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Abstract – The THOR neutral particle transport code enables simulation of complex geometries for 

various problems from reactor simulations to nuclear non-proliferation. It is undergoing a thorough V&V 

requiring computational efficiency. This has motivated various improvements including angular 

parallelization, outer iteration acceleration, and development of peripheral tools. For guiding future 

improvements to the code’s efficiency, better characterization of its parallel performance is necessary. A 

parallel performance model (PPM) can be used to evaluate the benefits of modifications and to identify 

performance bottlenecks. The PPM development incorporates an evaluation of network communication 

behavior over heterogeneous links that are present in the utilized High Performance Computer (HPC) and 

a functional characterization of the per-cell/angle/group runtime of each major code component. After 

evaluating several possible sources of variability, this resulted in a communication model and a parallel 

component model. The former’s accuracy is bounded by the variability of communication on the HPC while 

the latter has an error on the order of 1%. 

 

I. INTRODUCTION 

 

The THOR neutral particle transport code is being 

developed to allow for the simulation of complex 

geometries for a variety of problem types across the fields 

of reactor simulation and nuclear non-proliferation. It 

implements the arbitrarily high order transport method of 

the characteristic type (AHOTC) on unstructured, 

tetrahedral meshes [1]. 

Currently, THOR is undergoing thorough Verification 

and Validation (V&V) as part of its development process. 

The need for computational efficiency in this process has 

motivated a variety of improvements to the code including 

angular parallelization, outer iteration acceleration, and the 

development of peripheral tools [2]. It has also been 

recognized that, for guiding future improvements to the 

efficiency of the code, a better characterization of its 

parallel performance is essential.  

By developing a parallel performance model (PPM) for 

predicting THOR’s parallel execution time, one can better 

identify the benefits and detriments of various modifications 

to the code. This may be used to evaluate the true 

effectiveness of future modifications as well as to identify 

bottlenecks in existing routines. Additionally, by also 

characterizing the system on which THOR runs, one can 

identify if sources of efficiency loss are related to the code 

or to features of the host system. 

As such, a PPM provides a powerful tool not just for 

the evaluation of the existing code, but as a benchmarking 

method for future, more significant modifications to THOR, 

such as parallelization with spatial domain decomposition 

(SDD). In addition, the obtained characteristic of the host 

system constitutes valuable information for other users of 

the same system, the system’s administrators, and future 

HPC procurement. 

 

II. DESCRIPTION OF THE ACTUAL WORK 

 

This work details the development of a PPM for THOR 

executed on a representative leadership-class HPC whose 

specifications will be detailed in Sec. II-2. This model is 

intended to characterize the behavior of the code for an 

arbitrary problem on an arbitrary configuration executed on 

the targeted HPC. However, both THOR and the utilized 

hardware introduce unique challenges in terms of model 

characterization.  

 

1. Challenges to Modeling THOR’s Parallel Performance 

 

As is typical, THOR implements a variety of solvers. 

These include an outer iteration procedure for external 

source problems and (accelerated) power iterations as well 

as JFNK solvers for eigenvalue problems. For simplicity, 

the developed model only reflects the behavior of the un-

accelerated power iteration solver. This solver was chosen 

as it is the most mature of the existing options and because 

it forms the basis for both of the non-JFNK accelerated 

solvers. Since the currently implemented accelerations have 

a relatively small impact on the runtime of any given 

iteration, it is logical that the timing model will hold, 

roughly, on a per iteration basis for all of the sub-

implementations of the power iteration solver.  

Furthermore, development of THOR’s PPM provides a 

unique challenge due to the nature of its characteristic 

solver. Instead of solving a given arbitrary tetrahedral (tet) 

cell directly, THOR subdivides the cells into canonical   

tetrahedrons each having a single incoming and outgoing 
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face. This allows a single code section to implement 

AHOTC on each of the canonical tetrahedrons comprising 

an arbitrary cell. While this simplifies the solving of each 

sub-cell, it introduces a degree of uncertainty in the total 

number of sub-tets in a given mesh as their number varies 

with quadrature angle being swept and with cell orientation. 

The 6 possible canonical tetrahedron decompositions are 

shown in Fig. 1. The first three correspond to the incoming 

direction of particle motion, Ω̂, entering the tetrahedron on a 

face, entering on an edge, or exiting on a face, while the 

latter three correspond to Ω̂  laying along a tetrahedron edge 

or face with differing numbers of exposed faces.   

 

 
Figure 1. Canonical tetrahedron decompositions during the THOR 

cell solve operation [1] 

After solving the characteristic equations in all of the 

generated canonical tets, the data from each is recombined 

into values representative of the entire cell. This mesh-cell 

level flux data on each outgoing face is then passed to the 

next downstream neighbor in the sweep operation and the 

single-cell solver starts over. This makes the cell-splitting 

process a black box. Outside of the single cell solver, all of 

the code components and transport operations only see the 

recombined mesh cells. The details of the characteristic cell 

solve are covered in detail in Ref. [1]. 

  

2. Challenges Resulting from HPC’s Architecture 

 

While larger systems would be required to truly test the 

efficiency of massively parallel schemes like SDD, the 

utilized HPC has proven an ideal testbed for the current 

developmental phase of THOR. It is sufficiently large that 

the serial and mid-scale parallel functions (10s-100s of 

processors) can be executed easily and frequently.  

The utilized computing platform is a ~25,000 processor 

system built by SGI using a 7D enhanced Hypercube 

topology. Recent upgrades to the system have introduced a 

number of heterogenous compute nodes. To avoid 

complications from this, all work was done on homogenous 

allocations. The 7D enhanced Hypercube topology was 

developed by SGI to provide a high bandwidth low latency 

environment in the framework of a standard 7D hypercube 

architecture [3]. In addition to an interesting system 

architecture, the HPC implements a variety of hardware 

levels. Within the 7-dimensional hypercube, a single 

processor also belongs to a rack, a server, and a processor 

die. Each node has two processors of 12 (or, for the newer 

nodes, 18) cores each. This results in several different forms 

of communication. Two processing nodes located on the 

same die may communicate directly. Two nodes in the same 

server but on different chips may share a bus. Finally, two 

processors on completely different systems will be governed 

by the network communications interface. This hardware 

layout is common for large cluster systems and introduces a 

large number of unknowns regarding relative node locations 

in both physical and network space. Comparatively, on a 

personal computer or small server, parallel communication 

may be limited solely to on-die or on-board hardware 

communication buses. 

Coupled with this hardware variation is the inability to 

request a specific subset of the system. Using a standard 

PBS scheduler, users may request exclusive use of a 

processor, a server, or a group of servers; but, the 

scheduling system assigns the resulting block of processors. 

To the authors’ knowledge, the system makes no guarantee 

of locality or grouping during a standard allocation. So, 

when a communication network is established, the cost of 

traversing the links in the tree can vary as a function of 

network location in the full network hypercube.  From a 

performance standpoint, the varying communication speed 

is never detrimental. The slowest communication path will 

yield the behavior expected by a network-interconnected 

hypercube. However, the uncertainty in the allocation can 

mean that code behavior is difficult to quantify with 

precision. A request for 6 processors each on 2 servers may 

yield any 6 of the 24 processors per server and 2 servers at 

any point in the hypercube. Even in this small case, there are 

multiple resulting combinations of on-die, on-board, and 

network communication and, consequently, difficult to 

predict latency and contention. 

As quantifying this uncertainty in a model is nearly 

impossible, the model simply aims to determine whether the 

variance due to this phenomenon is significant when 

compared to both the aforementioned variability of the code 

and the total runtime of the other components.   

 

3. The Parallel Performance Model 

 

To develop the PPM, THOR was divided into 3 major 

sections – input, solver, and output. For any reasonably 

large problem, the read-in/write-out sections are negligibly 

small as they are not executed repeatedly. Hence, their 

contribution to execution time was ignored. For very large 

problems, like the ATR configuration in [2], the initial read-

in and final write-out can be on the order of a half hour. 

Still, a single outer iteration’s execution time is also on this 

order. So, the fraction of time consumed by I/O drops off 

with each iteration.  However, as the number of processors 

increases, Amdahl’s law states that the total run time of the 
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code will approach that of the serial portion. This would 

include the serial I/O operations during initialization. 

Within the solver section, the code was further 

subdivided into five major sections that represent the code’s 

primary logical functions; these are nested as shown in Fig. 

2.  

 

 
Figure 2: Timing model’s logical components 

Using the shown structure, the total run-time of each 

component is given as the sum of the run-time of its child 

component and the operations executed in that routine. At 

the lowest levels of the call tree, the sweep operation is 

subdivided into two parts to account for the angular domain 

decomposition (ADD) parallelization.  

The parallel sweep contribution accounts for the time 

taken to sweep over m (m+2) angles, with vacuum boundary 

conditions, in an Sm quadrature set each of which comprises 

a sweep over N tetrahedrons using p processors. The time 

consumed for each cell/angle combination solve is referred 

to as the grind time. The communication portion represents 

the two spanning-tree communications used at the end of the 

sweep operation to accumulate flux angular moments and 

distribute their values to all processors. The AHOTC 

formalism comprises an arbitrary-order expansion of the 

flux variables within each cell and its bounding faces [1]. In 

this work, we consider the zero spatial-expansion order 

option in THOR but extension of the PPM to higher order 

expansions should be rather straightforward. Furthermore, 

all timing measurements were made using a one group 

problem under the assumption that a g group problem’s 

execution will scale with g. In problems with a very large 

number of groups, this assumption may not hold. But, it 

should also be a straightforward task to modify the model 

with a factor for time growth in terms of g. Also, THOR 

does not implement any parallelization in energy at this time 

due to that parallelization’s asynchronicity, which is likely 

to increase the number of iterations thereby adversely 

affecting parallel efficiency.  

Based on this description, we propose the timing model 

for a single outer running a single inner iteration:  

 

 

 

𝑇𝑠𝑜𝑙𝑣𝑒 = τconst + 𝑁 ∗ (𝜌 ∗ [𝜏𝑜𝑢𝑡𝑒𝑟 + 𝜏𝑖𝑛𝑛𝑒𝑟] + 𝜏𝑠𝑤𝑒𝑒𝑝 + 

 

               
𝑚∗(𝑚+2)

𝑝
∗ 𝜏𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙) + 𝑓(𝜏𝑐𝑜𝑚𝑚𝑠 , 𝑝),        (1) 

 

where N is the number of cells, 𝜌 is the number of angular 

moments, and 𝜏 represents the time constant of each major 

function block exclusive to that routine (i.e. 𝜏𝑜𝑢𝑡𝑒𝑟  is the 

time spent in the outer iteration that is not in the inner 

iteration). For multiple inner iterations, all values except 

𝜏𝑜𝑢𝑡𝑒𝑟  would be multiplied by the number of inner 

iterations. 

The parallel sweep routine demonstrates the effects of 

parallelization. In serial codes, one can expect the sweep 

work to scale linearly with the number of cells and angles. 

Here, as a result of implementing ADD, the dependence on 

number of angles is modified. Now, instead of scaling 

simply with the number of angles, one also can expect to see 

a 1/p relation. This represents the process of distributing the 

work across processors based on the angle. However, if p is 

not a factor of the number of angles, work is unevenly 

assigned. In this case, this code section’s execution time will 

behave as if p were lowered to the nearest multiple of 

m(m+2), i.e. ⌈
𝑚(𝑚+2)

𝑝
⌉.  

Finally, there is the function representing the 

communication time component. This component is 

dependent not only on the implementation of the code, but 

also on the architecture of the system the code is running on 

and the topology of the subsystem assigned at run time for 

executing the specific case. A proposed model for this 

behavior that recognizes the underlying hypercube topology 

of the HPC is given by: 

 

𝑓(𝜏𝑐𝑜𝑚𝑚𝑠 , 𝑝) = 2 ∗ log2(𝑝) ∗ (𝜏𝑐𝑜𝑚𝑚𝑠  +
2𝑁∗𝜌

𝛽
)  (2) 

 

Here, 𝛽 is the system bandwidth in words/s and 𝜏𝑐𝑜𝑚𝑚𝑠 

is the time to initialize communication, i.e. communication 

latency. As discussed before, these constants will be highly 

dependent on the processor allocation at runtime. As such, it 

is unlikely that generally applicable explicit values of these 

parameters can be extracted. The log2(p) represents the 

number of send components in a tree based communication 

system. This is the system implemented for communication 

in this topology. Next, as the communication functions are 

2-way (i.e. they send and receive data), the latency and data 

size are doubled. The ratio of N to the bandwidth gives the 

time consumed in actual data transfer. The entire equation is 

multiplied by two to represent the two communication 

operations that occur per iteration. These two operations are 

used to accumulate the scalar flux calculated on each 

processor and then to redistribute it back amongst all 

processors. 
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III. RESULTS 

 

Timing results were obtained for the communication 

variation, canonical cell variation, and major parts of the 

timing model.  Data was collected by running one of 

THOR’s standard test problems, a simple cube with various 

levels of mesh refinement with S2 through S16 quadrature. 

Where timing data was collected, each timing case was run 

5 times and averaged to produce an approximation to the 

expected value. Additionally, for the evaluation of the 

variance in the number of canonical tetrahedrons, the C5G7 

[4] and Godiva [5] benchmark configurations were used.  

After evaluation of the model coefficients, the PPM was 

validated against configurations and problems not included 

in the original measurement set used in estimating the model 

parameters. 

 

1. Canonical Tetrahedron Variation 

 

Based on the orientation of a tetrahedral cell and the 

incoming angle, any arbitrary tetrahedron can be subdivided 

into 2, 3, or 4 canonical tetrahedra [1]. These configurations 

were shown in Fig. 1. Because of this variability, it is 

theoretically possible for two meshes featuring the same 

number of cells to exhibit differing workload for sweeps 

along different angles and for a single mesh to feature 

varying workloads between regions with identical number 

of cells and also between sweeping directions.  

To quantify this behavior, the simple cube test problem 

[1] was solved at 4 different mesh refinement levels and 5 

different quadratures.  This problem features a cubic domain 

with vacuum boundaries and a single energy group. Table 1 

summarizes the results for these cases. 

As can be seen, the degree of variation between the 

cases is negligible. All the cases demonstrate an average 

number of canonical tetrahedrons around 3.67. However, 

there does appear to be a slow upward trend as the number 

of angles increases. Regardless, as long as the variation 

stays on the order of 10-4 or 10-5, it is unlikely that it will 

contribute significantly to imprecision in the performance 

model.  

While the reason for the extremely low variance is not 

known, we conjecture that it may result from the simple 

configuration of this test problem. The simple cube test 

presents a very regular geometry with a good aspect ratio. 

These factors could result in very little variation between 

input configurations. Additionally, given the regularity of 

the domain, it is likely that mesh-refinement produces 

similar results in all regions.  

 

 

 

 

 

Table 1: Simple Cube Test - Canonical Tet Variation 

# Angles # Cells Avg. Subcells Std. Dev 

8 8,859 3.66836  
80 8,859 3.66836 0 

288 8,859 3.66836  

8 151,562 3.66812  
80 151,562 3.66814 1.53E-05 

288 151,562 3.66815  

8 194,332 3.66802  
80 194,332 3.66804 1.15E-05 

288 194,332 3.66804  

8 426,885 3.66813  
80 426,885 3.66820 4.73E-05 

288 426,885 3.66822  
 

To address this concern, a small number of 

supplemental cases were run using an unfolded version of 

the 2x2 assembly C5G7 3D Benchmark. The unfolding was 

done to convert the reflective boundary conditions present 

in C5G7 to vacuum boundaries. The resulting mesh has 

approximately 20 million tetrahedrons and a much more 

complicated geometry than the cube test problem. However, 

only a single mesh was available for testing with two 

angular quadratures as reported in Table 2. Additional 

testing was performed using a very small model of the 

Godiva benchmark. These results are given in Table 3. 

 
Table 2: C5G7 - Canonical Tet Variation 

# Angles Mesh Size Avg. Subcells 𝚫𝑨𝒗𝒈 

8 20617414 3.618  

24 20617414 3.640 .022 

 

In Table 2, we see that the difference even between the 

S2 and S4 quadratures is significantly larger – on the order of 

one percent. This is still a relatively small effect, compared 

to for example the effect on execution time from acquiring 

different processors at run time. But, it does indicate that 

there is the possibility for greater degrees of variation 

between cases than suggested by the simple cube case. 

 

 
Table 3: Godiva - Canonical Tet Variation 

# Angles Mesh Size Avg. Subcells 𝚫𝑨𝒗𝒈 

8 274 3.66836  

80 274 3.66836 0 

288 274 3.66836  
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The Godiva mesh does not show the strong fluctuation 

present in the C5G7 mesh. Instead, it is more akin to the 

results obtained in the simple cube test. As these two tests 

are homogenous systems they are meshed into more regular 

tets across the entire geometry; so, it is likely that the 

fluctuations present in C5G7 are a result of mesh behavior 

along material boundaries. This would indicate that highly 

heterogeneous configurations or those with realistically 

shaped material interfaces may result in “biased” meshes 

and cause the average work to drift with mesh refinement or 

increasing number of angles. This would have to be 

evaluated on a case by case basis and used to modify the 

grind time to ensure that the PPM remains applicable.  

 

2. Communication Time Variation 

 

As stated previously, communication on the utilized 

computing platform can be subdivided into two 

components, a communication tree building time and a data-

transfer portion [2]. Below about 105 words, the tree-

building time dominates. The tree building time increases 

linearly with log2(p) and the communication time increases 

linearly with the data size. This behavior is shown in Fig. 3. 

The figure was made using data from an external routine 

which implements MPI AllReduce operations with sizes 

similar to those found in THOR. Across all data sizes and 

processor counts, the total communication time can be 

decomposed into two parts. The first is a constant time 

region which scales with the size of the binary tree used in 

the communication. The second is the region in which time 

increases linearly with the size of the data being transmitted. 

 

 
Figure 3: Generic behavior of the HPC during MPI AllReduce 

operations [2] 

To evaluate this behavior for THOR, the total 

communication time was measured for processor counts of 

1, 2, 4, 16, and 64 and mesh refinement levels of ~8,000, 

~150,000, and ~200,000 tets on the simple cube problem. 

As expected, for the ~8,000 cell case, total communication 

times on the order of 10-3s to 10-2s were observed. These 

align well with the tree construction times shown in Fig. 3. 

For the more refined meshes, the results also fall in line with 

the data predicted by the communication testing. 

Unfortunately, even for the most refined case, the number of 

cells is still relatively small. This results in all the 

experimental cases occupying a very small region of 

predicted behavior.  

The time variation between repetitions of identical 

cases was calculated. As expected, the run-time standard 

deviation between runs on the same processor allocation is 

very low, often on the order of 10-4 or 10-5s. However, 

occasional cases were seen where the standard deviation 

was on the order of 5-10% of the measured time. Rarely, 

more extreme spikes resulted in run to run differences of an 

order of magnitude. These outliers are likely the result of 

network contention and are unlikely to occur repeatedly 

over the course of a long-running problem. However, in the 

event that the system is heavily loaded, it is possible to see 

an unpredictable increase in the cost of communication. 

Having established that communication times are 

generally consistent on constant allocations, the cases were 

rerun on several different allocations. Since, as discussed, 

one cannot request a specific (or different) allocation, this 

was accomplished by rerunning the cases over the course of 

several days. The presence of other users’ jobs should 

guarantee that available allocations vary with time. Initially, 

under these conditions, it was observed that measured 

communication times were highly inconsistent between 

allocations. This resulted in not just varying communication 

times, but varying trends in communication times. To 

highlight this variability, two cases are presented in Figs. 4 

and 5. The blue line represents an allocation large enough to 

run 𝑆16 (p = 288) regardless of the quadrature of the current 

case, while the orange line is an allocation where 𝑝 =
𝑚(𝑚 + 2) for each attempted m value. The values along the 

horizontal-axis are the 𝑐𝑒𝑖𝑙(log2(𝑝)) and correspond to the 

depth of the binary tree used in the reduce operation. 

 

 
Figure 4: Differing communication trends for p>m(m+2) and 

p=m(m+2) for S8 
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Figure 5: Differing communication trends for p>m(m+2) and 

p=m(m+2) for S12 

It is likely that the change in trend in Fig. 4 results from 

the 3 different loading patterns that must be considered 

when allocating processors. For the full S16 cases, 288 

processors were allocated and p was selected to be a factor 

of m(m+2) for each case (maximizing efficiency). The 

resulting communication tree only depends on processors 

active in the case. As such, since p is likely not a power of 

two, the tree has empty leaves. Still, all possible leaf 

positions are still the same distance from the root node. 

However, the allocated network sub-hypercube is sized 

based on the allocation. This means that processors assigned 

to the program do not necessarily come from the smallest 

encapsulating sub-cube and that distance from root can vary 

by multiple hops.     

Once the number of processors is explicitly allocated to 

be m(m+2), the network uncertainty is reduced. There are 

still various possible configurations, but they all exist in the 

same dimensionality. As can be seen above, this results in 

the better behaved trends shown in orange.  

Yet, as the S12 case shows, there is still some degree of 

drift in communications time between allocations. Even 

when changing the allocation size does not dramatically 

change the shape of the communication trend, there are still 

frequently changes in the average time of any given case. 

This is demonstrated by all cases and likely results from day 

to day changes in system loading/contention.    

Based on a subset of the data collected with m(m+2) 

sized allocations, an approximate model of the 

communication was developed. As shown in Fig. 6, the fit 

demonstrates the log2 𝑝 dependence predicted in the 

theoretical parallel performance model (Eq. 2). However, 

there are still significant outliers both at very low p and at 

various points throughout the curve.  

 

 

 

 
Figure 6: THOR/HPC communication time fit  

 

3. Developing the Parallel Sweep Model 

 

The innermost evaluated function is the parallel sweep 

routine. By proper selection of p this routine divides the 

sweep operation evenly among processors based on the 

number of angles. Hence, it is expected that the execution 

times will exhibit a 1/p behavior while 𝑝 ≤ 𝑚(𝑚 + 2). To 

evaluate this, a set of cases was selected. These included 

combinations of Sm m = 2, 4, and 6 for the simple cube 

problem with mesh sizes of ~8k, 150k, and 200k tets. The 

Level-Symmetric quadrature set was used with 𝑀 =
𝑚(𝑚 + 2) angles. A selection of these cases is shown in 

Fig. 7 with the dashed lines representing the regions where 

𝑝 ≤ 𝑚(𝑚 + 2). Data was collected at 𝑝 = 1, 2, 4, 16, 64. 

  

  
Figure 7: 1/p relationship between processor count and parallel 

sweep time 
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As expected, this plot shows a strong 1/p trend where 

the number of processors is less than or equal to the number 

of angles. If there are more processors than angles, then 

some processors will sit idle and not contribute to parallel 

speedup. This results in the trend flattening out for higher p. 

Further information can be extracted from the plot by 

analyzing the amount of work performed for any value of p 

as the number of angles changes. This shows the 

dependence of the execution time on increasing number of 

angles. Since the total amount of work scales approximately 

linearly with the number of angles, one would expect to see 

a linear relationship between execution time and number of 

angles for each p. Additionally, the ratio of the slopes 

between any two sets of points should yield the ratio of the 

number of processors used as depicted in Fig. 8.     

From these values, we can extract the grind time. This 

is done by evaluating the time per cell per angle, a value we 

have defined as the grind time.  

 

𝑔𝑟𝑖𝑛𝑑 𝑡𝑖𝑚𝑒 =   
𝑡𝑖𝑚𝑒(𝑚 𝑎𝑛𝑔𝑙𝑒𝑠,   𝑁 𝑐𝑒𝑙𝑙𝑠 )

𝑚∗𝑁
   (3) 

 

Equation 3 was evaluated using both sets of data plotted 

in Fig. 8 for angular dependency as well as with the 

equivalent calculation for cell-count dependency. These 

methods yielded grind times of ~2.30E-6 and ~2.33E-6, a 

difference of ~1%. For the sampled cases, the variance in 

runtime between case repetitions was typically ~0.5%.  

 

 
Figure 8: Linear relation between time and number of angles for a 

fixed value of p 

Finally, the evaluated grind time was used to predict the 

data points used to generate the model. Since the variance in 

sweep times was rather small, the predictions were quite 

good – on the order of single percent error. Since this error 

sets the baseline model error, it should be as low as 

possible. Evaluating the runtime of other cases can never be 

expected to be higher accuracy than this. 

 

4. Evaluating the Parallel Sweep Model 

 

Having established a model for parallel sweeping using 

a limited subset of cases, it is necessary to validate the 

model for general cases not included in its own 

development. These tests can be broken down into 3 cases – 

interpolation, extrapolation, and external. Interpolation 

cases are those whose parameters are within the envelope 

defined in the previous section and which use the same 

geometry. Extrapolation uses the same geometry but 

parameters outside the envelope (i.e. higher order 

quadratures and mesh refinements). Finally, external 

problems use a different geometry at a wide set of parameter 

configurations. Based on these descriptions, one would 

expect that the interpolation results will have errors 

comparable to those used to develop the model. 

First, for the interpolation cases, no other mesh 

refinements were available. And, as S2-6 had been used, 

there were no unused quadratures in the interpolation set. To 

address this, a set of edge cases were selected instead. These 

edge cases are in the interpolation envelope in quadrature, 

but not in mesh refinement. They use a 500k tet refinement 

of the simple cube mesh. Since the fits in figures 7 and 8 are 

very clean, these cases were expected to conform to the 

baseline error established for the model cases. For all 3, the 

measured error reported in Table 4 was only slightly higher 

than that seen in the model cases. This satisfied the 

interpolation accuracy of the model.  

 
Table 4: Percent Error for Interpolation Cases 

Case 

p=4 

Meas. Time 

(s) 

Model Time 

(s) 

Difference 

(%) 

S2, 500k tet 1.53 1.5 1.9% 

S4, 500k tet 4.61 4.51 2.3% 

S6, 500k tet 9.2 9.02 2.1% 

 

Next, a series of extrapolation cases were tested using 

S12 and S16 for the 3 mesh refinements used earlier and S2-

S16 for a 500k tet mesh refinement. As the number of 

processors, angles, and cells increases, any terms missing 

from the model will become increasingly evident. This is a 

critical step as the original model envelope used rather small 

problems to establish a trend. Figure 9 shows the full set of 

quadrature cases for the 500k tet mesh with lines 

representing the model and markers representing the 

measured parallel component times.  
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Figure 9: Extrapolation cases on a 500k tet mesh 

Immediately, it is evident that there is a loss of model 

accuracy with increasing processor counts. This effect was 

suppressed in the earlier original development due to the 

low quadrature and correspondingly low numbers of 

processors. What had looked like ~2% error resulting from 

runtime noise was the beginning of a much larger deviation. 

By evaluating up through S16 on a larger mesh problem, 

several important details could be inferred. First, the error 

term continues to grow with p (reaching almost 25% in Fig. 

9); and, second, the error is independent of the quadrature. 

This can be determined by evaluating a “column” of points 

in the plot. For example, looking at the first data point right 

of p=64 for S8, S12, & S16, one can observe that the relative 

error of each trace is approximately the same, about 20%. 

This relation holds true for all “columns” in the plot. Taken 

together, these two details indicate that the model is missing 

a term that grows purely in p. 

To test this hypothesis, the difference between the 

model and actual data in Fig. 9 was converted to a 

Δ𝑔𝑟𝑖𝑛𝑑 𝑡𝑖𝑚𝑒 and plotted against log2 𝑝. As shown in Fig. 

10, the resulting trend is highly linear. This indicates that a 

purely processor count dependent change in grind time is 

present and needs to be corrected globally in the model.  

Based on these results, the grind time was modified 

from that shown in Eq. 3 to one which includes an error 

term with a processor count dependency. 

 

𝑔𝑟𝑖𝑛𝑑 𝑡𝑖𝑚𝑒 =   
𝑡𝑖𝑚𝑒(𝑚 𝑎𝑛𝑔𝑙𝑒𝑠,   𝑁 𝑐𝑒𝑙𝑙𝑠 )

𝑚∗𝑁
+ 𝑓(𝑝)        (4) 

 

As shown in Fig. 11, this modification greatly reduces 

the errors present in Fig. 9, but it also raises some concerns 

regarding the efficiency of the code. These concerns will be 

discussed in the conclusions section. This growth in grind 

time is likely the result of an inefficiency in the code which 

is causing unnecessary communication or access to a shared 

network resource, like file I/O.  

 

 
Figure 10: Per processor change in grind time 

 

 
 
Figure 11: Updated model extrapolation cases on a 500k tet mesh 

With the correction applied, see Fig. 11, the error drops 

from a maximum of ~25% to a maximum of ~3% for all the 

cases shown in Fig. 9. This correction can be further applied 

to the interpolation and foundational cases to improve their 

accuracy to similar levels. However, since the number of 

operations is much smaller in those cases, the total effect of 

the correction is smaller.  

Finally, the model was used to predict a set of external 

cases. For these, the Takeda-IV [6] and Godiva benchmarks 

were selected. These benchmarks provide both a 

homogenous and heterogeneous material test case on a 

geometry dissimilar from the one used in constructing the 

model.  

The range of quadratures was run against a ~15k tet 

Takeda-IV mesh and a ~3k tet Godiva mesh. As this marks 

a step away from the previous model problems both in mesh 

size and geometry, it is expected that the results will not be 
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as clean as the ~3% error seen previously. However, as the 

solver treats all power iteration problems in the same 

fashion, the model should still serve as an accurate predictor 

of problem runtime.  

 
Table 5: Actual and Model Results for External Tests 

Case 

 

Time 

(s) 

Model Time 

(s) 

Difference 

(%) 

Godiva, 3k tet    

S8  p=40 1.17E-02 1.36E-02 16% 

 p=80 5.88E-03 6.78E-03 15% 

S12 p=84 1.24E-02 1.36E-02 10% 

 p=168 6.28E-03 6.78E-03 8% 

S16 p=144 1.24E-02 1.36E-02 10% 

 p=288 6.40E-03 6.79E-03 6% 

Takeda, 15k tet    

S8  p=40 6.71E-02 7.28E-02 9% 

 p=80 3.44E-02 3.65E-02 6% 

S12 p=84 6.80E-02 7.29E-02 7% 

 p=168 3.55E-02 3.65E-02 3% 

S16 p=144 7.04E-02 7.30E-02 4% 

 p=288 3.70E-02 3.65E-02 1% 

  

As is shown in Table 5, the PPM predicts the parallel 

runtime of these two problems reasonably well. Even the 

shortest measured time is well above the clock precision, 

1E-6 s, as reported by MPI_Wtick. Discounting the smallest 

Godiva case, the maximum error across the two problems is 

about 10%. However, for the Takeda-IV cases, the error is 

often equivalent to that seen in the extrapolation cases, ~1-

4%.  This difference in prediction error, especially as the 

problems grow smaller, may result from several sources 

such the relative memory footprints of the two problems or 

hardware effects. The Takeda mesh is about double the size 

of the smallest mesh used to establish the model, while the 

Godiva mesh is almost three times smaller. Due to the very 

small size of the problem, the Godiva mesh could be 

benefitting from caching effects. Regardless of these effects, 

the model provides a good estimate of the runtime for 

problems outside of the original model set. Additionally, the 

accuracy is highest in high processor count cases. As it is 

most effective to use THOR’s angular domain 

decomposition with 𝑝 = 𝑚(𝑚 + 2) , this is the more 

relevant region for high accuracy estimates.  

 

5. Evaluating the Combined Model 

 

With the communication and parallel operations 

modelled, the vast majority of the work in any given 

iteration has been quantified. The remaining work in the 

inner, outer, and sweep operations is almost entirely 

composed of variable management and I/O, both to the 

screen and files. It was determined that, were the I/O to be 

removed, the remaining work would be negligible. And, the 

I/O behavior is rather small (e.g. printing a one line 

summary to the screen / a file). Based on this, it was decided 

to mark the constants of the remaining sections as negligible 

and to roll the resulting time differences into the error 

already present in the model. This avoids having to 

characterize time contributions, like file access time, which 

are dependent on a huge number of hardware and network 

parameters. This gives an effective PPM expression of: 

 

𝑇𝑠𝑜𝑙𝑣𝑒 ≈  
𝑚∗(𝑚+2)

𝑝
∗ 𝑁 ∗ 𝑔𝑟𝑖𝑛𝑑 𝑡𝑖𝑚𝑒(𝑝) + 𝑓(𝑐𝑜𝑚𝑚)         (5) 

 

Where the communication function is given by the fit in 

Fig. 6 and the grind time is 2.3E-6 s plus the processor 

based error given in Fig. 10. For problems with large 

numbers of groups, a term may need to be added to address 

the increasingly non-negligible cost of constructing the 

group sources. 

With the notable exception of the processor dependent 

grind time, this model matches the form of the one proposed 

at the beginning of this paper. Several of the parameters 

proved negligible or inseparable, however the general 

behavior with regards to N, m, and p is preserved.  

As a final test of the model, the communications model 

and parallel sweep model were integrated to create a general 

parallel performance model. This model was then compared 

to several cases of the simple cube test to show that the two 

major components are accurate and represent the total run 

time of a THOR outer iteration.  

 

 
Figure 12: Comparing outer iteration measured time to model time 

from Eq (5) 

As figure 12 shows, the time represented by the Eq (5) 

model is a very good fit for the total time of an outer 

iteration. This result does benefit somewhat from 

cancellation of errors. In the low p regime, communication 

time is often poorly estimated. But, it has a very small 

contribution to the problem. Elsewhere, overestimation of 

the communication time can negate errors incurred by not 
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explicitly accounting for some operations in the outer and 

inner loops.  

 

IV. CONCLUSIONS 

 

As this paper has shown, a parallel performance model 

can be a powerful tool for characterizing the behavior of 

complex codes such as the THOR deterministic transport 

code and the computing platform they are executed on. As 

the capabilities of THOR grow, it becomes increasingly 

important that each addition to the code is well 

characterized and well implemented. The addition of a 

single inefficient routine can hamper the efficiency of the 

entire solver. To address this need, the PPM can be used as 

a tool for both characterization and evaluation. Any piece of 

code can be functionally characterized based on its run-time 

behavior and it can be evaluated by comparing the resulting 

functional description to the description expected by a 

theoretical model.  

The PPM developed here does a good job of 

characterizing the behavior of THOR over a broad spectrum 

of input configurations. However, due to the multiple 

sources of uncertainty found in communication and system 

level factors, there is an irreducible amount of noise. Yet, 

even given this limitation, the model shows percentage 

point order agreement (~1-3%) for both interpolated and 

extrapolated cases on the simple cube mesh and ~5-10% 

error on the Godiva and Takeda-IV meshes. 

The PPM has already been applied in a preliminary 

evaluative role as well. As shown in the results section, the 

final model was modified with a p term in the grind time. 

While this does not invalidate the model, it does mark a 

deviation from the expected behavior. This deviation 

indicates the possibility of sub-optimal or inefficient 

implementation in the code and narrows down both the 

location and type of the possible problem. Work is ongoing 

to identify and, if necessary, correct the exact source of this 

divergence.   

 Identifying these opportunities for improvement 

requires an understanding of both the theoretical and actual 

behavior of the code. But, as identified issues are addressed, 

the actual behavior should begin to align increasingly 

closely with the theoretical. This provides a metric by which 

code implementation and efficiency can be verified.   

The PPM discussed in this paper is a foundational tool 

designed to model one of THOR’s primary solving routines. 

For it to remain applicable, the PPM must grow alongside 

THOR and represent new functionality as it is added. This 

process can be done modularly. As was done here, each new 

piece of functionality can be modeled individually and then 

integrated into the total model. Ideally, this process will 

allow for modeling and evaluation of code before it is 

finalized into THOR. In this way, the PPM serves as another 

integration test intended to keep the THOR codebase as 

efficient and well implemented as possible. 
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