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Abstract - We performed phase-field modeling to evaluate the stability of Mn-Ni-Si (MNS) precipitates in
a Fe-Mn-Ni-Si quaternary system. We adopted the UW1 quaternary database to perform the quantitative
simulation. We examined the stability of T3, T6, and T7 precipitates. We found that the T6 precipitate is stable,
while the other two are unstable; this observation is consistent with the results of thermodynamic modeling
and experimental observations.

I. INTRODUCTION

Irradiation-enhanced precipitation hardening is known as
one of the main sources of the late-stage embrittlement of
reactor pressure vessel (RPV) steel [1, 2, 3, 4, 5]. Even in
low-Cu steel, Mn-Ni-Si (MNS) precipitates can be present
in the stable form [3, 4, 5], and the MNS phases in RPV
steel have been investigated using experimental [4, 5] and
computational[3] methods. Xiong et al. assessed the ther-
modynamic database for the Fe-Mn-Ni-Si quaternary system,
i.e., the UW1 database, and the results were compared with
the output of the commercialized database TCAL2 [3]. In
this study, we adopt the phase-field method to describe both
thermodynamic and kinetic features of the Fe-Mn-Ni-Si qua-
ternary system. Cu-containing precipitates of the low alloy Fe
have already been investigated using the phase-field method
[6, 7, 8]. Koyama et al. assessed the thermodynamic database
for the Fe-Cu-Mn-Ni quaternary system [6, 7], and the phase-
field method was used to investigate the kinetic and elastic
aspects of the Fe-Cu-Mn-Ni system. We extended the binary
KKS model [9] to the quaternary system to perform the simu-
lation for the Fe-Mn-Ni-Si system. We considered four phases
(one matrix and three precipitate phases) in our simulation. We
proposed the framework that enables us to predict the stability
of the precipitates in RPV steel by considering both thermody-
namics and kinetics. The UW1 thermodynamic database [3]
was used to perform the simulations of the precipitate behavior
in the bcc Fe matrix of the quaternary system. We compared
the stability of various types of precipitates in a low-alloy
steel. Further, our predicted precipitate stability was compared
with the prediction results of thermodynamic modeling [3]
and experimental observations [4, 5].

II. UW1 CALPHAD DATABASE

We adopted the UW1 CALPHAD database to simulate
the microstructural evolution of the Fe-Mn-Ni-Si system [3].
One bcc phase for the matrix and 12 MNS precipitate phases
are considered. In our study, we selected one bcc phase and
three MNS precipitate phases for simplicity. The thermody-
namic parameters we used were taken from the supplementary
material of ref. [3] as follows:

For bcc (Fe,Mn,Ni,Si) phase,

0Lbcc
Fe,Mn = −2759 + 1.23T

0Lbcc
Fe,Ni = −956.63 − 1.28726T

1Lbcc
Fe,Ni = 1789.03 − 1.92912T

0Lbcc
Fe,S i = −153138.56 + 46.48T

1Lbcc
Fe,S i = −92352

2Lbcc
Fe,S i = 62240

0Lbcc
Mn,Ni = −3508.43 − 23.7885T

0Lbcc
Mn,S i = −89620.7 + 2.9410T

1Lbcc
Mn,S i = −7500.0
0Tcbcc

Fe,Mn = 123
0Tcbcc

Fe,S i = 504

For T3 : Mn6/29Ni16/20S i7/20 phase,

0GT3
Mn,Ni,S i = −48186.497 + 6/290Gcbcc

Mn

+16/290G f cc
Ni + 7/290Gdiamond

S i

For T6 : Mn1/3(Ni, S i)2/3 phase,

0GT6
Mn,Ni = 10086.99 + 1/30Gcbcc

Mn + 2/30G f cc
Ni

0GT6
Mn,S i = 1666.67 + 1/30Gcbcc

Mn + 2/30G f cc
S i

0Lbcc
Mn:Ni,S i = −159474.81,1 Lbcc

Mn:Ni,S i = −172110.47

For T7 : Mn1/2Ni1/3S i1/6 phase,

0GT7
Mn,Ni,S i = −32434.25 − 5T + 1/20Gcbcc

Mn

+1/30G f cc
Ni + 1/60Gdiamond

S i

III. PHASE-FIELD MODEL

We utilized the phase-field model to simulate the mi-
crostructural evolution of the Fe-Mn-Ni-Si system. We solved
the Cahn-Hilliard [10] and Allen-Cahn (Ginzburg-Landau)
equations [11] to simulate the microstructural evolution.

We will denote the composition (i = 1, 2, 3, 4 for Fe, Mn,
Ni, Si, respectively) in the phase θ using cθi (r, t) at position
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r and time t. θ indicates the T3, T6, and T7 phases. We
introduce four non-conserved order parameter (φi) to indicate
the regions of the four precipitated phases. Composition ci(r, t)
is given as follows [9]:

ci(r, t) = cT3
i (r, t)h(φT3) + cT6

i (r, t)h(φT6)
+cT7

i (r, t)h(φT7) + cαi (r, t)[1 −
∑
θ h(φθ)] (1)

where[12],

h(φθ) = (φθ)3[6(φθ)2 − 15φθ + 10] (2)

The local free energy density G(cθi , t) of the system is
expressed as follows:

G(cθi , t) = h(φT3)GT3 + h(φT6)GT6 + h(φT7)GT7

+[1 −
∑
θ h(φθ)]Gα(cαi , t) + g(φθ) (3)

where,

Gα(cαi , t) = cα1 ×
0 Gbcc

Fe + cα2 ×
0 Gbcc

Mn + cα3 ×
0 Gbcc

Ni

+cα4 ×
0 Gbcc

S i + RT [cα1 log(cα1 ) + cα2 log(cα2 ) + cα3 log(cα3 )
+cα4 log(cα4 )] + Lbcc

Fe,Mncα1 cα2 + Lbcc
Fe,Nic

α
1 cα3 + Lbcc

Fe,S ic
α
1 cα4

+Lbcc
Mn,Nic

α
2 cα3 + Lbcc

Mn,S ic
α
2 cα4 (4)

where cα1 = 1.0 − cα2 − cα3 − cα4 .
From ref.[13], we obtain the free energy of each element

of the α phase.
The free energy of the T3, T6, and T7 precipitates is

given as follows:

GT3 =0 GT3
Mn,Ni,S i (5)

GT6(cT6
i , t) = yII

3 ×
0 GT6

Mn,Ni + yII
4 ×

0 GT6
Mn,S i + 2/3RT

[yII
3 log(yII

3 ) + yII
4 log(yII

4 )] + yII
3 yII

4 Lbcc
Mn:Ni,S i (6)

yII
3 and yII

4 denote the site fraction of Ni and Si at the
second sub-lattice of the T6 phase, respectively.

GT7 =0 GT7
Mn,Ni,S i (7)

1. Chemical potential and Diffusion potential

In the bcc (α phase), the chemical potentials of each
species is given as follows:

µα1 (T, P, cαi ) =0 Gbcc
Fe + RTlog(cα1 ) + Lbcc

Fe,Mncα2 (cα2 + cα3
+cα4 ) + Lbcc

Fe,Nic
α
3 (cα2 + cα3 + cα4 ) + Lbcc

Fe,S ic
α
4 (cα2 + cα3 + cα4 )

−Lbcc
Mn,Nic

α
2 cα3 − Lbcc

Mn,S ic
α
2 cα4 (8)

µα2 (T, P, cαi ) =0 Gbcc
Mn + RTlog(cα2 ) + Lbcc

Fe,Mnc0
1(cα1 + cα3

+cα4 ) + Lbcc
Mn,Nic

α
3 (cα1 + cα3 + cα4 ) + Lbcc

Mn,S ic
α
4 (cα1 + cα3 + cα4 )

−Lbcc
Fe,Nic

α
1 cα3 − Lbcc

Fe,S ic
α
1 cα4 (9)

µα3 (T, P, cαi ) =0 Gbcc
Ni + RTlog(cα3 ) − Lbcc

Fe,Mncα1 cα2
+Lbcc

Fe,Nic
α
1 (cα1 + cα2 + cα4 ) + Lbcc

Mn,Nic
α
2 (cα1 + cα2 + cα4 )

−Lbcc
Fe,S ic

α
1 cα4 − Lbcc

Mn,S ic
α
2 cα4 (10)

µα4 (T, P, cαi ) =0 Gbcc
S i + RTlog(cα4 ) − Lbcc

Fe,Mncα1 cα2
−Lbcc

Fe,Nic
α
1 cα3 + Lbcc

Fe,S ic
α
1 (cα1 + cα2 + cα3 ) − Lbcc

Mn,Nic
α
2 cα3

+Lbcc
Mn,S ic

α
2 (cα1 + cα2 + cα3 ) (11)

The driving force for the diffusion of the substitutional
alloy is given by the diffusion potential [14]. We assumed that
the substitution of Fe atoms for Mn, Ni, and Si atoms was
dominant. Therefore,

λα1→2 =
∂Gα(cαi , t)

∂cα2
= µα2 (T, P, cαi ) − µα1 (T, P, cαi ) (12)

To confirm the relation in Eq. 12, we introduced the case
of the ideal binary solution. We assumed that the system is an
A-B binary system.

G(cA, cB, t) =0 GAcA +0 GBcB + RT [cAlog(cA) + cBlog(cB)]
(13)

where cA + cB = 1.0.

λB→A =
∂G(cA, cB, t)

∂cA
=0 GA −

0 GB + RTlog(cA/cB) (14)

The chemical potentials of the A and B species are given
as follows:[14],

µA =0 GA + RTlog(cA) (15)

µB =0 GB + RTlog(cB) (16)

Therefore, from Eqs. 14, 15, and 16, we showed that the
relation 17 is correct.

λB→A = µA − µB (17)

In Kim’s model [9], the diffusion potentials of all phases
are assumed to be equal under equilibrium. For a stoichiomet-
ric compound, the diffusion potential of each element cannot
be defined. Therefore, we do not apply the equal diffusion
potential condition in the case of the T3 and T7 precipitates.
The T6 precipitate has the Ni and Si solubility range, so we
apply the equal diffusion potential condition.
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2. Iterative solver for composition field

We solved the Cahn- Hilliard equation (Eq. 18) to relax
the composition field of each component.

∂ci(r, t)
∂t

= ∇Mi∇
( δG
δci(r, t)

)
(i = 2, 3, 4) (18)

∂φθ(r, t)
∂t

= −Lθ
δG

δφθ(r, t)
(θ = T3,T6,T7) (19)

where

g(φθ) =
Hθ

2
(φθ)2(φθ − 1)2 + (φθ)2

∑
ψ,θ

(φψ)2 (20)

To determine Mi in Eq. 18, we adopted the relation in ref.
[7, 8].

Di(φθ,T ) = (1 − φθ)Dα
i (T ) + φθDβ

i (T ) (21)

We used the relation Dθ
i (T ) =0 Dθ

i exp(−Qθ
i /RT ) to de-

termine the diffusivity; the parameters used to determine the
value are listed in Table I.

Elements Phase 0Dθ
i (m2/s) Qθ

i (J/mol)
Mn α(bcc) 1.5 × 10−4 2.34 × 105

Mn γ(fcc) 1.6 × 10−5 2.62 × 105

Ni α(bcc) 4.2 × 10−3 2.68 × 105

Ni γ(fcc) 7.7 × 10−5 2.81 × 105

Si α(bcc) 1.7 × 10−4 2.29 × 105

Si γ(fcc) 1.59 × 10−5 2.56 × 105

TABLE I. The values of the diffusivity and activation element
of each element. All values except the data for Si in fcc Fe are
taken from ref. [15]. Diffusivity and activation data of Si in
fcc were not found in the references, so we used unpublished
experimental results.

Eq. 18 can be rewritten as follows by using the extended
Kim’s model when α and T6 phases are under equilibrium
[9, 16].

∂ci(r,t)
∂t = ∇ ·

(
Di(φT6,T )

Gcici
(GciφT6∇φT6 + Gcici∇ci)

)
(i = 2, 3, 4) (22)

Gcici (ci, φ
T6) =

Gα
cici

(ci)GT6
cici

(ci)

[1 − h(φT6)]GT6
cici (ci) + h(φT6)Gα

cici (ci)
(23)

where,

Gα
cici

(ci) =
∂2Gα

∂(cαi )2 (24)

GT6
cici

(ci) =
∂2GT6

∂(cT6
i )2

(25)

GciφT6 (ci, φ
T6)

Gcici (ci, φT6)
= h′(φT6)(cαi − cT6

i ) (26)

Therefore, we have the conclusion in ref. [9] (i = 2, 3, 4).

∂ci(r, t)
∂t

= ∇
(
Di(φT6)∇ci

)
+∇

(
Di(φT6)h′(φT6)(cαi − cT6

i )∇φT6
)

(27)
Finally, we obtain the modified form of Eq. 19 as follows:

∂φT6(r, t)
∂t

= LT6
(
κT6∇φT6 + h′(φT6)[Gα(cαi ) −GT6(cT6

i )

−
∑4

i=2
(
(cαi − cT6

i )Gα
ci

)
] − g′(φT6)

)
(28)

Since all concentrations are fixed for the T3 and T7 pre-
cipitates, we can directly calculate cαi when the T3 and T7
phases are present in the system by using the relation Eq. 30.
(cθi is constant.)

ci(r, t) = cθi h(φθ) + cαi (r, t)[1 − h(φθ)] (θ = T3,T7) (29)

cαi (r, t) =
ci(r, t) − cθi h(φθ)

1 − h(φθ)
(θ = T3,T7) (30)

For the T6 phase, cT6
3 (r, t) and cT6

4 (r, t) are not constant,
so we calculated yII

3 (r, t) and yII
4 (r, t). The procedure to de-

termine the terms yII
3 (r, t) and yII

4 (r, t) in Eq. 6 is described
below:

1. Obtain ci(r, t) by solving Eq. 27.

2. Obtain φT6(r, t) by solving Eq. 28.

3. Assume cT6,temp
3 (r, t) and cα,temp

3 (r, t). For the first iter-
ation, cT6,temp

3 (r, t) and cα,temp
3 (r, t) set the values of the

former time step. When the number of the iterations is
equal to or larger than 2, the values are set at step 6.

4. Check whether the relation ctemp
3 (r, t) = cT6,t

3 (r, t)h(φT6) +

cα,t3 (r, t)[1 − h(φT6)] is satisfied. Assume cT6,temp
3 (r, t)

and cα,temp
3 (r, t), satisfying ∂GT6

∂cT6,temp
3

= ∂Gα

∂cα,temp
3

. (common
tangent)

5. If the relation in step 4 is satisfied, cT6
3 (r, t) = cT6,temp

3 (r, t)
and cα3 (r, t) = cα,temp

3 (r, t).

(a) Determine cT6
4 (r, t) using the relation Eq. 35.

Since,
cT6

4 =
2
3
− cT6

3 (31)

From the relation,

∂GT6

∂cT6
3

=
∂GT6

∂cT6
4

∂cT6
4

∂cT6
3

= −
∂GT6

∂cT6
4

. (32)
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Fig. 1. Inputs, conditions, and outputs of two tables

The Eqs. 33 and 34 represent the common tangent
condition:

∂GT6

∂cT6
3

=
∂Gα

∂cα3
(33)

∂GT6

∂cT6
4

=
∂Gα

∂cα4
(34)

Therefore, from Eqs. 32 to 34,

∂Gα

∂cα3
= −

∂Gα

∂cα4
(35)

(b) Calculate yII
3 (r, t) and yII

4 (r, t) from the relation
yII

3 = 3
2 cT6

3 and yII
4 = 3

2 cT6
4 .

(c) Procedure complete.

6. If the relation in step 4 is not satisfied, modify
cT6,t

3 (r, t) (step value is 3.0 × 10−7) appropriately and
find cα,temp

3 (r, t), which satisfies ∂GT6

∂cT6,temp
3

= ∂Gα

∂cα,temp
3

. Go to

step 3.

For the numerical efficiency, we assumed that ∂GT6

∂cT6,temp
3

=

∂Gα

∂cα,t3
, when

∣∣∣∣∣ ∂GT6

∂cT6,temp
3

− ∂Gα

∂cα,temp
3

∣∣∣∣∣ < 1.0−8 in step 4. We applied the

same assumption for the equal sign in steps 5 and 6.
We constructed two sets of tables (pre-calculated values)

of the compositions as described in Fig. 1 to reduce the com-
putation time. The inputs of Table 1 are cα2 and cα3 , and we
obtain cα4 using Eq. 35. Then, we obtain cT6

4 by inputting cα2 ,
cα3 , and cα4 into Eq. 33. Once we determine cT6

3 , we can easily
calculate cT6

4 using the relation cT6
3 = 2

3 − cT6
4 . To apply the

condition of Tables 1 and 2, we used the Newton-Raphson
method to obtain the outputs.

IV. COMPUTATIONAL DETAILS AND PARAMETER
NORMALIZATION

We adopted the forward Euler scheme to discretize Eqs.
36 and 37 [17].

Eqs. 18 and 19 are restated as Eqs. 36 and 37,

∂cαi (r, t)
∂t

= ∇Mi∇
(
λα1→i − κi∇

2cαi (r, t)
)
(i = 2, 3, 4) (36)

∂φθ(r, t)
∂t

= −Lθ
( ∂G
∂φθ(r, t)

− ωθ∇2φθ(r, t)
)
(θ = T3,T6,T7)

(37)
where

λα1→2 =0 Gbcc
Mn −

0 Gbcc
Fe + RT [log(cα2 ) − log(cα1 )] + Lbcc

Fe,Mn

(cα1 − cα2 ) − Lbcc
Fe,Nic

α
3 −

1 Lbcc
Fe,Nic

α
1 cα3 − Lbcc

Fe,S ic
α
4 + Lbcc

Mn,Nic
α
2

−
(1Lbcc

Fe,S i + 22Lbcc
Fe,S i(c

α
1 − cα4 )

)
cα1 cα4 + Lbcc

Mn,S ic
α
4

+1Lbcc
Mn,S ic

α
2 cα4 (38)

λα1→3 =0 Gbcc
Ni −

0 Gbcc
Fe + RT [log(cα3 ) − log(cα1 )] − Lbcc

Fe,Mn

cα2 + Lbcc
Fe,Ni(c

α
1 − cα3 ) −

(1Lbcc
Fe,S i + 22Lbcc

Fe,S i(c
α
1 − cα4 )

)
cα1 cα4 + Lbcc

Mn,Nic
α
2 − 21Lbcc

Fe,Nic
α
1 cα3 − Lbcc

Fe,S ic
α
4 (39)

λα1→4 =0 Gbcc
S i −

0 Gbcc
Fe + RT [log(cα4 ) − log(cα1 )]

−Lbcc
Fe,Mncα2 − Lbcc

Fe,Nic
α
3 + Lbcc

Fe,S i(c
α
1 − cα4 ) − 2

(1Lbcc
Fe,S i

+22Lbcc
Fe,S i(c

α
1 − cα4 )

)
cα1 cα4 −

1 Lbcc
Fe,Nic

α
1 cα3 + Lbcc

Mn,S ic
α
2

−1Lbcc
Mn,S ic

α
2 cα4 (40)

In our simulations, we used the energy normalized by RT
where R = 8.3144598J/mol ·K and the temperature T = 550K.
The diffusivity values were normalized by Dα

2 (T ). The non-
dimensional time step ∆t = 1.0×10−6 when the T3 precipitate
existed, and ∆t = 1.0 × 10−6 when the T6 or T7 precipitate
existed. ∆x = ∆y was set to 1.0. κi in Eq. 37 was set to 1.0
and ωθ = 2.0 and Lθ = 0.01 in Eq. 37.

We performed 2D simulations, and the system size was
64∆x × 64∆y. The initial precipitate radius was 15.0∆x. Ini-
tially, we put φθ = 1.0 inside the particle with the sharp in-
terface (Outside φθ = 0). To make the particle/matrix in-
terface diffused, we solved Eq. 19 with the assumption of
G = 1

2 (φθ)2(φθ − 1)2. (100 iterations). After we obtained φθ
with the diffused interface, we put the concentration profile as
follows:

For the matrix, the initial compositions at α phase were
cα2 = 0.008, cα3 = 0.008, cα4 = 0.00808. For the T6 precipitate,
cT6

3 = 0.459234067 and cT6
4 = 0.2074326, when Eqs. 33 and

35 are satisfied. For the T3 and T7 cases, the compositions of
the precipitates were fixed and the initial compositions of the
α phase were assumed to be equal to the values of the T6 case.
Then, we put the initial composition using the Eq. 1.

V. RESULTS

In Fig. 2, the T6 precipitate maintained their initial state
during the simulation. This means that, the T6 precipitate
is thermodynamically stable. Since the T3 and T7 phases
are unstable, these precipitates shrink with time, and the T7
precipitate radius decreases more rapidly than that of the T3
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Fig. 2. Precipitate radius of T3, T6, and T7 precipitates

Fig. 3. Distribution of φT3 when t∗ = 10.0, t∗ = 500.0, and
t∗ = 1000.0

. φT3 value is 1.0 inside the particle and 0.0 in the matrix.

precipitate does. We performed CALPHAD modeling us-
ing ThermoCalc Software with the implementation of UW1
database [3] with cα2 = 0.008, cα3 = 0.008, cα4 = 0.00808, and
T = 550K. The equilibrium phases were BCC(A2) (98.940
mol%) and T6 (1.363 mol%). Also, T6 phase is quite dom-
inantly observed in neutron-irradiated RPV steel [3, 4, 5].
Therefore, we concluded that our simulation result is consis-
tent with the results obtained from the CALPHAD modeling
and former experimental studies.

As shown in Fig. 3, the T3 precipitate shrinks with time.
In Figs. 4 to 6, we observed a wide diffused concentration

profile zone (DCPZ) between the precipitate and matrix. In
particular, the DCPZ in Fig. 5 is the widest (Ni concentration).
When T = 550K, Dα

2 (T ) = 8.976 × 10−27m2/s, Dα
3 (T ) =

Fig. 4. Distribution of cT3
2 (Mn) when t∗ = 10.0, t∗ = 500.0,

and t∗ = 1000.0
. The maximum cT3

2 value is 0.22.

Fig. 5. Distribution of cT3
3 (Ni) when t∗ = 10.0, t∗ = 500.0,

and t∗ = 1000.0
. The maximum cT3

3 value is 0.6.
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Fig. 6. Distribution of cT3
4 (Si) when t∗ = 10.0, t∗ = 500.0,

and t∗ = 1000.0
. The maximum cT3

4 value is 0.25.

Fig. 7. Distribution of φT7 when t∗ = 10.0, t∗ = 500.0, and
t∗ = 1000.0

. φT7 value is 1.0 inside the particle and 0.0 in the matrix.

Fig. 8. Distribution of cT7
2 (Mn) when t∗ = 10.0, t∗ = 500.0,

and t∗ = 1000.0
. The maximum cT7

2 value is 0.5.

Fig. 9. Distribution of cT7
3 (Ni) when t∗ = 10.0, t∗ = 500.0,

and t∗ = 1000.0
. The maximum cT7

3 value is 0.35.
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Fig. 10. Distribution of cT7
4 (Si) when t∗ = 10.0, t∗ = 500.0,

and t∗ = 1000.0
. The maximum cT7

4 value is 0.25.

1.483 × 10−28m2/s, and Dα
4 (T ) = 3.036 × 10−26m2/s. Since

Dα
3 (T ) is far smaller than even Dα

2 (T ), the DCPZ is thicker in
Fig. 5 than that in Figs. 4 and 6. For the T7 precipitate, we
also observed DCPZ in Figs. 8 to 10, and the widest DCPZ is
found in Fig. 9 (Ni concentration).

VI. DISCUSSION AND FUTURE WORKS

According to the classical nucleation theory [14], the
critical spherical nucleus radius, when α→ β phase transfor-
mation occurs, is given by:

r∗ =
2γ

(∆Gα − ∆Gβ)
(41)

where γ is the isotropic interfacial energy and ∆Gα −∆Gβ

is the bulk energy difference between the α and β phases. The
stability of the precipitate can be evaluated in terms of the bulk
energy difference using the CALPHAD method. On the other
hand, in the phase-field method, the phase stability is examined
with the consideration of not only the bulk energy difference
but also the interfacial energy. So far, we do not have reliable
information about the interfacial energy and width between
α and the precipitated phase. Therefore, we assumed that ωθ
when (θ = T3,T6,T7) in Eq. 37 is 2.0. In reality, the misfit
strain exists at a coherent or semi-coherent interface [14].
Therefore, the elastic effect needs to be considered to estimate
the particle stability more accurately. The critical radius of the
nucleus is generally larger than the value obtained using Eq.
41.

r∗ =
2(γ + Ees)

(∆Gα − ∆Gβ)
(42)

where Ees represents the elastic energy per unit area be-
tween precipitate particles and the matrix. Also, the elastic
effect can induce a deviation in the precipitate particle mor-
phology from the spherical shape [12, 18, 19]. When a particle
is not spherical, analytical determination of the critical nucleus
size becomes more complicated. Therefore, a numerical mod-
eling method, such as the phase-field simulation, is a powerful
approach to estimate the precipitate stability. Due to lack of
information regarding the interface structure between the ma-
trix and a precipitate particle, we do not consider the elastic
effect in this study. However, in future, we aim to study the
particle/matrix interface structure, and thereafter, we plan to
perform the precipitate-evolution modeling with the incorpo-
ration of the elastic effect.

For the unstable precipitates, such as the T3 and T7 pre-
cipitates in Fig. 2, the shrinking rate is an important factor. In
our simulation, the T7 precipitate disappeared at a faster rate
than the T3 precipitate. The dissolution rate in the case of an
incoherent interface is determined by three factors:

1. Chemical driving force. (bulk energy difference)
2. Interface energy between the matrix and precipitate
3. Solute mobility
Within the CALPHAD framework, the precipitate stabil-

ity can be predicted using only factor 1. In the phase-field
modeling, we quantitatively consider factors 1 and 3. So far,
we have assumed that the parameter determining interfacial
energy is constant for all precipitated phases. As explained
above, we aim to analyze the interface between the bcc matrix
and precipitates in the future, and thereafter, we will consider
factor 2 in determining the precipitate stability.
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