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Abstract – While Neutron Activation Analysis is widely used in many areas, sensitivity of the analysis 

depends on how the analysis was conducted. Even though the sensitivity of the techniques carries error, 

compared to chemical analysis, its range is in parts per million or sometimes billion. Due to this sensitivity, 

the use of neutron activation analysis becomes important when analyzing bio-samples. Neural Network is 

an attractive technique for automated systems. Although there are Neural Network applications on spectral 

analysis, training by simulated data and analyzing experimental data has not been studied. This study 

offers an improvement on gamma spectrum analysis and optimization on Neural Network for the purpose. 

The current work considers five elements which are considered as trace elements for bio-samples. However, 

the system is not limited to bio-sample analysis. The only limitation of the study comes from data library 

available on MCNP. Better results were obtained when Neural Fitting tool in MATLAB was used. As a 

training function, Levenberg-Marquardt algorithm was used with 23 neurons in hidden layer with 260 

gamma spectra in the input. Since the interest of the study deals with five elements, five neurons 

representing peak counts of five isotopes in the input layer were used. Five outputs neurons revealed mass 

information of these elements in irradiated Kidney stones. Results showing max error of 17.9% in APA, 

24.9% in UA, 28.2% in COM, 27.9% in STRU showed the success of Neural Network Approach in 

analyzing gamma spectra. The simulation and experiments were made under certain experimental setup (3 

hours irradiation, 96 hours decay time, 8 hours counting time). Yet, the approach is subject to be 

generalized for different setups.        

 

I. INTRODUCTION 

 

Neutron activation analysis (NAA) is a very sensitive 

technique to identify and determine concentration of 

elements in a sample [1, 2]. NAA here, refers to delayed 

gamma spectra analysis which consists of irradiating a 

target and transferring it to a detector. Then, Gamma spectra 

give information about element identification and 

quantification. NAA may become complex especially when 

dealing with bio-samples [2, 3]. In human organisms, some 

of heavy elements are used as inhibitors. More than 

adequate amount makes them toxic for living organisms [2]. 

Thus, accurate quantification of these elements is crucial for 

medical science. 

Concentration of elements, relative to one chosen 

element, can be obtained from gamma spectra by peak 

analysis. This technique consists of comparing two different 

spectra from different samples under same experimental 

conditions. 

 

𝑚 =
𝑃𝑘𝐴𝑖𝜆𝑖+1

𝜖(𝐸𝑘)𝑒𝑘𝑎𝑖𝑁𝐴𝜎𝑖𝜙(1−𝑒−𝜆𝑖+1𝑡0)(𝑒−𝜆𝑖+1𝑡1−𝑒−𝜆𝑖+1𝑡2)
 (1) 

 

where Pk is the net counts under the peak at energy Ek, λi+1 

is the decay constant of isotope with atomic number Ai+1, 

NA is Avogadro’s number, σi is the neutron absorption 

cross-section of isotope with mass number Ai, ϕ is the 

neutron flux, ϵ(Ek) is the detector efficiency at Ek, t0 is 

irradiation time, t2-t1 is the counting time, ek is the emission 

probability of the decay, and ai is natural abundance of 

isotope Ai [4]. 

The advantage of this analysis occurs comparing same 

elements in different samples. In such a case, most of the 

terms in Equation (1) are canceled out. Only peak counts 

and mass of samples remain. When different elements are 

compared, there are some terms that propagate error through 

the analysis. Details of this approach can be found in 

Reference [5]. Furthermore, comparator technique which is 

a comparison of known and unknown samples can also be 

employed. Irradiating known and unknown samples under 

same experimental setups allows finding true concentration 

with a very small associated uncertainty. Detector dead 

time, uncertainty in reaction cross-sections, radiation yield 

of the detector material, detector resolutions, etc. have 

important effects in the analysis [2]. 

Machine Learning is an attractive technique to simplify 

the analysis process. Neural Network (NN) is one of 

Machine Learning classes that recognize behavior of a 

system with data carrying noise [6]. NN can be defined as a 

mathematical representation of how human brain works. It 

learns the behavior of a system from pre-existing inputs and 

outputs. A simple representation of a network consists of an 

input layer which receives data, one or more hidden layers 

and an output layer. Hidden layers play crucial role finding 

weights in between connected neurons by deciding whether 

to pass a signal to output layer. A single neuron is the 

fundamental unit of NN layers. Like a human neuron, it 

receives signals from incoming connections to be weighted, 

summed and passed through a threshold. Repetition of this 

process with many neurons in the layers trains the NN for 

correct weights between connections. Once the NN is 
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trained, it can be used to analyze an unknown set of data [7, 

8]. 

In NN analysis of a system, the time consumption 

occurs only during the training process. With a trained NN, 

it does not take much time to analyze the system even 

though the system is very complex [7, 8]. 

NN has been used in many areas including engineering, 

science, medicine, business, etc. Advancement of computer 

technology as well as NN algorithms attracts more 

researches recently [7]. It has been applied in nuclear 

engineering field including NAA. Quantitative prediction of 

compounds, mixtures or elements [9-16] and peak 

identification [17-20] were studied with variety of methods. 

Yet, the current techniques are still under improvements. 

NN is generally used for clustering, data fitting, pattern 

recognition, optimization, control, prediction with several 

training algorithms. Famous algorithms are Levenberg-

Marquardt (LM) backpropagation, Bayesian Regularization 

(BR) backpropagation, Scaled Conjugate Gradient (SCG) 

backpropagation.  

LM algorithm can be simply defined as a modified 

Gauss-Newton method. Equation (2) gives mathematical 

representation of LM algorithm. 

 

𝑥𝑘+1 = 𝑥𝑘 − [𝑱𝑇(𝑥𝑘)𝑱(𝑥𝑘) + 𝜇𝑘𝑰]−1𝑱𝑇(𝑥𝑘)𝒗(𝑥𝑘) (2) 

 

J, µk are Jacobian matrix and increment in eigenvalue of 

Hessian matrix (H=J
T
J) respectively. υ(x) is error function 

that its sum squares are the performance index. Performance 

index is the function that NN algorithm minimizes by 

adjusting the weights. If µk is decreased to zero, the 

algorithm becomes Gauss-Newton approach [7]. Simply this 

algorithm is a numerical approach. 

BR uses Bayes’ Theorem for minimization. According 

to the theorem; if there are two random events (A and B), 

conditional probability that one event occurs represented 

with Equation (3). 

 

𝑃(𝐴\𝐵) =
𝑃(𝐵\𝐴)𝑃(𝐴)

𝑃(𝐵)
   (3) 

 

BR approach in NN assumes that weights between neurons 

are random. They are assumed to be a Gaussian distribution. 

For very big size of training data, BR and LM result same 

error since one approach is numerical and the other is 

probabilistic [7]. 

SCG is efficient for large networks for pattern 

recognition. This algorithm is a modified version of 

conjugate gradient which works only for positive definite 

value of Hessian function [21]. Equation (4) represent 

estimate term sn for non-zero input quantity𝑥𝑛 = 𝑝𝑛
𝑇𝑠𝑛.  

 

𝒔𝑛 =
𝐸′(�̃�𝑛+𝜎𝑛𝑝𝑛)−𝐸′(�̃�𝑛)

𝜎𝑛
+ 𝜆𝑛𝑝𝑛  (4) 

   

p is non-zero weight vectors, E(w) is error function, λ is 

adjusted scaler in each iteration to find estimate term, σ can 

be a positive value very close to zero [21]. 

LM algorithm requires more computer memory and 

takes shorter time during training while BR algorithm 

results the opposite. SCG algorithm training stops in short 

time. However, the stopping criteria for training depends on 

improvement of the mean square error that is also system 

dependent [22]. While MATLAB uses mean square error in 

the NN fitting application, an outside validation is necessary 

to optimize the application. Equation (5) represents relative 

error to analyze how good the system is. 

 

𝐸𝑟𝑟𝑜𝑟 % =
|𝑋𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙−𝑋𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑|

𝑋𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙
𝑥100 (5) 

 

Furthermore, the main success of an NN depends 

highly on training data set. Obtaining a big set of delayed 

gamma spectra is a concern especially when looking for 

trace elements in bio-samples because it may require longer 

irradiation and measurement time [5]. Collection of this type 

of data may take years depending on availability of the 

research reactor and equipment at Missouri University of 

Science and Technology. 

MCNP [23] is a Monte Carlo simulation code for 

particle transport, which is useful in generating the required 

data set. However, available nuclear library is a limiting 

factor for delayed gamma production [24]. 

NAA has been performed via NN tool with MATLAB. 

The training data set was generated with MCNP to analyze 

experimental spectra. In referenced studies, NNs were 

trained with either simulated data to analyze simulated data 

or experimental data to analyze experimental data. The 

disadvantage of former is inapplicable to real problems 

while the disadvantage of latter is difficulty of required size 

of data. In the current research, adequate data set was 

generated with MCNP. Despite the fact that NN is useful, 

there is no solid guide for NN application on NAA. Thus, an 

optimization of NN was carried out as well. The focus of 

this study is on trace elements primarily (Gold, Bromine, 

Potassium, Zinc, and Sodium) in bio-samples. The choice 

was to compare results the previous study. However, the 

procedure can be easily generalized for different elements 

and compounds.  

Primary idea of this work is to train an NN with 

simulated data and analyze experimental spectra for element 

concentrations. Monte Carlo simulation was employed to 

sufficient data set to train the NN. 

 

II. DESCRIPTION OF THE ACTUAL WORK 

 

The procedure is divided into several steps as shown in 

Fig. 1. Experimental data and simulated data were obtained. 

A calibration has been carried out to match MCNP output 

with known sample. Generated data set was used to train the 

NN to analyze an unknown sample. Four type kidney stones 
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were used with a known concentration to be treated as 

unknown sample to validate NN system. NaCl sample with 

known amount was used for calibration and traditional 

analysis of kidney stone samples to compare the NN results. 

 
 

Fig. 1. Flow chart of procedure. 

 

1. Experimental Data 

 

Kidney stone samples with unknown compositions 

were irradiated for 3 hours at the Missouri S&T Reactor 

(MSTR). After decay time of 96 hours, experimental 

gamma spectra were obtained from high purity Germanium 

(HPGe) detector (Canberra BE3825). Details for the 

procedure can be examined through reference [5]. Under the 

same experimental setup, 5 mg salt (NaCl) sample was 

measured after proper preparation. The sample was dried 

because of humid. And, it was measured in a closed and 

sealed container. 5 mg salt contains 1.9669 mg Sodium. 

Gamma peak from Sodium carries information related to 

this mass. The purpose for irradiating Na is to evaluate and 

determine correction values for the simulation. Another 

advantage of Na in validation is that 
24

Na has emission at 

1.369 MeV 100% of time. Thus, comparison from decay to 

number of photons can be calculated easily. 

 

2. Simulated Data 

 

Monte Carlo simulation using MCNP has been done to 

generate data for training of the NN. F1 tally was used along 

with ACT card in MCNP input file. The ACT card 

generated gamma lines data resulted by neutron activation 

of a sample. Samples irradiated in the simulation have a 

spherical surface geometry in air. F1 tally with relevant tally 

multiplier can reveal how many particles passing the surface 

for a given time. More accurate representation of the 

simulation would be through F8 tally. However, time bins 

are not allowed with this F8 tally. SSW (Surface Source 

Write) card also does not have time option to make 

sequential simulation for the exact experimental procedure. 

It records not only delayed gamma particles but also prompt 

gammas which generate unexpected spectra. Since the focus 

in the simulation is to simulate how many particles are 

emitted during 8 hours after decay time, F1 tally was chosen 

for the simulation. In the material card, 260 randomly 

generated mass concentration cases were prepared. 

Simulated peak counts from a gamma spectrum require 

corrections. It is because experimental data are affected by 

the detector area, Germanium (Ge) photopeak efficiency, 

detector efficiency, etc. Although these values can be 

approximately calculated separately, comparison between 

experimental and simulated data can reveal an effective total 

correction. The sample measured in the detector can also be 

simulated with MCNP. Nevertheless, the simulation 

assumes perfect conditions. Difference between 

experimental peak counts and simulated particle counts can 

be assumed as the correction factor.  

 

3. Neural Network with MATLAB 

 

One of the advanced tools to conduct NN with many 

features is the MATLAB toolbox. 260 spectra were 

generated to train the NN in MATLAB. Since number of 

neurons in the hidden layer affect the system, optimum 

number can be compared with resulting error. In addition, 

comparison of LM, BR, and SCG can help to choose best 

training algorithm for the application. Despite, relative error 

is being primary criteria, time consumption should also be 

considered for a large and complicated systems. The 

determined correction value between simulated data and 

experimental data has to be applied to the results as NN 

would not be sensitive to a constant multiplication in the 

spectrum values. 

 

III. RESULTS 

 

259 spectra generated by MCNP were used to train the 

network. By default, 70% of data for training, 15% of data 

for testing, and another 15% of data for validation randomly 

were divided. One spectrum which contains data from Au, 

Br, K, Zn, and Na were kept for external validation. 

Fig. 2 shows error behavior with number of neurons in 

the hidden layer in LM backpropagation. Even though, error 

would be different for every training cases due to 

randomization, smallest error was found when 23 neurons in 

the hidden layer were used. 

Comparing error dependence in Fig. 2, 3, and 4; LM 

algorithm served best results for the system. Fig. 3 and 4 

reveal higher level of error. Error was different for every 

training due to randomization on training, testing, and 

validation data. Behavior was observed to be similar. It was 

also clear that high number of neurons did not improve the 
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results. Further optimization was, then, carried out by using 

LM algorithm in the training part of the NN. 

 

Fig. 5 represents how much input data is required for a 

certain error level. If error less than 10% was desired, it was 

found more than 200 prepared spectra are needed for this 

research. Analysis of more elements in the gamma spectra 

would require a different number of spectra set. 

 

 

 
Fig. 2. LM algorithm number of neuron dependence. 

 

 

 
Fig. 3. BR algorithm number of neuron dependence. 

 

 
Fig. 4. SCG algorithm number of neuron dependence. 

 

When analysis of a single element spectrum was 

conducted, the errors for the other four elements were 

higher than multiple element spectra. A single element 

analysis resulted negative mass values for non-existing 

elements in the spectrum. This showed more single element 

simulation was required to improve the analysis. On the 

other hand, the kidney stones contained all the elements 

which were simulated. 

 

 
Fig. 5. Error distribution relation to the size of training data 

with LM algorithm. 

 

Table 1 provides error between actual mass values and 

mass value calculated with NN. The highest error was 

observed in Zn concentration. This was attributed to decay 

half-life of Zn was relatively high compared with the other 

four.  

 

Table I. Neural Network Error in % 

 

 APA COM UA STRU 

Br 5.3 10.1 6.0 14.6 

Na 7.2 12.3 8.7 9.0 

Zn 17.9 28.2 24.9 27.9 

K - - 21.1 - 

Au 5.2 9.9 5.4 16.1 

 

IV. CONCLUSIONS 

 

MCNP simulation of the irradiation experiment were 

conducted to generate simulated data. The data were used to 

train the NN to analyze experimental data. Neural fitting 

with LM training algorithm was used to optimize the system 

and analyze experimental spectra. 

In order to validate NN, optimization with different 

training algorithm and number of neurons in hidden layer as 

well as size of input data were compared. LM algorithm 

with showed smallest maximum error among five elements. 

Number of neurons in hidden layer represented better error 

estimation were observed between 10 to 27. 23 neurons in 

this research were used. Moreover, for error less than 10%, 

the size of input should be more than 200 spectra. 
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The resulted error was less than what has been reported. 

Thus, it was shown that NN application on NAA can be 

made successfully. However, there is a limitation caused by 

the nuclear data library. Training spectrum can be generated 

by MCNP only if data library is available for certain 

isotopes. 

Highest error was resulted from Zn. This is attributed to 

its relatively long decay half-life. It can be improved by 

increasing training data with more cases of Zn.  

Although the study showed good errors approaching to 

desired values, correction factor was dominant source of 

error. Nevertheless, the cure can be made by simulating 

actual detector response. In this case, F8 tally used in 

MCNP is desired when a method for time binning on SSW 

card can be found. Using a more accurate spectrum as an 

input would eliminate error propagated from efficiency, 

photopeak ratio, effective detector area, etc. 

Furthermore, this approach setup can be generalized for 

different experimental setup with no cost except a proper 

accounting for decay and counting time. 

 

NOMENCLATURE 

 

NAA = Neutron Activation Analysis 

NN = Neural Network 

MCNP = Monte Carlo N-Particle  

HPGe  = High Purith Germanium 

LM  = Levenberg-Marquardt 

BR  = Bayesian Regularization 

SCG  = Scaled Conjugate Gradient 
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