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Abstract - In this study, a surrogate-based approach was used for the sensitivity analysis, uncertainty
quantification and parameter calibration of the fission gas release (FGR) model in the fuel performance code
BISON. These analyses are useful for the development and validation of the code but performing them using
BISON directly is impractical because of the computation cost. A framework was developed to construct
surrogate models for both single-valued and high-dimensional BISON outputs. By employing surrogate models,
the computational cost for these analyses was reduced by more than two orders of magnitude. The sensitivity
analysis results show that the initial fuel grain radius is the most important parameter of the fission gas release
model. Uncertainties in fission gas release prediction and other BISON outputs were quantified for the given
intrinsic uncertainties of the FGR model parameters. A set of FGR parameters to optimize BISON performance
for the Riso-GE7 experiment was also determined by fitting the simulation output to the experimental data.

I. INTRODUCTION

This study focused on analyses of the fission gas re-
lease (FGR) model in BISON, a fully-coupled nuclear fuel
performance code under development at the Idaho National
Laboratory[1]. FGR models are employed in BISON to sim-
ulate the processes induced by the build-up and release of
fission gases in nuclear fuel rods. The latest physics-based
FGR model in BISON, introduced by Pastore et al. [2], has
shown clear improvements over the previously used empirical
and semi-empirical models[3] but still has high output un-
certainties due to the intrinsic uncertainties of various model
parameters. Understanding the effects of these uncertain pa-
rameters on the performance of the FGR model is crucial to
the development of the model and of the BISON code in gen-
eral. The paper by Pastore et al. in 2015 [4] has pointed out
the significance of these analyses and provided initial assess-
ment of the uncertainty and sensitivity analysis in fission gas
behavior. However, the number of parameters considered, the
complexity of the simulation and ultimately the uncertainty
assessment were limited because of the computational burden
shared by these analyses. Specifically, the sensitivity analysis
was carried out only for a simple 2D model of a single fuel
pellet. The uncertainty analysis performed for the real fuel
rod model from the Riso-GE7 test[5] stopped at comparing
the difference between the reference outputs and those at the
upper and lower bounds of the model parameters.

The objective of this research is to develop a comprehen-
sive framework for the sensitivity analysis, uncertainty quan-
tification and parameter calibration of computational intensive
engineering codes such as BISON. Since these analyses re-
quire numerous runs of the code, the computational burden is
considerable if BISON is to be run directly. To overcome this
limitation, a surrogate-based approach is employed in which
surrogate models are constructed for both single-valued and
high-dimensional outputs of BISON. These surrogate models
have the capability of providing fast mapping between the
FGR model parameters (as inputs) and the BISON outputs
and will be used instead of BISON in the analyses of the FGR

model.

II. METHODOLOGY

The Kriging surrogate method and the principal compo-
nent analysis (PCA) method are the principle mathematical
tools used in this research to construct the surrogate models
in this study. The Kriging surrogate is a Gaussian process
regression method commonly used in many fields of machine
learning and statistics to provide fast mappings between mul-
tiple input variables and a single-valued output of a target
function or computer code [6, 7]. The method is directly
applicable for computer codes with one or a few number of
single-valued outputs. For single-valued BISON outputs, a
Kriging surrogate model can be constructed for each of the
outputs.

For high dimensional outputs, for instance a time series
of fission gas release fraction from a BISON simulation which
could consist of hundreds of time steps, it is inefficient to
construct surrogate models separately for each dimension in
order to predict one output series. Instead, to reduce the
number of surrogate models needed, a dimension reduction
technique such as the Principal Component Analysis (PCA)
should be applied to the output space before a surrogate model
is constructed for each of the reduced dimension[7]. The
principal component analysis method is a pattern identification
technique that can be used to reduce the effective dimension
of a data set by projecting it into a small number of orthogonal
component vectors which are the common patterns among the
data set [8, 7]. By applying PCA and keeping only the first
few principal components that capture majority of the variance
(defined by a truncation parameter), each instance of the high
dimensional output can be decomposed as a linear combination
of the determined orthogonal components. A surrogate model
can be constructed for each of the principal components and
the combination of those sub-models provides the surrogate
model for the high dimensional output. This Kriging-based
surrogate method is used for high dimensional BISON outputs.

The process to construct a surrogate model for a BISON
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output, as suggested in [6] for typical surrogate models, con-
sists of the following steps:

• Variable screening: The first step is to determine the
relevant input variables. For the specific application in
this study, the relevant variables are uncertain parameters
of the fission gas release model.

• Sampling plan: The next step is to design a sampling
plan, which specifies a set of input variables for each
data point in the training data set to be evaluated. For
a given number of data points, an optimized sampling
plan is the one covers the input space most thoroughly.
The most commonly used sampling plan is the optimized
Latin hypercube[6].

• Data sampling: Following the sampling plan constructed
in the previous step, BISON is executed using each set of
input variables. BISON outputs are collected and stored
as a training data set for the surrogate models.

• Surrogate constructing: If the output of interest is single-
valued, a Kriging surrogate model can be constructed
directly using the training data set. If the output is high-
dimensional, the PCA method is applied to the training
data set to determined the number of principal compo-
nents and the common eigen-modes.

For single-valued outputs, the constructed surrogate model can
be used to directly predict the output given a new set of input
variables. For the case with high-dimensional output, the sur-
rogate models, one for each principal component, can be used
to predict the principal components (expansion coefficients)
of the new output. By combining them with the determined
eigenmodes, a prediction for the high-dimensional output can
be constructed. The combination of these separate surrogate
models of the principal components and the eigen-modes is
referred in the rest of this paper as a Kriging-based surrogate
model for the high-dimensional output. A more detailed de-
scription of the these mathematical tools are provided in the
following sections.

1. Kriging surrogate method

The Kriging surrogate method can be described by con-
sidering a target function y(x), with x ∈ Rd for which the
objective is to build a Kriging predictor from a training data
set y = (y1, y2, ..., yn)> of the function values at x1, x2, ..., xn[9].
First, the prediction value at any point x is assumed to be the
realization of a Gaussian random variable Y(x) with mean
µ and variance σ2. In any continuous region of the target
function, it is reasonable that the function values at any two
points xi and x j are close if the distance between those two
points

∥∥∥xi − x j

∥∥∥is small, which suggests the correlation be-
tween the two random variables at those two points is small.
The correlation between the two random variables is given by:

Corr
[
Y(xi),Y(x j)

]
= exp

− d∑
l=1

θl | xi,l − x j,l |
pl

 (1)

in which θl and pl, l = 1, 2, ..., d, are the parameters of
the model: θl controls how fast the correlation decrease and pl
controls the smoothness of the function in the l direction of x.

The predicted values at the n points of the training set is
given by:

Y =


Y(x1)
.
.
.

Y(xn)


Each of these random variables has mean µ and variance

σ, and therefore the mean vector of Y is 1µ and the covariance
matrix is Cov(Y) = σ2R, with R(i, j) = Corr

[
Y(xi),Y(x j)

]
.

The likelihood of this data set is given by:

L (Y | µ, σ, {θ1, ..., θd}, {p1, ..., pd})

=
1

(2πσ2)n/2|R|0.5
exp

[
−

(y − 1µ)>R−1(y − 1µ)
2σ2

]
(2)

The problem now becomes the selection of the model
parameters (µ, σ, θ and p) to maximize the likelihood or the
log of the likelihood. Equivalently we want to minimize the
function:

− ln(L) = n ln(σ) + 0.5 ln(|R|) +
−(y − 1µ)>R−1(y − 1µ)

2σ2 (3)

Take partial derivatives of the right hand side of Eq. 3
with respect to µ and σ and set them to zero, the optimal values
of µ and σ are given by:

µ̃ =
1>R−1y
1>R−11

σ̃ =

√
(y − 1µ̃)>R−1(y − 1µ̃)

n
Using these optimal values in Eq. 3 we get a expression of the
negative log likelihood that depends only on R, which depends
on the θ’s and p’s:

f (R | {θ1, ..., θd}, {p1, ..., pd}) = n ln(σ̃) + 0.5 ln(|R|) (4)

By using a global search optimization algorithm, the opti-
mal values for θ and p can be estimated. After the model
has been trained using the training set (for which the opti-
mal values for the model parameters are found), the predicted
value for the function at any new point x is the value that
maximizes the likelihood of the (n + 1) points data set (1
new point x combining with the training data set). With
r> = (Corr [Y(x),Y(x1)] , ...,Corr [Y(x),Y(xn)]), the predic-
tion is given by:

ỹ(x) = µ̃ + r>R−1(y − 1µ̃)
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2. Principal component analysis

The Principal Component Analysis method can be de-
scribed by considering a data matrix X of size n × k, where
each of the n rows represents an observation (or evaluation) of
the experiment[10]. Each of the k columns provides data for a
particular feature or the measurement results at a specific time
or spatial step. Each observation is specified by a row vector
of k elements, or in other words the problem is k-dimensional.
The goal of PCA is to transform each row vector xi ∈ X into a
linear combination of m orthogonal k-dimensional unit vectors
of weights w j ( j = 1, 2...,m):

xi =

m∑
j=1

ti jw j

where ti j = xi · w j is the projection of xi on w j. The
vectors of weights w j are sorted in the order so that the first
vector w1 captures the maximum possible variance of the data
set:

w1 = arg max‖w‖=1

 n∑
i=1

(ti1)2


Similarly the second vector captures the second most variance,
etc.
The vectors of weights w j are the eigenvectors of the covari-
ance matrix of X, ranking from the highest eigenvalue to the
lowest. Assuming X with column-wise zero empirical mean,
the covariance matrix of X is a k × k matrix given by X>X.
This covariance matrix has k eigenvectors, i.e m = k.
However, not all the components need to be retained. A trun-
cation parameter ρm < 100% can be used to keep only the
first p eigenvectors which capture ρ of the variance, and each
data vector xi ∈ X can be transformed from the original k-
dimensional space into the p-dimensional space. The amount
of variance captured by the first p eigenvectors can be esti-
mated by the cumulative eigenvalue[7, 10]:

ρ =

∑p
j=1 α j∑k
j=1 α j

≥ ρm

III. THE RISO-GE7 IRRADIATION EXPERIMENT

The Riso-GE7 experiment is a bump test performed in the
water-cooled HP-1 rig under BWR conditions in the DR3 test
reactor.The test fuel pin ZX115 was the lower middle segment
of four approximately 0.975 m long segments assembled to
a stringer. The fuel segment was base irradiated in the Quad
Cities-1 boiling water reactor (BWR) over four reactor cycles.
The bump test was performed in the water-cooled HP-1 rig
under BWR conditions in the Riso DR3 test reactor[5].

The GE7 experiment was modeled in BISON and is used
as an assessment problem. The experiment provided two
measured outputs: the fission gas release fraction and the rod
outer diameter at various axial location by the end of the bump
test. The simulation results from the latest BISON version
compared to the experimental data are shown in Figure 1 and
2[11].

Fig. 1. BISON reference result for the outer rod diameter [11]

Fig. 2. BISON reference result for fission gas release frac-
tion[11]

Six FGR model parameters were considered in this study.
The uncertainty band of these parameters as analyzed in [4]
are listed in Table I with the reference BISON inputs.

The topic of this research focused on analyzing BISON
performance in the simulation of this experiment. In the next
section, a surrogate model is constructed and validated for
each the output of the GE7 experiment.

IV. CONSTRUCTION AND VALIDATION OF THE
SURROGATE MODELS

In order to build the training data for the Kriging-based
surrogate method, a sampling plan consisting of 100 data
points was created using the optimized Latin hypercube
sampling plan in DAKOTA, the uncertainty quantification
and sensitivity analysis tool developed by Sandia National
Laboratories[12] with each point specified a unique combi-
nation of the FGR parameters. BISON was then executed
following this sampling plan and the results for the rod outer
diameter prediction from 98 runs are shown in Figure 3(2 out
of 100 runs failed to converge). Firstly, A Kriging surrogate
model was constructed for the single-valued output of the fis-
sion gas release fraction at the end of the power ramp. For the
high dimensional output of rod outer diameter, by applying
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TABLE I. Fission gas release model parameters.

Lower Bound Upper Bound Reference

Initial Fuel Grain Radius 2.0E-6 15.0E-6 4.68E-6
Temperature 0.95 1.05 1.0
Fuel Grain Radius Scaling Factor 0.4 1.6 1.0
Vacancy Diffusion Coef. Scaling Factor 0.1 10 1.0
Resolution Parameter 0.1 10 1.0
Intra-granular Diffusion Coef. Scaling Factor 0.316 3.162 1.0

the principal component analysis to the data set, the results
of the eigenvalues and the first 3 eigenvectors, which cover
more than 99.9% of the variance, are shown in Figure 4 and 5,
respectively. Using these results, only the first three principal
components were kept. Three Kriging surrogate models were
then constructed for these three principal components, or in
other words expansion coefficients.

Fig. 3. Rod diameter predictions of the 98 BISON runs

Fig. 4. Cumulative variance carried by successive eigenvalues

1. Validation of the Kriging single-valued surrogate model

A Kriging surrogate model was constructed using the data
from 100 BISON runs to predict the fission gas release frac-
tion at the end of the GE7 bump test. The prediction accuracy
of that surrogate model is validated here. 50 additional BI-

Fig. 5. The first three eigenvectors

SON runs were used for this analysis, and the results of the
fission gas release fraction from Bison and the corresponding
predicted values are plotted in Figure 6. As indicated the rel-
ative prediction error falls well within the ±10% range and
the overall RMS error from these 50 data points is 2.23%.
Considering the high uncertainty in BISON simulation results,
the uncertainty added by the surrogate model is considered
acceptable.

Fig. 6. Bison results vs. surrogate predictions for fission gas
release



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017

2. Validation of the high dimensional Kriging-based sur-
rogate model

Similarly, a Kriging-based surrogate model were con-
structed from three separate Kriging models created for the
first three expansion coefficients. This high dimensional
Kriging-based surrogate model is used to predict the radial
displacement at ten axial locations, ultimately provides the rod
diameter predictions. Figure 7 shows a plot of the surrogate
predictions in comparison with Bison results. As shown, the
relative error is within the ±10% , except for a few data points
around the zero-displacement region.

Fig. 7. Bison results vs. surrogate predictions for the radial
displacement

V. APPLICATIONS OF THE KRIGING-BASED SUR-
ROGATE MODELS

This section presents three applications of the surrogate
models of the BISON fission gas release model, namely: sen-
sitivity analysis, uncertainty quantification and parameter cali-
bration.

1. Application 1: Sensitivity analysis

By using surrogate models, one can perform global sensi-
tivity analyses which were otherwise impractical because of
the computational cost. In a global sensitivity analysis, the pa-
rameters are varied simultaneously and the relative importance
of each parameter, in term of contribution to the variance of the
output, can be computed. In this study, two global sensitivity
analysis methods were considered, namely the Sobol’s method
and Fourier amplitude sensitivity analysis (FAST) method.

The surrogate models can be stored as an input function
for sensitivity analysis tools. In the sections below, the calcu-
lations were performed using the Sensitivity Analysis Library
in Python (SALib)[13].

A. Fission gas release fraction output

Considering the fission gas release fraction as the output
variable, the Sobol’s and FAST sensitivity analyses were per-
formed for the six fission gas release parameters. The results
are listed in Table II for N = 10000 samples. The first order
Sobol index uncertainty values are the bootstrap confidence
intervals provided by the calculations. The FAST library does
not provide uncertainty estimations.

Results of both Sobol’s and FAST methods are in good
agreement, indicating that the initial fuel grain radius is the
most important variable and contributes the most to the vari-
ance of the fission gas release fraction.

B. Maximum outer diameter output

Similarly for the maximum rod outer diameter as the
output of interest, results for the first order Sobol index and
FAST index are listed in Table III for N = 10000 samples.

The first order Sobol index and FAST index agree well
with each other. For the maximum outer diameter as output
of interest, the initial fuel grain radius and the fuel grain ra-
dius scaling factor are the two variables with highest indices.
The temperate and resolution parameter scaling factor also
contribute significantly to the variance of the output. As the
deformation of the rod depends on the total amount of fis-
sion gas release (not the fission gas release fraction,i.e the
ratio of fission gas release to fission gas generation) and other
variables, it is reasonable that the initial fuel grain radius, de-
termined in the last section to be the most important parameter
to the fission gas release fraction, does not have the highest
importance.

2. Application 2: Uncertainty quantification

The uncertainty band (lower-upperbound range) for each
parameter listed in Table I is the 95% confidence interval[4].
Assuming a normal (Gaussian) distribution for each of the
parameters, the uncertainty band for each FGR parameter is
equivalent to 4 times the standard deviation (±2σ). Specifi-
cally, the standard deviation for the fuel grain radius (including
the initial value) is 0.3 of the mean value and the scaling factor
for the temperature has a mean value of 1 and standard devia-
tion of 0.025. Since the scaling factors for the diffusion coeffi-
cients and the resolution parameters were considered within
a factor of 100 (or 10), normal distributions in the log scale
were assumed for these factors. Parameters for the normal
distribution of the fission gas release model are summarized
in Table IV.

By using surrogate models in a Monte Carlo sampling
method, the uncertainty of the outputs can be quantified given
the distribution of the input variables given in Table IV. The
uncertainty quantification results for the rod outer diameter
prediction, analyzed with 10000 MC samples, are summarized
in Table V and plotted in Figure 8. The uncertainty of the
fission gas release fraction is 2.73% with the reference BISON
value at 10.09%.

It should be noted that these results include the uncer-
tainties added by the prediction uncertainty of the surrogate
models and the statistical uncertainty of the Monter Carlo sam-
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TABLE II. First order Sobol index and FAST index with the fission gas release fraction as the output of interest.

Sobol index FAST index

Initial Fuel Grain Radius 0.971 ± 0.028 0.9606
Temperature 0.0092 ± 0.0025 0.0093
Fuel Grain Radius Scaling Factor 0.0032 ± 0.0022 0.0030
Vacancy Diffusion Coef. Scaling Factor 0.0013 ± 0.0012 0.0012
Resolution Parameter 0.0006 ± 0.0008 0.0006
Intra-granular Diffusion Coef. Scaling Factor 0.0107 ± 0.0033 0.0102

TABLE III. First order Sobol index and FAST index with maximum rod diameter as the output of interest.

Sobol index FAST index

Initial Fuel Grain Radius 0.351 ± 0.018 0.3278
Temperature 0.105 ± 0.009 0.0951
Fuel Grain Radius Scaling Factor 0.369 ± 0.019 0.3672
Vacancy Diffusion Coef. Scaling Factor 0.0000 ± 0.0007 0.0002
Resolution Parameter 0.129 ± 0.010 0.1273
Intra-granular Diffusion Coef. Scaling Factor 0.004 ± 0.002 0.0063

Fig. 8. UQ result by Monte Carlo sampling with ±σ uncer-
tainty band

pling method. The statistical uncertainty of the results from
MC sampling should can be reduced by simply increasing
the number of samples. With 10000 samples, this uncertainty
should be negligible. The uncertainty of the surrogate models
can be reduced by improving the training data set, i.e increas-
ing the number of data points and optimizing the sampling
plan.

3. Application 3: Parameter calibration

The objective a parameter calibration is to select a set of
FGR parameters that optimizes the BISON simulation perfor-
mance. If the rod outer diameter is the output of interest, the
root-mean-square error, in comparison with experimental data,
can be used to quantify the simulation performance. The opti-

mal set of FGR parameters is the one that minimizes the RMS
error. By using the Kriging-based surrogate model for the
rod diameter prediction, an objective function can be created
which provides the RMS error of the simulation result given a
new set of input variables. The optimal set of FGR parameters
can then be selected by performing a global optimization on
that objective function. Results using the SciPy L-BFGS-B
optimizer[14] are listed in Table VI. BISON prediction in
this optimal case is plotted in Figure 9, which shows better
agreement with the experimental data in comparison with the
reference case.

Fig. 9. Optimized surrogate prediction for GE7 rod diameter

VI. CONCLUSIONS

Comprehensive assessment analyses like sensitivity anal-
ysis, uncertainty quantification and parameter calibration are
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TABLE IV. Normal distribution of the FGR parameters

Mean Std. Dev. Ref. Value

Initial Fuel Grain Radius 6.0E − 6 1.8E − 6 6.0E − 6
Temperature 1.0 0.025 1.0
Fuel Grain Radius Scaling Factor 1.0 0.3 1.0
Vacancy Diffusion Coef. Scaling Factor (log) 0.0 0.5 0.0
Resolution Parameter (log) 0.0 0.5 0.0
Intra-granular Diffusion Coef. Scaling Factor (log) 0.0 0.25 0.0

TABLE V. Uncertainties of the radial displacement prediction at different axial locations.

Axial location (mm ) Ref. value (mm) Standard deviation (mm)

52 12.23848 0.01649
128 12.24667 0.01674
203 12.24975 0.01691
278 12.24328 0.01676
353 12.22731 0.01614
426 12.20376 0.01212
502 12.19050 0.00379
576 12.18856 0.00235
652 12.18987 0.00236
727 12.19049 0.00244

often very useful for the development and validation of simu-
lation codes but performing these analyses can be challenging
for high-fidelity engineering codes such as BISON because
of the computational burden. These analyses requires numer-
ous executions of the code, each of which is computationally
expensive. In this case, a surrogate-based approach is rec-
ommended to reduce the computational cost. Specifically,
surrogate models with the capability of providing efficient
mapping between the input parameters and output of a simu-
lation tool can be built and used to replace the original code
in intensive analyses. In this study, a framework to construct
surrogate models was developed for both single-valued and
high-dimensional BISON simulation outputs, which consists
of the following steps:

• Variable screening: Determine relevant parameters.

• Sampling plan: Design a sampling plan for the training
data set.

• Data sampling: Execute the code and collect data for the
training data set.

• Surrogate constructing: Construct the needed surrogate
models.

For single-valued BISON outputs, a Kriging surrogate model
is constructed for each output. For high-dimensional outputs,
a high-dimensional Kriging-based surrogate model is con-
structed by combining the Kriging surrogate method with the
principal component analysis method. The resultant Kriging-
based surrogate models for the Riso-GE7 were validated using

a set of test data and were used in various applications in-
cluding sensitivity analyses, uncertainty quantification and
parameter calibration of the BISON fission gas release model.

To illustrate the speed-up by the surrogate-based ap-
proach: each BISON run with three computer processors for
the Riso-GE7 simulation took roughly nine hours; 100 BI-
SON runs were performed to build a training data set for the
surrogate models. Since the surrogate models can provide pre-
dictions of the outputs in under a second, the computation time
needed to sample the surrogate models for all three assessment
analyses is negligible. Therefore the total computational cost
for all three analyses by the surrogate-based approach is 100
BISON runs. Considering that tens of thousands of BISON
runs would be needed for each analysis if BISON was to be
used directly, the computational cost was reduced by more
than two orders of magnitude by the surrogate-based approach.

As a trade-off, predictions provided by the surrogate mod-
els can be close to the actual simulation outputs but are not
100% exact, hence an additional uncertainty is added to the
results by the surrogate models. The prediction accuracy of
BISON surrogate models was validated in Section IV and the
uncertainty of a surrogate model can be reduced by improv-
ing the training data set, i.e increasing the number of data
points and optimizing the sampling plan. Finally, although the
method in this study was developed specifically for the fuel
performance code BISON, it can be generalized for applica-
tions with any other engineering code.
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TABLE VI. Optimal FGR parameters for the rod diameter prediction.

Default value Optimal value

Initial Fuel Grain Radius 4.68E-6 3.00E-6
Temperature 1.00 1.05
Fuel Grain Radius Scaling Factor 1.0 0.46
Vacancy Diffusion Coef. Scaling Factor 1.0 0.1
Resolution Parameter 1.0 0.1
Intra-granular Diffusion Coef. Scaling Factor 1.0 3.0

PCA method for high-dimensional surrogate models. This
work was funded by the U.S Department of Energy Nuclear
Engineering University Programs (NEUP).
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