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Abstract - The finite element library deal.II has been used for the numerical solution of partial differential
equations in a wide-range of fields. In this work, we apply it to nuclear fusion research. To investigate its
applicability, we start with a time-independent, equilibrium problem and solve the Grad-Shafranov equation.
Comparisons with known analytic and other numerical solutions confirm the validity and accuracy of our
calculations. To use it in experimentally relevant cases, profiles for the pressure and toroidal magnetic field are
needed. With some assumptions, these two profiles can be obtained from the experimental data. Results of
these realistic equilibria are also shown to be consistent with the available data. Our next goal is to solve the
"free-boundary" problem where the plasma boundary comes out of a self-consistent calculation, starting with
a given distribution of external currents. Our longer-term plans include stability analysis of KSTAR-relevant
equilibria using various magnetohydrodynamic (MHD) models.

I. INTRODUCTION

Computational magnetohydrodynamics (MHD) has long
been an integral part of magnetic fusion research, making
important contributions to nearly all aspects of confinement
theory and experimental efforts. Equilibrium in toroidal sys-
tems, and investigation of the linear and nonlinear stability of
such equilibria using physics models of various sophistication
are still major areas of study in fusion research.

Computational tools used to study equilibrium and sta-
bility have traditionally been "custom built" by individuals
or a small group of researchers, who have painstakingly con-
structed complex codes essentially starting from scratch to
address their particular needs. This process is slow, error-
prone, and typically involves years of development time.

Over the past decade or so, however, the general computa-
tional community has increasingly concentrated on developing
"frameworks", sophisticated set of integrated, general purpose
tools, that can be used to construct codes for specific tasks.
Since they are developed by dedicated groups of experts in
rigorous debugging and validation procedures, they tend to
be robust and reliable platforms that make higher-level code
development easier, faster, and less prone to errors.

In this work, we investigate using the deal.II finite ele-
ment library [1], [2] in equilibrium and stability applications
in magnetic fusion research. The deal.II library provides a
wide array of tools to solve partial differential equations using
adaptive finite elements in a nearly dimension-independent
way on parallel machines. It has interfaces to various meshing
libraries, linear algebra and visualization packages and thus
appears to be a nearly complete framework for developing
advanced computational tools in fusion research.

II. EQUILIBRIUM IN TOROIDAL GEOMETRY

Our initial application of deal.II is in toroidal equilibrium
calculations. Equilibrium in axisymmetric toroidal geometry
is described by the Grad-Shafranov equation[3],

−∆∗ψ = µ0R2 p′(ψ) + F(ψ)F′(ψ), (1)

which directly follows from the force-balance condition J ×
B = ∇p , where J = ∇ × B/µ0 is the current density and p
the plasma pressure. In cylindrical (R, φ,Z) coordinates, using
∂/∂φ = 0, the operator ∆∗ψ is given by

∆∗ψ = R
∂

∂R

(
1
R
∂ψ

∂R

)
+
∂2ψ

∂Z2 . (2)

Here ψ is the poloidal flux function, in terms of which the
magnetic field can be written as B = ∇ψ×∇φ+F∇φ. Primes in
Eq. 1 denote differentiation with respect to ψ : p′ = ∂p/∂ψ.

III. NUMERICAL METHODS

Multiplying Eq. 1 with a test function ϕ that satisfies the
appropriate boundary conditions, the problem is cast in the
“weak from” needed for finite element methods:∫

1
R
∇ψ · ∇ϕdΩ =

∫ [
µ0Rp′ +

FF′

R

]
ϕdΩ. (3)

Expanding ψ in terms of arbitrary shape functions ϕ j,

ψ(R,Z) =

N∑
j=1

Ψ jϕ j(R,Z), (4)

and letting the test function be one of the basis functions ϕi
results in the linear system

Ai jΨ j = Ri. (5)

What kind of solver to use depends on the matrix Ai j. In
this problem, Ai j comes from a Laplace-like equation with
spatially variable coefficients that leads to Symmetric Positive
Definite(SPD) matrix. Since the appropriate choice for SPD
matrix is Conjugate Gradients(CG) solver with Symmetric
Successive Over Relaxation(SSOR) preconditionor, we use it
to solve Eq. 5.

In a realistic case, the right-hand-side of Eq. 1 is in
general a nonlinear function of the independent variable ψ.
Since it is a nonlinear problem, solving for ψ(R,Z) within
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a closed curve ∂Ω in the (R,Z) plane requires an iterative
procedure. We adopt the simple Picard iteration

−∆∗ψn+1 = µ0R2 p′(ψn) + F(ψn)F′(ψn). (6)

To reduce the iteration count, we need to use some iteration
scheme. Using a "relaxation parameter" θ, we can write

−∆∗[θψn+1 + (1 − θ)ψn] = µ0R2 p′(ψn) + F(ψn)F′(ψn). (7)

The parameter θ is chosen to minimize the iteration count.
This is done by trial and error. This scheme greatly reduces
the number of iterations. For instance, in our case, it is reduced
from 2358 to 244 times when θ = 0.277. A sample of the
actual code is shown in the Appendix.

IV. ANALYTIC SOLUTION

A well-known analytic solution for Eq 1 is given by [4]

ψ =
ψ0R2

R4
0

(2R2
0 − R2 − 4α2Z2), (8)

which corresponds to

F′ = 0, p′ =
8ψ0

µ0R4
0

(1 + α2). (9)

Here α is a parameter that determines the shape of the equilib-
rium flux surfaces.

Our solution of Eq. 1 with deal.II using Eq. 9 is shown in
Fig. 1 for α = 1. Fig. 1a shows the numerically obtained flux
surfaces, whereas Fig. 1b shows the error, ‖ψnum − ψanalytic‖

where ψnum means numerical solution and ψanalytic analytic
solution.

For scalar problems as in Eq. 1, continuous Lagrange
elements are generally used. They are called as Qp elements
in deal.II where p indicates the order of elements. Higher p
yields higher convergence rate. Fig. 2 shows the placement of
nodes within quadrilateral elements in deal.II, as p increases.

From the theory of finite element method, the L2-norm
of difference between the analytic solution and the numerical
solution is related to the mesh size and the Hp+1-norm of the
analytic solution by

‖ψnum − ψanalytic‖L2 ≤ Chp+1‖ψanalytic‖Hp+1 . (10)

Here h represents mesh size. h is also related to N by

N '
|Ω|

(h/p)d = pd |Ω|

hd → h ' p
(
|Ω|

N

)1/d

(11)

With Eq. 10 and Eq. 11, the error can be expressed as function
of N and p

‖ψnum − ψanalytic‖L2 ' C′pp+1N−(p+1)/d. (12)

Here d represents the dimension of space (2 in our case). The
convergence of ‖ψnum − ψanalytic‖L2 , in terms of N for p = 1, is
shown in Fig. 3.

(a) ψnum (b) ‖ψnum − ψanalytic‖

Fig. 1: (a) Solution of Eq. 1 using the functions in Eq. 9
with zero-boundary condition. (b) The difference between the
analytic solution in Eq. 8 and the numerical solution obtained
using deal.II. The maximum error is approximately 0.01%

V. BOUNDARY AND PROFILE

1. Mesh and Boundary Condition

To solve the fixed-boundary equilibria, the boundary con-
dition and profiles for p(ψ), F(ψ) in Eq. 1 should be specified
within ∂Ω. The several locations of plasma boundary can be
measured in KSTAR. For the calculation, we use the actual
boundary curve that comes from the experiment #13256 at
6.7sec. Within this boundary curve, the mesh can be easily
generated by using Gmsh that is a finite element mesh genera-
tor. The created mesh is shown in Fig 4. On the boundary of
this mesh, we set ψ = 0.

2. Profile for p(ψ)

Our model for p(ψ) is as follows

p = p0(1 − ρλp1 )λp2 , (13)

Here ρ is the normalized radius of plasma. It is defined as

ρ =

√
ψ − ψ0

ψl − ψ0
(14)

where ψ0 is poloidal flux on the magnetic axis and ψl on the
boundary. Unfortunately profile for p(ψ) can not be obtained
in KSTAR. However, profile for ion temperature can be ob-
tained very well from Charge Exchange Spectroscopy(CES).
In the experiment #13256 at 6.7sec, CES data for ion tem-
perature is shown in Fig. 5a. To estimate λp1, λp2, the ion
temperature profile is used instead of pressure profile. The
comparison between profile from CES and our model for
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(a) Q1 element (b) Q2 element

(c) Q3 element (d) Q4 element

Fig. 2: Approximate picture for Qp elements in 2D. N per cell
is 4, 9, 16, and 25, respectively. That means ,as p increases,
more finite element shape functions would be used in the
calculation.

λp1 = 1.06, λp2 = 0.63 is shown in Fig. 5b. They look almost
the same, so our model for p(ψ) seems to be plausible.

The value of maximum on axis, p0, can be calculated
from βT that can be measured experimentally. βT is the ratio
of the averaged plasma pressure to the magnetic pressure of
toroidal magnetic field,

βT =
< p >
B2
φ/2µ0

, (15)

where

< p >=

∫ 1

0
p0(1 − ρλp1 )λp2 dρ. (16)

Experimentally known value of βT leads to

p0 = βT

B2
φ

2µ0

(∫ 1

0
(1 − ρλp1 )λp2 dρ

)−1

, (17)

Where Bφ is the magnetic field in toroidal direction. For
simplicity, a choice for Bφ is usually the vacuum toroidal field
at the geometric center of the chamber confining the plasma.

3. Profile for F(ψ)

Our model for F(ψ) is as follows

F = FAmp[1 + F0(1 − ρλF1 )λF2 ]. (18)

By definition of F(ψ), it is related to the magnetic field in
toroidal direction [3]. The profile of F(ψ) can be obtained
from the magnetic field in toroidal direction. However, it also

Fig. 3: Plot for ‖ψnum − ψanalytic‖L2 in terms of N for p = 1.
Since the plot is in log scale, the slope of trend line is very
similar to the exponent of N in Eq. 12. The blue line indicates
a line with a slope of -1 that is the exponent of N in this case.

can not be obtained in KSTAR. So we assume that λF1 '

λp1, λF2 ' λp2.
F(ψ) is also related to the total poloidal current (plasma

plus coil) by [4]
Itotal

polo =
2π
µ0

F(ψ). (19)

At ρ = 1, since the only contribution to Itotal
polo is the current in

Toroidal Field(TF) coils,

FAmp =
µ0

2π
Itotal
T F . (20)

Total plasma current, that is usually denoted by Ip, can
be measured experimentally. It also can be calculated from
current denstiy in toroidal direction, Jφ. Since Jφ is related to
ψ by µ0Jφ = −∆∗ψ/R [3] where −∆∗ψ can be calculated from
p(ψ) and F(ψ), Ip can be obtained from p(ψ) and F(ψ) by

Ip =

∫ [
Rp′(ψ) +

F(ψ)F′(ψ)
µ0R

]
dR dZ.

Substituting Eq. 18 into this equation yields

Ip =

∫
Rp′(ψ) dR dZ

+

∫
A
R
ρλF1−2(1 − ρλF1 )λF2−1[F0 + F2

0(1 − ρλF1 )λF2 ] dR dZ,

(21)
where

A =
1
µ0

F2
Amp

λF1λF2

2(ψ0 − ψl)
.

This is a quadratic equation for F0. So the picard iteration
should be used to calculate F0. Applying the picard iteration
to Eq. 21,

Fn+1
0 =

Ip −
∫

Rp′(ψ) dR dZ∫
A
Rρ

λF1−2(1 − ρλF1 )λF2−1[1 + Fn
0(1 − ρλF1 )λF2 ] dR dZ

.

(22)
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Fig. 4: Created mesh for the shot #13256 at t = 6.7s.

VI. RESULTS AND ANALYSIS

A solution using the actual boundary curve in Fig. 4
is shown in Fig. 6. We find that for this equilibrium F0 =
2.70 × 10−3, implying the plasma is slightly paramagnetic.
This is understandable because of the relatively low pressure
of the plasma (βT = 1.33%).

The averaged magnitude of poloidal magnetic field on
the boundary, denoted by Bp, can be approximately calculated
from κ(elongation) and Ip by

Bp =
µ0Ip

2πa
(23)

where

a = a

√
1 + κ2

2
(a = 0.5m in KS T AR).

The calculated Bp is 0.17T . Bp also can be calculated from ψ
by [3]

Bp =

∫
∂Ω
|ψ|/R dl∫
∂Ω

dl
. (24)

The calculated value is 0.18T , which agrees with Bp calculated
from Ip, κ.

As it is mentioned before, the plasma is just slightly para-
magnetic. Since F0 is very small, the applied toroidal magnetic
field is hardly affected by plasma. So the magnetic field in
toroidal direction, on the major radius of KSTAR, would be
1.8T as it is applied. The toroidal magnetic field, on Z = 0,
calculated from ψ is shown in Fig. 7. As it is expected, Bφ is
almost 1.8T on R = 1.8m that is the major radius.

In Eq. 16, plasma pressure is averaged over ρ. Now, since
we know ψ, it can be averaged over the volume of plasma in
the cylindrical coordinate system. So, instead of Eq. 16, the
averaged pressure can be redefined as

< p >=

∫
Ω

p0(1 − ρλp1 )λp2 R dR dZ∫
Ω

R dR dZ
. (25)

(a)

(b)

Fig. 5: (a)Red dots represent measured experimental values
that comes from #13256 at 6.7sec. Based on these values,
the blue line represents polynomial fitting. Radial position R
would be normalized by ρ ' R/Rl where Rl represents the ra-
dial position at the plasma boundary. (b)Comparison between
polynomial fitting line and Eq. 13 for λp1 = 1.06, λp2 = 0.63.

By using this equation, < p > calculated from ψ is 0.11atm.
It also can be calculated from experimental data βT , Bφ, by
the definition of βT . The calculated < p > is 0.17atm. Both
values look similar.

Like βT , the poloidal beta is defined as

βp =
2µ0 < p >

B2
p

(26)

where

B2
p =

∫
∂Ω

(|ψ|/R)2 dl∫
∂Ω

dl
.

In paramagnetic plasma, βp must be smaller than 1 [4]. Using
Eq. 25 and Eq. 26, the calculated βp is 0.84 that is smaller than
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Fig. 6: Solution for ψ(R,Z) of Eq. 1 for #13256 at t = 6.7s.

Fig. 7: Calculated Bφ from ψ on Z = 0

1 as expected. When βT is increased from 1.33% to 1.73%,
F0 is almost zero that is 3.42 × 10−5. In this case, since the
plasma is neither paramagnetic nor diamagnetic, βp should be
1. Our calculated value is 1.08 that is close to 1.

The simple calculations presented here demonstrate the
relative ease with which a rather difficult nonlinear problem in
a complex geometry can be tackled using deal.II.

VII. FUTURE WORK

Our immediate goal is to attack the more difficult "free-
boundary" problem where the plasma boundary, instead of
being specified a priori, comes out of a self-consistent cal-
culation that makes use of the external poloidal field current
data.

Studying the stability of these equilibria requires time-
dependent calculations involving a set of hyperbolic equations.
Here also deal.II provides the necessary tools, which we will
be applying in the near future.
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APPENDIX

Matrix Ai j and vector Ri in Eq. 5 would be assembled in
the function below.

t e m p l a t e < i n t dim>

vo id Step6 <dim > : : a s s e m b l e _ s y s t e m ( )
{

c o n s t QGauss<dim> q u a d r a t u r e _ f o r m u l a ( 2 ) ;
c o n s t RightHandSide <dim> r i g h t _ h a n d _ s i d e ;
FEValues <dim> f e _ v a l u e s ( fe ,

q u a d r a t u r e _ f o r m u l a ,
u p d a t e _ v a l u e s |

u p d a t e _ g r a d i e n t s |

u p d a t e _ q u a d r a t u r e _ p o i n t s |

upda te_JxW_va lues ) ;

c o n s t u n s i g n e d i n t d o f s _ p e r _ c e l l
= f e . d o f s _ p e r _ c e l l ;

c o n s t u n s i g n e d i n t n _ q _ p o i n t s
= q u a d r a t u r e _ f o r m u l a . s i z e ( ) ;

F u l l M a t r i x <double > c e l l _ m a t r i x ( d o f s _ p e r _ c e l l ,
d o f s _ p e r _ c e l l ) ;

Vector <double > c e l l _ r h s ( d o f s _ p e r _ c e l l ) ;

s t d : : v e c t o r < t y p e s : : g l o b a l _ d o f _ i n d e x >

l o c a l _ d o f _ i n d i c e s ( d o f s _ p e r _ c e l l ) ;

c o n s t C o e f f i c i e n t <dim> c o e f f i c i e n t ;
s t d : : v e c t o r <double > p r e _ s o l ( n _ q _ p o i n t s ) ;

typename DoFHandler <dim > : :
a c t i v e _ c e l l _ i t e r a t o r

c e l l = d o f _ h a n d l e r . b e g i n _ a c t i v e ( ) ,
endc = d o f _ h a n d l e r . end ( ) ;

f o r ( ; c e l l != endc ; ++ c e l l )
{

c e l l _ m a t r i x = 0 ;
c e l l _ r h s = 0 ;

f e _ v a l u e s . r e i n i t ( c e l l ) ;
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/ / Due t o P i c a r d i t e r a t i o n p s i ^n t h a t
/ / i s p r e v i o u s s o l u t i o n would be used
f e _ v a l u e s . g e t _ f u n c t i o n _ v a l u e s (

p r e _ s o l u t i o n ,
p r e _ s o l ) ;

f o r ( u n s i g n e d i n t q_ index =0;
q_index <n _ q _ p o i n t s ; ++q_ index )

{
/ / c o e f f i c i e n t i s 1 / x i n t h i s problem
c o n s t d ou b l e c u r r e n t _ c o e f f i c i e n t

= c o e f f i c i e n t . v a l u e ( f e _ v a l u e s .
q u a d r a t u r e _ p o i n t ( q_ index ) ) ;

f o r ( u n s i g n e d i n t i =0;
i < d o f s _ p e r _ c e l l ; ++ i )

{
f o r ( u n s i g n e d i n t j =0;

j < d o f s _ p e r _ c e l l ; ++ j )
/ / m a t r i x A_ i j i s a s sembled
c e l l _ m a t r i x ( i , j ) +=

( c u r r e n t _ c o e f f i c i e n t ∗
f e _ v a l u e s . s h a p e _ g r a d ( i , q_ index ) ∗
f e _ v a l u e s . s h a p e _ g r a d ( j , q_ index ) ∗
f e _ v a l u e s . JxW( q_ index ) ) ;

/ / v e c t o r R_i i s a s sembled
c e l l _ r h s ( i ) +=

( f e _ v a l u e s . s h a p e _ v a l u e ( i , q_ index ) ∗
r i g h t _ h a n d _ s i d e . v a l u e ( f e _ v a l u e s .

q u a d r a t u r e _ p o i n t ( q_ index ) ,
p r e _ s o l [ q_ index ] , max_psi ) ∗
f e _ v a l u e s . JxW ( q_ index ) ) ;

}
}

/ / S i n c e A_ i j i s S p a r s e ma t r ix , t h e
/ / e l e m e n t s a r e c a l c u l a t e d i n l o c a l
/ / m a t r i x . They would be sended t o g l o b a l
/ / m a t r i x . So i s R_i
c e l l −> g e t _ d o f _ i n d i c e s

( l o c a l _ d o f _ i n d i c e s ) ;
c o n s t r a i n t s . d i s t r i b u t e _ l o c a l _ t o _ g l o b a l

( c e l l _ m a t r i x ,
c e l l _ r h s ,

l o c a l _ d o f _ i n d i c e s ,
s y s t e m _ m a t r i x ,
s y s t e m _ r h s ) ;

}
}

After Ai j and Ri are assembled, Ψ j would be calculated
by CG solver with SSOR preconditionor as follows.

t e m p l a t e < i n t dim>

vo id Step6 <dim > : : s o l v e ( )

{
S o l v e r C o n t r o l s o l v e r _ c o n t r o l ( 2 0 0 0 ,

1e −12 ) ;
SolverCG <> s o l v e r ( s o l v e r _ c o n t r o l ) ;

Precondi t ionSSOR <> p r e c o n d i t i o n e r ;
p r e c o n d i t i o n e r . i n i t i a l i z e ( s y s t e m _ m a t r i x ,

1 . 2 ) ;

s o l v e r . s o l v e ( s y s t e m _ m a t r i x , s o l u t i o n ,
sy s t em_rhs , p r e c o n d i t i o n e r ) ;

c o n s t r a i n t s . d i s t r i b u t e ( s o l u t i o n ) ;
}

The above two functions would be used for picard itera-
tion with a "relaxation parameter" θ. The below part would be
iterated until the solution converges.

/ / s t o r e PSI ^n ( p r e v i o u s s o l u t i o n )
p r e _ s o l u t i o n = s o l u t i o n ;

/ / a s s e m b l e m a t r i x A_ i j and v e c t o r R_i
a s s e m b l e _ s y s t e m ( ) ;

/ / c a l c u l a t e new RHS f o r PSI ^ ( n +1)
/ / ( 1 / t h e t a ) ∗ [ ( t h e t a −1)∗A_i j ∗PSI ^n+R_i ]
s y s t e m _ m a t r i x . vmul t ( tmp , p r e _ s o l u t i o n ) ;
tmp ∗= ( t h e t a −1 ) ;
s y s t e m _ r h s += tmp ;
s y s t e m _ r h s /= t h e t a ;

/ / s o l v e PSI ^ ( n +1)
s o l v e ( ) ;
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