. 

Fig. 5: Time evolution of χi, for the case of cyclone-base 
parameter.  
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the physics of the periodicity of toroidal and poloidal 
direction. As is discussed in Ref. [11], for the box size 
of x-direction Lx~L⊥, the box size of y-direction in 
physics must be Ly~2πR/q. For the cyclone-base 
parameter above, we estimate Ly~4Lx. However, some 
existing benchmarks undergo with Ly~Lx for the 
purpose of shortcut of computational time.  

Once we take the shortcut of periodicity, such as 
Ly~Lx, this cause to take each 4 toroidal mode number 
n=0, 4, 8, … They have expected that the different 

results may cause in the electromagnetic physics 
related to the parallel dynamics, such as kinetic Alfven 
waves.  

Fig. 7 is the comparison of the temporal 
evolution of the fluctuations of turbulence for different 
box-sizes. We set the same parameters, but for Ly/Lx. 
We estimate the average level of the turbulence in the 
nonlinear phase (sampling t=400-1000). As listed in 

Table 1, results are | e !φ /Ti |
2
= 6.17± 1.18, 5.96 ± 1.81, 

Fig. 8: Plots of probability distribution function of (a) particle flux, (b) ion heat flux, and (c) electron heat flux, with 
regard to x-direction. Samples are taken in the nonlinear phase, t=400-1000 (cs/L⊥). 

Fig. 7: Temporal evolutions of (a) |eφ/Ti|2 , (b) particle flux Γ, (c) ion heat flux Qi, and (d) electron heat flux Qe. 
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and 7.00 ±4.69, for Ly/Lx=4, 2, and 1, respectively, as 
listed in Table 1. For ion heat flux, Qi is 1.74 ± 0.471, 
1.77 ± 0.551, and 1.67 ± 0.665 for Ly/Lx=4, 2, and 1, 
respectively. For electron heat flux, Qe is 0.579 ± 
0.175, 0.599 ± 0.201, and 0.530 ± 0.243 for Ly/Lx=4, 2, 
and 1, respectively. Γ is 0.119 ± 0.0442, 0.118 ± 
0.0464, and 0.101 ± 0.059 for Ly/Lx=4, 2, and 1, 
respectively. We here notice that for every cases of the 
nonlinear quantities, the standard deviation (s.d.) 
increases as the aspect ratio Ly/Lx decreases.  

 The results indicate that as we shrink Ly/Lx, 
average turbulence level does not change. At least the 
difference is within the deviation. However the the 
standard deviation increases in higher Ly/Lx. In other 
words, if we cut computational cost to reduce the box 
size, the dynamics behaves differently in bursts. 
Furthermore we examine the probability distribution 
function (PDF) of the electron/ion heat fluxes and ion 
particle fluxes, shown in Fig. 8. Seen in Fig. 8 (b), 
PDF of ion heat flux Qi(x) tends to be along with 
Gaussian, but not for x/σ<-3.  Instead we find some 
bumps on x/σ~4. Nevertheless, the tendency for 
various box-sizes is mostly constant. For electron heat 
flux Qe(x), in Fig. 8(c), PDF on Ly/Lx=1 shows very 
high probability of strong heat flux exhibiting 
intermittency or bursts, on the other hand, the case for 
Ly/Lx=4 has not significant difference from the 
Gaussian curve. We also see that the PDF of particle 
flux for Ly/Lx=4 differs from that for Ly/Lx=1. We 
speculate that the difference originate from the 
electron dynamics, instead ions.  
 
V. CONCLUDING REMARKS 
 

We have presented the basic set of benchmark of 
the ITG turbulence with DIII-D cyclone-base 
parameters. dFEFI is the delta-f version of a 
gyrokinetic model solving both electrons and ions 
distribution functions. dFEFI applies Hamada 
coordinate, field-aligned coordinates and shifted 
metric. Particularly, dFEFI applies the fixed 
boundary condition in radial direction. This will 

eliminate streamer-like modes, which are physically 
incorrect. Also we can treat a correct GAM dynamics 
without circulation of the mode propagation. 
Comparison goes with the periodic flux-tube code GS2.  

Using the cyclone-base parameter, we examined 
the main properties of ITG turbulence in the core 
plasmas with a circular poloidal section. We observed 
the growth rates of modes with a peak at kyri=0.3 and 
the mode frequency in the ion diamagnetic direction. 
dFEFI exhibits consistent growth rates of ITG 
turbulence.  

We also examined the dependency of Ly/Lx, i.e. 
validity of eliminating modes in the ITG turbulence. 
Results indicate that not significant difference in the 
average level, while the standard deviation increases 
as Ly/Lx decreases.  

We estimate the PDFs of turbulent fluctuation of 
ion and electron heat fluxes and particle flux. The 
electron heat flux behaves more bursty in the case of 
Ly/Lx=1 than that in the case of Ly/Lx=4. That can be a 
proof that the deviation of the bursty behavior of the 
case Ly/Lx=1.  

We will be focusing on application of this work 
for the validation of the poloidal section in 
experimental tokamaks. This simulation work will 
shed lights on the effects of nonlocal effects of GAM 
to the turbulence, especially significant in the edge 
plasmas. Also the treatment of the fixed boundary 
enables us to treatment of the finite radial electric field 
profiles as background. The electromagnetic code with 
fixed boundary can also extend to the studies of 
turbulence in pedestal region with high β. We will 
focus on these issues in future work.  
 
NOMENCLATURE 
 
a = minor radius 
A|| = parallel component of the magnetic vector 
potential 
αk = quantity of the shifted metric 
B = magnetic field  
B0 = magnetic field along with toroidal direction 

Table 1: tables of the saturation level of φ2, Qi, Qe, and Γ with a normalized unit in case of Ly/Lx=4, 2, 1. We also list 
the standard deviation (s.d.).  

 |eφ/Ti| 2 Qi Qe Γ

mean s.d. mean s.d. mean s.d. mean s.d.
Ly/Lx=4 6.17 1.18 ��	� ���	� ���	� ���	� ����� ������

Ly/Lx=2 5.96 1.81 ��		 ����� ����� ����� ����
 ������

Ly/Lx=1 7.00 4.69 ���	 ����� ���� ����� ����� �����
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bs = unit length of magnetic field along with magnetic 
field line 

= normalized beta 
c = light speed 
cs = sound velocity 
χi  = ion heat diffusivity 
e = electron charge 
φ = electrostatic potential 
fi = ion distribution function 
fe = electron distribution function 
f0 = driving force given by the gradients 
FM = Maxwellian distribution function 
g = inductive response 
Γ = particle flux 
H0 = zero-th order Hamiltonian  
h = non-adiabatic response 
gij = geometric factor 
J0 = zero-th order Bessel function 
ky = wave number in y-direction 
K{x,y} = curvature operator 
Lx = box-size of the simulation in x-direction 
Ly = box-size of the simulation in y-direction 
L|| = characteristic length in parallel direction (= 2πqR). 
L⊥= characteristic length of the profile variation 
m = mass 
n = background density 
Nx,Ny,Ns,Nz,Nw = grid numbers of (x,y,s,z,w) 
direction 
pe = electron pressure 
ψe = gyrokinetic potential 
q = safety factor 
Qe =electron heat flux 
Qi = ion heat flux 
ρs = ion Lamor radius 
R = major radius 
s = parallel direction along with magnetic field line  
ŝ = magnetic field shear 
σ = standard deviation of the flux along with radial 
volume direction 
t = time unit 
Te, Ti = electron/ion temperatures 
w = magnetic moment  
x = radial direction, in Hamada coordinates 
y = perpendicular direction in Hamada coordinates 
yk = shifted perpendicular coordinates 
z = parallel velocity 
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