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Abstract - The method of characteristics (MoC) has become an accepted tool for lattice physics calculations.  MoC 

has many advantages such as accurate representations the of the lattice geometry and boundary conditions.  The flat 

source (FS) approximation is most commonly used and the linear source (LS) approximation can improve the 

accuracy by preserving higher order spatial moments of the neutron source.  However, as a non-standard spatial 

discretization method, the order of accuracy of the spatial discretization is more difficult to obtain, especially for 

analyzing linear source approximation, because the MoC method utilizes two set of spatial meshes – the FS mesh and 

the set of characteristic rays that integrate the transport equation over the FS mesh.  In this work, we analyze the 

order of accuracy with spatial resolution in MoC in planar geometry for both FS and LS approximations and verify 

our predictions with the Method of Manufactured Solutions (MMS).  It is shown that the flat source approximation is 

second order accurate and that the linear source approximation has a fourth order accuracy. 
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I. INTRODUCTION  

 

The method of characteristics (MoC) has become an 

accepted tool for lattice physics calculations.  MoC has many 

advantages such as accurate representations the of lattice 

geometry and boundary conditions.  The flat source (FS) 

approximation is most commonly used. [1,2,3]  When 

improved accuracy is needed, one can employ the linear 

source (LS) approximation. [4]  However, the MoC method 

utilizes a non-standard spatial discretization method with two 

sets of spatial meshes – the FS mesh and the set of 

characteristic rays that integrate the transport equation over 

the FS mesh.  The interaction between the characteristic rays 

and the spatial mesh is making the error analysis of MoC 

solution much more complicated.  Consequently, the order of 

accuracy of the spatial discretization of MoC is not well 

known.  In this work, we analyze the order of accuracy with 

spatial resolution in planar geometry for both FS and LS 

approximations and verify our predictions with the Method 

of Manufactured Solutions (MMS).  One dimensional 

geometry bypasses the complexity of ray spacing, enabling 

us to look at the error convergence rate over spatial grid 

refinements alone.  Being able to obtain the error 

convergence rate, or the order of accuracy, with the spatial 

resolution for both FS approximation and LS approximation, 

is useful for understanding the errors introduced in MoC, 

which can, in turn, inform the choice of FS mesh size and the 

ray spacing.  Being able to locate and quantify errors can also 

help develop more accurate MoC schemes.  Moreover, 

knowledge of the theoretical order of accuracy can be used to 

verify reactor physics codes with code verification methods, 

such as MMS.   

Section II focuses on the theoretical prediction of the 

order of accuracy.  Distributed source and scattering source 

are analyzed separately.  What differentiates this work from 

previous analysis on spatial discretization [5,6] is that we 

start from the exact solution along the characteristics and 

quantitatively track error propagation, making it 

straightforward to generalize the analysis from FS to LS 

approximation.  Section III gives the numerical results that 

use MMS to verify the predictions as well as the MoC code, 

including polynomial and nonpolynomial function forms.  

Section IV briefly summarizes the conclusions.  It is shown 

that the flat source approximation is second order accurate 

and that the linear source approximation has a fourth order 

accuracy.  

 

II. THEORY 

In MoC, the angular flux along any characteristics can 

be integrated analytically with an assumed form of the right-

hand-side source.  We will represent the theory in one-

dimensional geometry for simplicity.   
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Integrating the above equation over a canonical spatial 

cell j, where 1/2 1/2j jx x x   , will give us the neutron balance 
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equation within this cell, which in turn can be used to derive 

the expression for the cell-averaged angular flux  j  .  To 

further simplify algebra, the first cell is used to represent the 

canonical cell with 0z   corresponding to 
1/2jx 

 and z z   

corresponding to 
1/2jx 

.  Operating on Equation (1) with 
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1 z

dz
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where  
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The exiting angular flux can also be solved analytically 

with an integration factor 
t

z

e 



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Inserting Equation (4) into Equation (2) yields 
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The approximating cell-averaged angular flux   is 

expressed below, where q  approximates q  and q  is the 

average of this approximation q . 
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The error E  is defined as the difference between the 

exact analytical expression of cell averaged angular flux 

    as in Equation (5)  and its approximation    as in 

Equation (6).  
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This error depends on how well  ,q z   approximates 

the true source shape.  Equation (7) is evaluated for both FS 

and LS approximations and is the basis for error analysis 

throughout the paper.   

 

When different approximations (e.g. FS and LS 

approximations) are used, the following definition of  q z  is 

taken, with angular dependence dropped to avoid symbolic 

entanglements.  
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where  
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Note that the definition 1q  involves a transformation 

from a global coordinate system to a local one and is briefly 

illustrated below. 

Assume source  Q Z  is the total source in a slab 

geometry in a global coordinate system 
max0 Z Z  .  The 

source  Q Z  over a canonical cell  1/2 1/2,j jZ Z   is to be 

linearized as  0 1 cq q z z   , where z  is the local coordinate 

in current cell j originated at the left edge of the cell.  

 

 
 

 
 

Next, we show how to obtain the first spatial source 

moment 1q  from global quantities  Q Z .  

      0 1 cQ Z q z q q z z       

Perform operation    
0

*
z

cz z dz    on the above 

equation.  The right-hand-side (RHS) gives 
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The left-hand-side (LHS) gives 
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Therefore, the first spatial source moment can be 

expressed as  
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For a fixed source problem, the source consists of both 

scattering and distributed source components as follows.  
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The distributed source is denoted with subscript MMS 

because MMS is the most common distributed source in the 

determination of the order of accuracy and code verification 

practices.  Therefore, in this paper, MMS will represent the 

distributed source with known mathematical forms.  

Note that the nature of the scattering source is very 

different from that of the distributed source.  The scattering 

source changes and updates and resolves its spatial 

dependence over the source iteration, while the distributed 

source has a known mathematical form and does not change 

in this iterative process.  Not surprisingly, this distinction 

makes the error analyses for these two source types very 

different.  This is partially reflected in the practical 

expressions of the zeroth and first source moments of these 

two source types defined in Equation (15). 
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where  
0

1
ˆ ,

z

z z dz
z

        is the first spatial moment of the 

angular flux and ̂  is its approximation.  Note that the 

superscripts (n) and (n-1) in the above equation are the 

iteration index and that a quantity with superscript (n) and its 

counterpart with superscript (n-1) will be equal up to the 

convergence criteria upon convergence, allowing the 

superscripts to be dropped.  

 

In the following two subsections, we will look at the 

distributed source and the scattering source separately due to 

the different forms of their practical expressions.  With the 

superposition principle, universal for any linear system, the 

sources here are additive so the final order of accuracy with 

spatial resolution will be the lower of the two standalone 

orders of accuracy from each source type.  We look at the 

order of accuracy related to approximating distributed source 

first.  

 

1. Order of Accuracy related to Approximating 

Distributed Source 

In this subsection, scattering source is assumed to be 

zero.  This happens in a purely absorbing material.   

Note that when the distributed source approximation 

 q z  integrates  q z  exactly, which is usually the case, the 

first two terms in Equation (7) cancel out, reducing the error 

to a simpler form 
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Now we look at FS and LS approximations respectively.  

 

A. Flat Source (FS) Approximation 

FA approximation implies the following 
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q z q   (17) 

Using Equation (16) to evaluate the error introduced into 

the cell-averaged angular flux due to FS approximation 
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Three cases were examined: constant, linear, and 

quadratic source shapes.  For a constant source shape, the 

above error is 0E  .  This is verified in our MoC 1D code, 

showing that the solution is accurate to machine precision 

regardless of the fineness of the grid.   

 

Second, if the source is linear in space, the flat source 

approximation introduces an error of second order with the 

mesh width.  Assuming   ,   0<z <zq z z   , the error can be 

evaluated with Equation (18). 
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where  

 t z



  (20) 

which is the optical thickness seen by a neutron flying in the 

direction characterized by 𝜇. 
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As z (or τ) approaches zero, namely, as we refine the 

spatial grid, the above error is expanded near 0   as 

follows,  
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Therefore, the error is second order with the mesh size.  

 

Third, if the source is quadratic in space, the flat source 

approximation will converge to the true solution with third 

order, which is shown below.  
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As τ→0, the error approaches zero with third order, 
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However, due to the structure and operators in the 

neutron transport equation, only under special circumstances 

will we have a singleton quadratic source shape that does not 

have a linear component.  This will cause a degradation in 

order of accuracy from third order to second order in 

problems with a quadratic source shape, since the error from 

the linear component is dominating the error convergence 

order.  Moreover, with induction, it can be shown that 

generally the flat source approximation can at best be second 

order accurate in space.  

 

B. Linear Source (LS) Approximation 

LS approximation implies the following 
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Using Equation (16) to evaluate the error introduced into 

the cell-averaged angular flux via LS approximation 
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where, 
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It is easy to show that linear source will be able to 

represent flat source with no error since 1q  will be zero and 
0q  can represent the constant source.  

 

Next, we show that linear source approximation can 

represent linearly distributed source with no error.  

Assuming   ,   0<z <zq z z    in 0q  and 1q  defined in 

Equation (26) gives 
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The approximating source shape is exactly the same as 

the originally manufactured source shape as shown below 
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Last, if the source shape is quadratic in space as 

  2
,  0q z z z z     , we have  
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Constructing the linear approximation with the zeroth 

and first source moments gives, 
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The error introduced via linear source (LS) 

approximation can be evaluated with Equation (25) 
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The error approaches zero with fourth order shown by 

Taylor expansion near τ=0.  
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As mentioned in the flat source section, we normally do 

not have a standalone quadratic source, rather it usually 

comes with a linear component.  However, with linear source 

approximation, the linear source can be exactly represented, 

thus having linear component will not degrade the 4th-order 

accuracy.  
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The expected and observed orders of accuracy for the 

purely absorbing material is summarized in Table 1, which 

also shows consistency between expectation and observation.  

 

2. Order of Accuracy related to Approximating 

Scattering Source 

This subsection focuses on the error introduced in cell-

averaged angular flux due to an error in approximating 

scattering source with different source approximation 

schemes, i.e., FS and LS.  

The following error expression from Equation (7) still 

holds, except that now  ,q z   includes both scattering 

source    
1

1
, ,

2

s
scatq z z d   
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
     and other distributed 

sources, e.g.,  ,MMSq z  .  
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Since the previous subsection has studied the order of 

accuracy related to distributed source, this subsection will 

focus on the order of accuracy related to approximating 

scattering source ONLY.  The overall order of accuracy will 

be the lower of the two.  With scattering source only, the 

expression for the zeroth and first spatial source moments can 

be simplified.  
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The FS approximation is looked at first.  

 

A. Flat Source (FS) Approximation 

FS approximation implies the following 

   0
q z q   (35) 

Using the above Equation (33) to evaluate the error 

introduced into the cell-averaged angular flux due to FS 

approximation.  

The first component 
1E  can be evaluated in the 

following way 
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 (36) 

Assume that the angular flux is isotropic and that the 

selected quadrature set satisfies 
1

1 2
M

m

m




  , the above 

Equation (36) can be further reduced into the following form 

upon convergence (iteration superscripts dropped) 
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Therefore,  

 
1E c E   (38) 

 

Next, we look at the second error component using the 

practical expression from Equation (34),  
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Assume isotropic angular flux, the above equation can 

be further reduced to the following form upon convergence 

 

 

   

 

2
0 0

0 0

,

,

1

t

t t

t

t t

z
z zz z

s s

t

z
z zz z

e
E e z dz e dz

z

c e
e z dz E e dz

z

c E


 


 

  

  


  

 


  

 

  
            

      

  
          

    

  

 

   (40) 

The total error E is solved from the above equation.  
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Similarly, three cases were examined: constant, linear, 

and quadratic source shapes.  

 

For a constant scattering source shape, the above error is 

zero.  To show this, assume a constant flux shape, which will 

give a constant scattering source 

   0, 1z      (42) 

the resulting error from FS approximation can be evaluated 

using Equation (41) 
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Therefore, the expected error will be zero despite how 

coarse the mesh is.  
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Second, if the scattering source is linear in space, the flat 

source approximation will introduce an error of second order 

with the spatial mesh width.  Assuming the angular flux in 

the following form 

   1,z z z        (44) 

the error introduced from flat source approximation can be 

evaluated from Equation (41) 
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As τ approaches zero, namely, as we refine the spatial 

grid, the above error can be expanded near τ=0,  
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Therefore, the error is second order with the spatial mesh 

width.  

 

Third, if the scattering source is quadratic in space, the 

FS approximation to scattering source will introduce a third 

order error, which is negligible compared to the 2nd order 

error introduced from approximating distributed source.  This 

is shown below.  Again, assume the angular flux shape,  
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Then we can evaluate the error introduced by FS 

approximation to the scattering source with Equation (41).  

 

 

 

 

   

2
2

0 0

0

2
2

2 0 0

2

0

2 2

2

2

3

1

3

1

2
2 2 2

3 3

1 1

t t

t t

z zz z

z zz

t

t

z
c e dz e z dz

E

z e c c e dz

e d e d
c

e c c e d

e
c

c c e

 

 

 
 


 






  



 

 






 
 

 


 







  
       

    

    

 
     

   
     

   
        

     
     

 



 


 (48) 

As τ approaches zero, namely, as we refine the spatial 

grid, the above error can be expanded near τ=0,  
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Therefore, the error is third order with the mesh width.  

 

B. Linear Source (LS) Approximation 

LS approximation implies the following 
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Using Equation (33) to evaluate the error introduced into 

the cell-averaged angular flux due to LS approximation.  

The first error component is 
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The second error component is 
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Assume that the angular flux is isotropic and that the 

employed quadrature set is chosen such that it satisfies 
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  .  Applying the practical definition of the zeroth 

and first spatial source moments defined in Equation (34), the 

first error component takes the following form upon 

convergence. 
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The second error component takes the following form 

upon convergence. 
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 (54) 

Equation (54) is used to solve for the total error E  in 

cell-averaged angular flux.  Move all the terms involving E  

and ˆE  to the LHS and solve for the total error E .  
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When the scattering source shape is constant, assuming 

the angular flux shape as  

   0, 1z      (56) 

the resulting scattering source shape and the zeroth and first 

spatial moments of the angular flux are  

 

   

 

 

1

1

0

0 0

,
2

1
, 1

1 1
ˆ ,

2

s
scat s

z

z z

q z z d

z dz
z

z
z z dz z dz

z z

  

  

  




    

  

       





 

 (57) 

Equation (55) is evaluated and we conclude that the error 

introduced due to LS approximation towards scattering 

source is zero. 
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Next, we show that approximating linear scattering 

source with LS approximation gives zero error as well.   

Assuming the angular flux shape 

   1,z z z        (59) 

the resulting scattering source and the zeroth and first spatial 

moments of the angular flux are 
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Again, equation (55) is evaluated and we conclude that 

the error introduced due to LS assumption towards linear 

scattering source is zero.   
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The last case evaluates the error introduced due to 

inaccuracy in approximating quadratic scattering source with 

LS approximation.  Assuming   2 2

2,z z z       , the 

scattering source and the zeroth and first spatial moments of 

the angular flux are 
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Once again, Equation (55) is used to evaluate the error 

from LS approximation.  Note that the ratio ˆ /E E  is dropped 

in the formulation for having a higher order than  O z , which 

will be shown later. 
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The error introduced by LS approximation towards 

quadratic scattering source is 4th order by expanding the 

above error near τ=0.  
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Therefore, the order of accuracy is the same as that 

related to approximating distributed source. 

 

C. Assessing Error in ˆE   

In this subsection, we give an error assessment for ˆE , 

denoting the error in the first spatial moment of the angular 

flux.  It is shown that its order is higher than that of the total 

error E .   

The first spatial moment of the angular flux over the 

canonical cell is defined as  
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The approximation for  ̂   is 
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ˆE  is defined as the difference between the analytical 

expression ̂  and its approximation ̂ , which is determined 

by how well  ,q z   approximates the true source shape 

 ,q z  .  
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where upon convergence 
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In case of a quadratic spatial angular flux, (or quadratic 

scattering source), the error defined in Equation (69) is 

evaluated  
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Multiplying both sides by 
s




 gives 
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where /t   . 

 

Inserting the practical expressions of the 0q and 1q  

defined in Equation (70) into Equation (72) and then solve 

for ˆE . 
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As 0  , the error is expanded near τ=0.  
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 (74) 

In a shorter expression, it is of the following form, 

    4 2

ˆE O O E      (75) 
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Therefore ˆE  will be at least two orders higher than E  

or is  4O z .  Either way, the ratio ˆ /E E  is negligible 

compared to z/2, validating the dropping of this ratio when 

evaluating Equation (61) for a quadratic scattering source 

case. 

 

 

III. EXPERIMENTAL RESULT 

MoC 1D code is developed for testing the predictions 

of the order of accuracy for FS and LS approximations.   

Four test problems are devised for the tests, each of 

which consists of an assumed flux shape and the 

corresponding manufactured sources listed below.   

 

Case 1: constant source shape 
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Case 3: quadratic source shape 
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Case 4: non-polynomial source shape 
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 (79) 

 

1. Testing Purely Absorbing Materials 
For purely absorbing materials, the scattering cross 

section is set to be zero.  Case 1 gives machine-precision 

results for both FS and LS approximation for all mesh sizes.   

The following Figure 1, Figure 2 and Figure 3 show the 

grid refinement results for Case 2, Case 3 and Case 4 (without 

scattering source) involving linear, quadratic and a non-

polynomial manufactured source.  

 

 
Figure 1. Order of accuracy with linear manufactured 

source (FS: 2nd order, LS: exact) 

 

 
Figure 2. Order of accuracy with quadratic manufactured 

source (FS: 2nd order, LS: 4th order) 

 

 

 
Figure 3. Order of accuracy with non-polynomial 

manufactured source (FS: 2nd order, LS: 4th order) 

 

 

All the experimental results agree with the analytical 

predictions and are listed in Table 1.  The number before the 

slash is the observed order of accuracy and the one after the 

slash is the predicted order of accuracy, i.e., in a form of 

(observation/prediction).   

 

 

Table 1. Observed and Predicted Order of Accuracy 

(purely absorbing) 

Approx. Constant Linear Quadratic 

FS exact / exact 2nd / 2nd 2nd / 3rd →2nd* 

LS exact / exact exact / exact 4th / 4th 

* The arrow indicates the aforementioned order degradation 

 

Angular error from the numerical result is removed from 

the overall error with the error removal technique developed 

in previous work. [7].  

 

2. Testing Scattering Materials  
The expected order of accuracy related to approximating 

scattering source with FS and LS approximations are 

tabulated in Table 2.  
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Table 2. Predicted Order of Accuracy  

(scattering source only) 

Approx. Constant Linear Quadratic 

FS exact 2nd 3rd 

LS exact exact 4th 

 

As mentioned before, compiling the results from Table 1 

and Table 2 by taking the lower order gives the expected 

order of accuracy for cases with both scattering source and 

distributed source, which is listed in Table 3.  

 

Table 3. Observed and Predicted Order of Accuracy 

(scattering source plus distributed source) 

Approx. Constant Linear Quadratic 

FS exact / exact 2nd / 2nd 2nd / 2nd 

LS exact / exact exact / exact 4th / 4th 

 

The following Figure 4, Figure 5 and Figure 6 show the 

grid refinement results for Case 2, Case 3 and Case 4 (with 

scattering source) involving linear and quadratic 

manufactured source.  

 

 
Figure 4. Order of accuracy with linear manufactured 

source (FS: 2nd order, LS: exact) 

 

 

 
Figure 5. Order of accuracy with quadratic manufactured 

source (FS: 2nd order, LS: 4th order) 

 

 
Figure 6. Order of accuracy with quadratic manufactured 

source (FS: 2nd order, LS: 4th order) 

 

All the experimental results agree with the analytical 

predictions and are listed in Table 3.   

 

 

IV. CONCLUSIONS 

A systematic analysis of the order of accuracy for spatial 

discretization of MoC method in a slab geometry has been 

performed for both flat source approximation and linear 

source approximation.  It is shown that including scattering 

source does not degrade the order of accuracy and that the 

order of the error of the first spatial moments of the angular 

flux is two orders higher than that of the zeroth spatial 

moments of the angular flux.  Both theoretical prediction and 

experimental results show that flat source approximation is 

second order accurate and that linear source approximation 

has a fourth order accuracy.  
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