
M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

Development Of A Parallel Performance Model For The THOR Neutral Particle Transport Code

Raffi Yessayan1*, Yousry Azmy1, Sebastian Schunert2

1North Carolina State University Department of Nuclear Engineering

3140 Burlington Engineering Labs, 2500 Stinson Drive, Raleigh, NC, 27695
2Idaho National Laboratory, Nuclear Science &Technology Directorate, Idaho Falls, ID

*rayessay@ncsu.edu

Abstract – The THOR neutral particle transport code enables simulation of complex geometries for

various problems from reactor simulations to nuclear non-proliferation. It is undergoing a thorough V&V

requiring computational efficiency. This has motivated various improvements including angular

parallelization, outer iteration acceleration, and development of peripheral tools. For guiding future

improvements to the code’s efficiency, better characterization of its parallel performance is necessary. A

parallel performance model (PPM) can be used to evaluate the benefits of modifications and to identify

performance bottlenecks. The PPM development incorporates an evaluation of network communication

behavior over heterogeneous links that are present in the utilized High Performance Computer (HPC) and

a functional characterization of the per-cell/angle/group runtime of each major code component. After

evaluating several possible sources of variability, this resulted in a communication model and a parallel

component model. The former’s accuracy is bounded by the variability of communication on the HPC while

the latter has an error on the order of 1%.

I. INTRODUCTION

The THOR neutral particle transport code is being

developed to allow for the simulation of complex

geometries for a variety of problem types across the fields

of reactor simulation and nuclear non-proliferation. It

implements the arbitrarily high order transport method of

the characteristic type (AHOTC) on unstructured,

tetrahedral meshes [1].

Currently, THOR is undergoing thorough Verification

and Validation (V&V) as part of its development process.

The need for computational efficiency in this process has

motivated a variety of improvements to the code including

angular parallelization, outer iteration acceleration, and the

development of peripheral tools [2]. It has also been

recognized that, for guiding future improvements to the

efficiency of the code, a better characterization of its

parallel performance is essential.

By developing a parallel performance model (PPM) for

predicting THOR’s parallel execution time, one can better

identify the benefits and detriments of various modifications

to the code. This may be used to evaluate the true

effectiveness of future modifications as well as to identify

bottlenecks in existing routines. Additionally, by also

characterizing the system on which THOR runs, one can

identify if sources of efficiency loss are related to the code

or to features of the host system.

As such, a PPM provides a powerful tool not just for

the evaluation of the existing code, but as a benchmarking

method for future, more significant modifications to THOR,

such as parallelization with spatial domain decomposition

(SDD). In addition, the obtained characteristic of the host

system constitutes valuable information for other users of

the same system, the system’s administrators, and future

HPC procurement.

II. DESCRIPTION OF THE ACTUAL WORK

This work details the development of a PPM for THOR

executed on a representative leadership-class HPC whose

specifications will be detailed in Sec. II-2. This model is

intended to characterize the behavior of the code for an

arbitrary problem on an arbitrary configuration executed on

the targeted HPC. However, both THOR and the utilized

hardware introduce unique challenges in terms of model

characterization.

1. Challenges to Modeling THOR’s Parallel Performance

As is typical, THOR implements a variety of solvers.

These include an outer iteration procedure for external

source problems and (accelerated) power iterations as well

as JFNK solvers for eigenvalue problems. For simplicity,

the developed model only reflects the behavior of the un-

accelerated power iteration solver. This solver was chosen

as it is the most mature of the existing options and because

it forms the basis for both of the non-JFNK accelerated

solvers. Since the currently implemented accelerations have

a relatively small impact on the runtime of any given

iteration, it is logical that the timing model will hold,

roughly, on a per iteration basis for all of the sub-

implementations of the power iteration solver.

Furthermore, development of THOR’s PPM provides a

unique challenge due to the nature of its characteristic

solver. Instead of solving a given arbitrary tetrahedral (tet)

cell directly, THOR subdivides the cells into canonical

tetrahedrons each having a single incoming and outgoing

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

face. This allows a single code section to implement

AHOTC on each of the canonical tetrahedrons comprising

an arbitrary cell. While this simplifies the solving of each

sub-cell, it introduces a degree of uncertainty in the total

number of sub-tets in a given mesh as their number varies

with quadrature angle being swept and with cell orientation.

The 6 possible canonical tetrahedron decompositions are

shown in Fig. 1. The first three correspond to the incoming

direction of particle motion, Ω̂, entering the tetrahedron on a

face, entering on an edge, or exiting on a face, while the

latter three correspond to Ω̂ laying along a tetrahedron edge

or face with differing numbers of exposed faces.

Figure 1. Canonical tetrahedron decompositions during the THOR

cell solve operation [1]

After solving the characteristic equations in all of the

generated canonical tets, the data from each is recombined

into values representative of the entire cell. This mesh-cell

level flux data on each outgoing face is then passed to the

next downstream neighbor in the sweep operation and the

single-cell solver starts over. This makes the cell-splitting

process a black box. Outside of the single cell solver, all of

the code components and transport operations only see the

recombined mesh cells. The details of the characteristic cell

solve are covered in detail in Ref. [1].

2. Challenges Resulting from HPC’s Architecture

While larger systems would be required to truly test the

efficiency of massively parallel schemes like SDD, the

utilized HPC has proven an ideal testbed for the current

developmental phase of THOR. It is sufficiently large that

the serial and mid-scale parallel functions (10s-100s of

processors) can be executed easily and frequently.

The utilized computing platform is a ~25,000 processor

system built by SGI using a 7D enhanced Hypercube

topology. Recent upgrades to the system have introduced a

number of heterogenous compute nodes. To avoid

complications from this, all work was done on homogenous

allocations. The 7D enhanced Hypercube topology was

developed by SGI to provide a high bandwidth low latency

environment in the framework of a standard 7D hypercube

architecture [3]. In addition to an interesting system

architecture, the HPC implements a variety of hardware

levels. Within the 7-dimensional hypercube, a single

processor also belongs to a rack, a server, and a processor

die. Each node has two processors of 12 (or, for the newer

nodes, 18) cores each. This results in several different forms

of communication. Two processing nodes located on the

same die may communicate directly. Two nodes in the same

server but on different chips may share a bus. Finally, two

processors on completely different systems will be governed

by the network communications interface. This hardware

layout is common for large cluster systems and introduces a

large number of unknowns regarding relative node locations

in both physical and network space. Comparatively, on a

personal computer or small server, parallel communication

may be limited solely to on-die or on-board hardware

communication buses.

Coupled with this hardware variation is the inability to

request a specific subset of the system. Using a standard

PBS scheduler, users may request exclusive use of a

processor, a server, or a group of servers; but, the

scheduling system assigns the resulting block of processors.

To the authors’ knowledge, the system makes no guarantee

of locality or grouping during a standard allocation. So,

when a communication network is established, the cost of

traversing the links in the tree can vary as a function of

network location in the full network hypercube. From a

performance standpoint, the varying communication speed

is never detrimental. The slowest communication path will

yield the behavior expected by a network-interconnected

hypercube. However, the uncertainty in the allocation can

mean that code behavior is difficult to quantify with

precision. A request for 6 processors each on 2 servers may

yield any 6 of the 24 processors per server and 2 servers at

any point in the hypercube. Even in this small case, there are

multiple resulting combinations of on-die, on-board, and

network communication and, consequently, difficult to

predict latency and contention.

As quantifying this uncertainty in a model is nearly

impossible, the model simply aims to determine whether the

variance due to this phenomenon is significant when

compared to both the aforementioned variability of the code

and the total runtime of the other components.

3. The Parallel Performance Model

To develop the PPM, THOR was divided into 3 major

sections – input, solver, and output. For any reasonably

large problem, the read-in/write-out sections are negligibly

small as they are not executed repeatedly. Hence, their

contribution to execution time was ignored. For very large

problems, like the ATR configuration in [2], the initial read-

in and final write-out can be on the order of a half hour.

Still, a single outer iteration’s execution time is also on this

order. So, the fraction of time consumed by I/O drops off

with each iteration. However, as the number of processors

increases, Amdahl’s law states that the total run time of the

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

code will approach that of the serial portion. This would

include the serial I/O operations during initialization.

Within the solver section, the code was further

subdivided into five major sections that represent the code’s

primary logical functions; these are nested as shown in Fig.

2.

Figure 2: Timing model’s logical components

Using the shown structure, the total run-time of each

component is given as the sum of the run-time of its child

component and the operations executed in that routine. At

the lowest levels of the call tree, the sweep operation is

subdivided into two parts to account for the angular domain

decomposition (ADD) parallelization.

The parallel sweep contribution accounts for the time

taken to sweep over m (m+2) angles, with vacuum boundary

conditions, in an Sm quadrature set each of which comprises

a sweep over N tetrahedrons using p processors. The time

consumed for each cell/angle combination solve is referred

to as the grind time. The communication portion represents

the two spanning-tree communications used at the end of the

sweep operation to accumulate flux angular moments and

distribute their values to all processors. The AHOTC

formalism comprises an arbitrary-order expansion of the

flux variables within each cell and its bounding faces [1]. In

this work, we consider the zero spatial-expansion order

option in THOR but extension of the PPM to higher order

expansions should be rather straightforward. Furthermore,

all timing measurements were made using a one group

problem under the assumption that a g group problem’s

execution will scale with g. In problems with a very large

number of groups, this assumption may not hold. But, it

should also be a straightforward task to modify the model

with a factor for time growth in terms of g. Also, THOR

does not implement any parallelization in energy at this time

due to that parallelization’s asynchronicity, which is likely

to increase the number of iterations thereby adversely

affecting parallel efficiency.

Based on this description, we propose the timing model

for a single outer running a single inner iteration:

𝑇𝑠𝑜𝑙𝑣𝑒 = τconst + 𝑁 ∗ (𝜌 ∗ [𝜏𝑜𝑢𝑡𝑒𝑟 + 𝜏𝑖𝑛𝑛𝑒𝑟] + 𝜏𝑠𝑤𝑒𝑒𝑝 +

𝑚∗(𝑚+2)

𝑝
∗ 𝜏𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙) + 𝑓(𝜏𝑐𝑜𝑚𝑚𝑠 , 𝑝), (1)

where N is the number of cells, 𝜌 is the number of angular

moments, and 𝜏 represents the time constant of each major

function block exclusive to that routine (i.e. 𝜏𝑜𝑢𝑡𝑒𝑟 is the

time spent in the outer iteration that is not in the inner

iteration). For multiple inner iterations, all values except

𝜏𝑜𝑢𝑡𝑒𝑟 would be multiplied by the number of inner

iterations.

The parallel sweep routine demonstrates the effects of

parallelization. In serial codes, one can expect the sweep

work to scale linearly with the number of cells and angles.

Here, as a result of implementing ADD, the dependence on

number of angles is modified. Now, instead of scaling

simply with the number of angles, one also can expect to see

a 1/p relation. This represents the process of distributing the

work across processors based on the angle. However, if p is

not a factor of the number of angles, work is unevenly

assigned. In this case, this code section’s execution time will

behave as if p were lowered to the nearest multiple of

m(m+2), i.e. ⌈
𝑚(𝑚+2)

𝑝
⌉.

Finally, there is the function representing the

communication time component. This component is

dependent not only on the implementation of the code, but

also on the architecture of the system the code is running on

and the topology of the subsystem assigned at run time for

executing the specific case. A proposed model for this

behavior that recognizes the underlying hypercube topology

of the HPC is given by:

𝑓(𝜏𝑐𝑜𝑚𝑚𝑠 , 𝑝) = 2 ∗ log2(𝑝) ∗ (𝜏𝑐𝑜𝑚𝑚𝑠 +
2𝑁∗𝜌

𝛽
) (2)

Here, 𝛽 is the system bandwidth in words/s and 𝜏𝑐𝑜𝑚𝑚𝑠

is the time to initialize communication, i.e. communication

latency. As discussed before, these constants will be highly

dependent on the processor allocation at runtime. As such, it

is unlikely that generally applicable explicit values of these

parameters can be extracted. The log2(p) represents the

number of send components in a tree based communication

system. This is the system implemented for communication

in this topology. Next, as the communication functions are

2-way (i.e. they send and receive data), the latency and data

size are doubled. The ratio of N to the bandwidth gives the

time consumed in actual data transfer. The entire equation is

multiplied by two to represent the two communication

operations that occur per iteration. These two operations are

used to accumulate the scalar flux calculated on each

processor and then to redistribute it back amongst all

processors.

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

III. RESULTS

Timing results were obtained for the communication

variation, canonical cell variation, and major parts of the

timing model. Data was collected by running one of

THOR’s standard test problems, a simple cube with various

levels of mesh refinement with S2 through S16 quadrature.

Where timing data was collected, each timing case was run

5 times and averaged to produce an approximation to the

expected value. Additionally, for the evaluation of the

variance in the number of canonical tetrahedrons, the C5G7

[4] and Godiva [5] benchmark configurations were used.

After evaluation of the model coefficients, the PPM was

validated against configurations and problems not included

in the original measurement set used in estimating the model

parameters.

1. Canonical Tetrahedron Variation

Based on the orientation of a tetrahedral cell and the

incoming angle, any arbitrary tetrahedron can be subdivided

into 2, 3, or 4 canonical tetrahedra [1]. These configurations

were shown in Fig. 1. Because of this variability, it is

theoretically possible for two meshes featuring the same

number of cells to exhibit differing workload for sweeps

along different angles and for a single mesh to feature

varying workloads between regions with identical number

of cells and also between sweeping directions.

To quantify this behavior, the simple cube test problem

[1] was solved at 4 different mesh refinement levels and 5

different quadratures. This problem features a cubic domain

with vacuum boundaries and a single energy group. Table 1

summarizes the results for these cases.

As can be seen, the degree of variation between the

cases is negligible. All the cases demonstrate an average

number of canonical tetrahedrons around 3.67. However,

there does appear to be a slow upward trend as the number

of angles increases. Regardless, as long as the variation

stays on the order of 10-4 or 10-5, it is unlikely that it will

contribute significantly to imprecision in the performance

model.

While the reason for the extremely low variance is not

known, we conjecture that it may result from the simple

configuration of this test problem. The simple cube test

presents a very regular geometry with a good aspect ratio.

These factors could result in very little variation between

input configurations. Additionally, given the regularity of

the domain, it is likely that mesh-refinement produces

similar results in all regions.

Table 1: Simple Cube Test - Canonical Tet Variation

Angles # Cells Avg. Subcells Std. Dev

8 8,859 3.66836
80 8,859 3.66836 0

288 8,859 3.66836

8 151,562 3.66812
80 151,562 3.66814 1.53E-05

288 151,562 3.66815

8 194,332 3.66802
80 194,332 3.66804 1.15E-05

288 194,332 3.66804

8 426,885 3.66813
80 426,885 3.66820 4.73E-05

288 426,885 3.66822

To address this concern, a small number of

supplemental cases were run using an unfolded version of

the 2x2 assembly C5G7 3D Benchmark. The unfolding was

done to convert the reflective boundary conditions present

in C5G7 to vacuum boundaries. The resulting mesh has

approximately 20 million tetrahedrons and a much more

complicated geometry than the cube test problem. However,

only a single mesh was available for testing with two

angular quadratures as reported in Table 2. Additional

testing was performed using a very small model of the

Godiva benchmark. These results are given in Table 3.

Table 2: C5G7 - Canonical Tet Variation

Angles Mesh Size Avg. Subcells 𝚫𝑨𝒗𝒈

8 20617414 3.618

24 20617414 3.640 .022

In Table 2, we see that the difference even between the

S2 and S4 quadratures is significantly larger – on the order of

one percent. This is still a relatively small effect, compared

to for example the effect on execution time from acquiring

different processors at run time. But, it does indicate that

there is the possibility for greater degrees of variation

between cases than suggested by the simple cube case.

Table 3: Godiva - Canonical Tet Variation

Angles Mesh Size Avg. Subcells 𝚫𝑨𝒗𝒈

8 274 3.66836

80 274 3.66836 0

288 274 3.66836

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

The Godiva mesh does not show the strong fluctuation

present in the C5G7 mesh. Instead, it is more akin to the

results obtained in the simple cube test. As these two tests

are homogenous systems they are meshed into more regular

tets across the entire geometry; so, it is likely that the

fluctuations present in C5G7 are a result of mesh behavior

along material boundaries. This would indicate that highly

heterogeneous configurations or those with realistically

shaped material interfaces may result in “biased” meshes

and cause the average work to drift with mesh refinement or

increasing number of angles. This would have to be

evaluated on a case by case basis and used to modify the

grind time to ensure that the PPM remains applicable.

2. Communication Time Variation

As stated previously, communication on the utilized

computing platform can be subdivided into two

components, a communication tree building time and a data-

transfer portion [2]. Below about 105 words, the tree-

building time dominates. The tree building time increases

linearly with log2(p) and the communication time increases

linearly with the data size. This behavior is shown in Fig. 3.

The figure was made using data from an external routine

which implements MPI AllReduce operations with sizes

similar to those found in THOR. Across all data sizes and

processor counts, the total communication time can be

decomposed into two parts. The first is a constant time

region which scales with the size of the binary tree used in

the communication. The second is the region in which time

increases linearly with the size of the data being transmitted.

Figure 3: Generic behavior of the HPC during MPI AllReduce

operations [2]

To evaluate this behavior for THOR, the total

communication time was measured for processor counts of

1, 2, 4, 16, and 64 and mesh refinement levels of ~8,000,

~150,000, and ~200,000 tets on the simple cube problem.

As expected, for the ~8,000 cell case, total communication

times on the order of 10-3s to 10-2s were observed. These

align well with the tree construction times shown in Fig. 3.

For the more refined meshes, the results also fall in line with

the data predicted by the communication testing.

Unfortunately, even for the most refined case, the number of

cells is still relatively small. This results in all the

experimental cases occupying a very small region of

predicted behavior.

The time variation between repetitions of identical

cases was calculated. As expected, the run-time standard

deviation between runs on the same processor allocation is

very low, often on the order of 10-4 or 10-5s. However,

occasional cases were seen where the standard deviation

was on the order of 5-10% of the measured time. Rarely,

more extreme spikes resulted in run to run differences of an

order of magnitude. These outliers are likely the result of

network contention and are unlikely to occur repeatedly

over the course of a long-running problem. However, in the

event that the system is heavily loaded, it is possible to see

an unpredictable increase in the cost of communication.

Having established that communication times are

generally consistent on constant allocations, the cases were

rerun on several different allocations. Since, as discussed,

one cannot request a specific (or different) allocation, this

was accomplished by rerunning the cases over the course of

several days. The presence of other users’ jobs should

guarantee that available allocations vary with time. Initially,

under these conditions, it was observed that measured

communication times were highly inconsistent between

allocations. This resulted in not just varying communication

times, but varying trends in communication times. To

highlight this variability, two cases are presented in Figs. 4

and 5. The blue line represents an allocation large enough to

run 𝑆16 (p = 288) regardless of the quadrature of the current

case, while the orange line is an allocation where 𝑝 =
𝑚(𝑚 + 2) for each attempted m value. The values along the

horizontal-axis are the 𝑐𝑒𝑖𝑙(log2(𝑝)) and correspond to the

depth of the binary tree used in the reduce operation.

Figure 4: Differing communication trends for p>m(m+2) and

p=m(m+2) for S8

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

Figure 5: Differing communication trends for p>m(m+2) and

p=m(m+2) for S12

It is likely that the change in trend in Fig. 4 results from

the 3 different loading patterns that must be considered

when allocating processors. For the full S16 cases, 288

processors were allocated and p was selected to be a factor

of m(m+2) for each case (maximizing efficiency). The

resulting communication tree only depends on processors

active in the case. As such, since p is likely not a power of

two, the tree has empty leaves. Still, all possible leaf

positions are still the same distance from the root node.

However, the allocated network sub-hypercube is sized

based on the allocation. This means that processors assigned

to the program do not necessarily come from the smallest

encapsulating sub-cube and that distance from root can vary

by multiple hops.

Once the number of processors is explicitly allocated to

be m(m+2), the network uncertainty is reduced. There are

still various possible configurations, but they all exist in the

same dimensionality. As can be seen above, this results in

the better behaved trends shown in orange.

Yet, as the S12 case shows, there is still some degree of

drift in communications time between allocations. Even

when changing the allocation size does not dramatically

change the shape of the communication trend, there are still

frequently changes in the average time of any given case.

This is demonstrated by all cases and likely results from day

to day changes in system loading/contention.

Based on a subset of the data collected with m(m+2)

sized allocations, an approximate model of the

communication was developed. As shown in Fig. 6, the fit

demonstrates the log2 𝑝 dependence predicted in the

theoretical parallel performance model (Eq. 2). However,

there are still significant outliers both at very low p and at

various points throughout the curve.

Figure 6: THOR/HPC communication time fit

3. Developing the Parallel Sweep Model

The innermost evaluated function is the parallel sweep

routine. By proper selection of p this routine divides the

sweep operation evenly among processors based on the

number of angles. Hence, it is expected that the execution

times will exhibit a 1/p behavior while 𝑝 ≤ 𝑚(𝑚 + 2). To

evaluate this, a set of cases was selected. These included

combinations of Sm m = 2, 4, and 6 for the simple cube

problem with mesh sizes of ~8k, 150k, and 200k tets. The

Level-Symmetric quadrature set was used with 𝑀 =
𝑚(𝑚 + 2) angles. A selection of these cases is shown in

Fig. 7 with the dashed lines representing the regions where

𝑝 ≤ 𝑚(𝑚 + 2). Data was collected at 𝑝 = 1, 2, 4, 16, 64.

Figure 7: 1/p relationship between processor count and parallel

sweep time

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

As expected, this plot shows a strong 1/p trend where

the number of processors is less than or equal to the number

of angles. If there are more processors than angles, then

some processors will sit idle and not contribute to parallel

speedup. This results in the trend flattening out for higher p.

Further information can be extracted from the plot by

analyzing the amount of work performed for any value of p

as the number of angles changes. This shows the

dependence of the execution time on increasing number of

angles. Since the total amount of work scales approximately

linearly with the number of angles, one would expect to see

a linear relationship between execution time and number of

angles for each p. Additionally, the ratio of the slopes

between any two sets of points should yield the ratio of the

number of processors used as depicted in Fig. 8.

From these values, we can extract the grind time. This

is done by evaluating the time per cell per angle, a value we

have defined as the grind time.

𝑔𝑟𝑖𝑛𝑑 𝑡𝑖𝑚𝑒 =
𝑡𝑖𝑚𝑒(𝑚 𝑎𝑛𝑔𝑙𝑒𝑠, 𝑁 𝑐𝑒𝑙𝑙𝑠)

𝑚∗𝑁
 (3)

Equation 3 was evaluated using both sets of data plotted

in Fig. 8 for angular dependency as well as with the

equivalent calculation for cell-count dependency. These

methods yielded grind times of ~2.30E-6 and ~2.33E-6, a

difference of ~1%. For the sampled cases, the variance in

runtime between case repetitions was typically ~0.5%.

Figure 8: Linear relation between time and number of angles for a

fixed value of p

Finally, the evaluated grind time was used to predict the

data points used to generate the model. Since the variance in

sweep times was rather small, the predictions were quite

good – on the order of single percent error. Since this error

sets the baseline model error, it should be as low as

possible. Evaluating the runtime of other cases can never be

expected to be higher accuracy than this.

4. Evaluating the Parallel Sweep Model

Having established a model for parallel sweeping using

a limited subset of cases, it is necessary to validate the

model for general cases not included in its own

development. These tests can be broken down into 3 cases –

interpolation, extrapolation, and external. Interpolation

cases are those whose parameters are within the envelope

defined in the previous section and which use the same

geometry. Extrapolation uses the same geometry but

parameters outside the envelope (i.e. higher order

quadratures and mesh refinements). Finally, external

problems use a different geometry at a wide set of parameter

configurations. Based on these descriptions, one would

expect that the interpolation results will have errors

comparable to those used to develop the model.

First, for the interpolation cases, no other mesh

refinements were available. And, as S2-6 had been used,

there were no unused quadratures in the interpolation set. To

address this, a set of edge cases were selected instead. These

edge cases are in the interpolation envelope in quadrature,

but not in mesh refinement. They use a 500k tet refinement

of the simple cube mesh. Since the fits in figures 7 and 8 are

very clean, these cases were expected to conform to the

baseline error established for the model cases. For all 3, the

measured error reported in Table 4 was only slightly higher

than that seen in the model cases. This satisfied the

interpolation accuracy of the model.

Table 4: Percent Error for Interpolation Cases

Case

p=4

Meas. Time

(s)

Model Time

(s)

Difference

(%)

S2, 500k tet 1.53 1.5 1.9%

S4, 500k tet 4.61 4.51 2.3%

S6, 500k tet 9.2 9.02 2.1%

Next, a series of extrapolation cases were tested using

S12 and S16 for the 3 mesh refinements used earlier and S2-

S16 for a 500k tet mesh refinement. As the number of

processors, angles, and cells increases, any terms missing

from the model will become increasingly evident. This is a

critical step as the original model envelope used rather small

problems to establish a trend. Figure 9 shows the full set of

quadrature cases for the 500k tet mesh with lines

representing the model and markers representing the

measured parallel component times.

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

Figure 9: Extrapolation cases on a 500k tet mesh

Immediately, it is evident that there is a loss of model

accuracy with increasing processor counts. This effect was

suppressed in the earlier original development due to the

low quadrature and correspondingly low numbers of

processors. What had looked like ~2% error resulting from

runtime noise was the beginning of a much larger deviation.

By evaluating up through S16 on a larger mesh problem,

several important details could be inferred. First, the error

term continues to grow with p (reaching almost 25% in Fig.

9); and, second, the error is independent of the quadrature.

This can be determined by evaluating a “column” of points

in the plot. For example, looking at the first data point right

of p=64 for S8, S12, & S16, one can observe that the relative

error of each trace is approximately the same, about 20%.

This relation holds true for all “columns” in the plot. Taken

together, these two details indicate that the model is missing

a term that grows purely in p.

To test this hypothesis, the difference between the

model and actual data in Fig. 9 was converted to a

Δ𝑔𝑟𝑖𝑛𝑑 𝑡𝑖𝑚𝑒 and plotted against log2 𝑝. As shown in Fig.

10, the resulting trend is highly linear. This indicates that a

purely processor count dependent change in grind time is

present and needs to be corrected globally in the model.

Based on these results, the grind time was modified

from that shown in Eq. 3 to one which includes an error

term with a processor count dependency.

𝑔𝑟𝑖𝑛𝑑 𝑡𝑖𝑚𝑒 =
𝑡𝑖𝑚𝑒(𝑚 𝑎𝑛𝑔𝑙𝑒𝑠, 𝑁 𝑐𝑒𝑙𝑙𝑠)

𝑚∗𝑁
+ 𝑓(𝑝) (4)

As shown in Fig. 11, this modification greatly reduces

the errors present in Fig. 9, but it also raises some concerns

regarding the efficiency of the code. These concerns will be

discussed in the conclusions section. This growth in grind

time is likely the result of an inefficiency in the code which

is causing unnecessary communication or access to a shared

network resource, like file I/O.

Figure 10: Per processor change in grind time

Figure 11: Updated model extrapolation cases on a 500k tet mesh

With the correction applied, see Fig. 11, the error drops

from a maximum of ~25% to a maximum of ~3% for all the

cases shown in Fig. 9. This correction can be further applied

to the interpolation and foundational cases to improve their

accuracy to similar levels. However, since the number of

operations is much smaller in those cases, the total effect of

the correction is smaller.

Finally, the model was used to predict a set of external

cases. For these, the Takeda-IV [6] and Godiva benchmarks

were selected. These benchmarks provide both a

homogenous and heterogeneous material test case on a

geometry dissimilar from the one used in constructing the

model.

The range of quadratures was run against a ~15k tet

Takeda-IV mesh and a ~3k tet Godiva mesh. As this marks

a step away from the previous model problems both in mesh

size and geometry, it is expected that the results will not be

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

as clean as the ~3% error seen previously. However, as the

solver treats all power iteration problems in the same

fashion, the model should still serve as an accurate predictor

of problem runtime.

Table 5: Actual and Model Results for External Tests

Case

Time

(s)

Model Time

(s)

Difference

(%)

Godiva, 3k tet

S8 p=40 1.17E-02 1.36E-02 16%

 p=80 5.88E-03 6.78E-03 15%

S12 p=84 1.24E-02 1.36E-02 10%

 p=168 6.28E-03 6.78E-03 8%

S16 p=144 1.24E-02 1.36E-02 10%

 p=288 6.40E-03 6.79E-03 6%

Takeda, 15k tet

S8 p=40 6.71E-02 7.28E-02 9%

 p=80 3.44E-02 3.65E-02 6%

S12 p=84 6.80E-02 7.29E-02 7%

 p=168 3.55E-02 3.65E-02 3%

S16 p=144 7.04E-02 7.30E-02 4%

 p=288 3.70E-02 3.65E-02 1%

As is shown in Table 5, the PPM predicts the parallel

runtime of these two problems reasonably well. Even the

shortest measured time is well above the clock precision,

1E-6 s, as reported by MPI_Wtick. Discounting the smallest

Godiva case, the maximum error across the two problems is

about 10%. However, for the Takeda-IV cases, the error is

often equivalent to that seen in the extrapolation cases, ~1-

4%. This difference in prediction error, especially as the

problems grow smaller, may result from several sources

such the relative memory footprints of the two problems or

hardware effects. The Takeda mesh is about double the size

of the smallest mesh used to establish the model, while the

Godiva mesh is almost three times smaller. Due to the very

small size of the problem, the Godiva mesh could be

benefitting from caching effects. Regardless of these effects,

the model provides a good estimate of the runtime for

problems outside of the original model set. Additionally, the

accuracy is highest in high processor count cases. As it is

most effective to use THOR’s angular domain

decomposition with 𝑝 = 𝑚(𝑚 + 2) , this is the more

relevant region for high accuracy estimates.

5. Evaluating the Combined Model

With the communication and parallel operations

modelled, the vast majority of the work in any given

iteration has been quantified. The remaining work in the

inner, outer, and sweep operations is almost entirely

composed of variable management and I/O, both to the

screen and files. It was determined that, were the I/O to be

removed, the remaining work would be negligible. And, the

I/O behavior is rather small (e.g. printing a one line

summary to the screen / a file). Based on this, it was decided

to mark the constants of the remaining sections as negligible

and to roll the resulting time differences into the error

already present in the model. This avoids having to

characterize time contributions, like file access time, which

are dependent on a huge number of hardware and network

parameters. This gives an effective PPM expression of:

𝑇𝑠𝑜𝑙𝑣𝑒 ≈
𝑚∗(𝑚+2)

𝑝
∗ 𝑁 ∗ 𝑔𝑟𝑖𝑛𝑑 𝑡𝑖𝑚𝑒(𝑝) + 𝑓(𝑐𝑜𝑚𝑚) (5)

Where the communication function is given by the fit in

Fig. 6 and the grind time is 2.3E-6 s plus the processor

based error given in Fig. 10. For problems with large

numbers of groups, a term may need to be added to address

the increasingly non-negligible cost of constructing the

group sources.

With the notable exception of the processor dependent

grind time, this model matches the form of the one proposed

at the beginning of this paper. Several of the parameters

proved negligible or inseparable, however the general

behavior with regards to N, m, and p is preserved.

As a final test of the model, the communications model

and parallel sweep model were integrated to create a general

parallel performance model. This model was then compared

to several cases of the simple cube test to show that the two

major components are accurate and represent the total run

time of a THOR outer iteration.

Figure 12: Comparing outer iteration measured time to model time

from Eq (5)

As figure 12 shows, the time represented by the Eq (5)

model is a very good fit for the total time of an outer

iteration. This result does benefit somewhat from

cancellation of errors. In the low p regime, communication

time is often poorly estimated. But, it has a very small

contribution to the problem. Elsewhere, overestimation of

the communication time can negate errors incurred by not

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

explicitly accounting for some operations in the outer and

inner loops.

IV. CONCLUSIONS

As this paper has shown, a parallel performance model

can be a powerful tool for characterizing the behavior of

complex codes such as the THOR deterministic transport

code and the computing platform they are executed on. As

the capabilities of THOR grow, it becomes increasingly

important that each addition to the code is well

characterized and well implemented. The addition of a

single inefficient routine can hamper the efficiency of the

entire solver. To address this need, the PPM can be used as

a tool for both characterization and evaluation. Any piece of

code can be functionally characterized based on its run-time

behavior and it can be evaluated by comparing the resulting

functional description to the description expected by a

theoretical model.

The PPM developed here does a good job of

characterizing the behavior of THOR over a broad spectrum

of input configurations. However, due to the multiple

sources of uncertainty found in communication and system

level factors, there is an irreducible amount of noise. Yet,

even given this limitation, the model shows percentage

point order agreement (~1-3%) for both interpolated and

extrapolated cases on the simple cube mesh and ~5-10%

error on the Godiva and Takeda-IV meshes.

The PPM has already been applied in a preliminary

evaluative role as well. As shown in the results section, the

final model was modified with a p term in the grind time.

While this does not invalidate the model, it does mark a

deviation from the expected behavior. This deviation

indicates the possibility of sub-optimal or inefficient

implementation in the code and narrows down both the

location and type of the possible problem. Work is ongoing

to identify and, if necessary, correct the exact source of this

divergence.

 Identifying these opportunities for improvement

requires an understanding of both the theoretical and actual

behavior of the code. But, as identified issues are addressed,

the actual behavior should begin to align increasingly

closely with the theoretical. This provides a metric by which

code implementation and efficiency can be verified.

The PPM discussed in this paper is a foundational tool

designed to model one of THOR’s primary solving routines.

For it to remain applicable, the PPM must grow alongside

THOR and represent new functionality as it is added. This

process can be done modularly. As was done here, each new

piece of functionality can be modeled individually and then

integrated into the total model. Ideally, this process will

allow for modeling and evaluation of code before it is

finalized into THOR. In this way, the PPM serves as another

integration test intended to keep the THOR codebase as

efficient and well implemented as possible.

ACKNOWLEDGMENTS

This material is based upon work by the first two

authors (RAY, YYA) supported by the Department of

Energy National Nuclear Security Administration under

Award Number(s) DE-NA0002576.

REFERENCES

1. R. FERRER, Y. AZMY, “A Robust Arbitrarily High-

Order Transport Method of the Characteristic Type for

Unstructured Grids,” Nucl. Sci. and Eng., 172, 33

(2012)

2. R. YESSAYAN, Y. AZMY, S. SCHUNERT,

“Verification and Validation of the Tetrahedral

Radiation Transport Code THOR based on the

Advanced Test Reactor Benchmark,” Proc. PHYSOR

2016, Sun Valley, Idaho, May 1–5, 2016, American

Nuclear Society (2016).

3. R. WOLFF, “Nasa Pleiades Infiniband Communications

Network”, High Performance Distributed Computing;

http://www.hpdc.org/2009/PDF/vendor_sgi.pdf (current

as of Feb. 17, 2017)

4. E. LEWIS, “Benchmark specification for Deterministic

2-D/3-D MOX fuel assembly transport calculations

without spatial homogenization (C5G7 MOX),”

NEA/NSC-2001, Nuclear Energy Agency (2008).

5. D. MOSTELLER, J. GODA, “Analysis of Godiva-IV

Delayed-Critical and Static Super-Prompt-Critical

Conditions,” Proc. M&C 2009, Saratoga Springs, NY,

May 3-7, 2009

6. T. TAKEDA, H. IKEDA, “3-D Neutron Transport

Benchmarks,” Journal of Nuclear Science and

Technology, 28, 7 (1991)

