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Abstract - The choice of a weight function in multigroup neutron transport significantly affects the accuracy
of the multigroup solution. Weight functions are often selected to reflect the solution to a simplified 0-, 1-, or
2-D problem, so the applicability of these functions to realistic problems can be problematic. We introduce
on-the-fly (OTF) weight functions to address this issue. OTF weight functions ideally allow few group cross
sections to more accurately represent the true solution of a problem without requiring cross sections for each
potential final solution. With OTF weight functions, fine group cross sections are periodically collapsed to a
coarse group structure, and the multigroup transport equation is solved on the coarse energy grid. Fine group
OTF weight functions are obtained by applying a fit to the latest coarse group fluxes and scaling the original
weight functions by this fit. In this paper, we focus on four piecewise linear fits, or prolongations, for mapping
the coarse group solution to fine group weight functions. The four OTF prolongations are applied to three
LANL coarse group structures (30, 133, and 250 energy groups) and tested with five simple problems. The OTF
prolongations typically show an improvement over the standard group collapse method, both in eigenvalue
and reaction rates. Although OTF weighting struggled in moderator regions, in nearly every case it improved
both the removal and fission rates in fissile regions. Spatial fission rates were similarly improved. While
re-collapsing multigroup cross sections on-the-fly is not a new concept, the OTF weighting method presented
here is unique in requiring no additional transport sweeps, coarse or fine. Our results show that with OTF
weighting we can perform a coarse group transport solve and obtain results similar in accuracy to a fine group
solution, using minimal additional calculations.

I. INTRODUCTION

One of the fundamental assumptions in deterministic neu-
tron transport is the multigroup approximation [1, 2]. Neutron
energies in practical problems may range over eight orders
of magnitude, and over that range neutron cross sections can
vary rapidly with respect to the energy variable E. To resolve
these rapid variations on an energy grid would require tens
of thousands of energy groups. In the multigroup approxima-
tion, however, continuous energy cross sections are collapsed
to significantly fewer energy groups, often tens or hundreds,
by taking a weighted average of the energy-dependent cross
sections for a specified energy group structure.

The choice of a weight function greatly impacts the accu-
racy of the multigroup solution. Weight functions are typically
chosen to reflect the solution to a simplified 0-, 1-, or 2-D prob-
lem that is “close to” the problem under consideration. The
applicability of these weight functions to problems that are
multidimensional, heterogeneous, and comprised of many ma-
terials can be questionable. Furthermore, weight functions are
often problem-specific. If the problem changes, new weight
functions must be generated, a potentially time-consuming
process. We seek a weight function that properly models a
heterogeneous problem without requiring many additional cal-
culations. To do so, we introduce on-the-fly (OTF) weight
functions.

OTF weight functions ideally allow few group cross sec-
tions to better reflect the fine group solution of a problem
without requiring a set of cross sections for each potential final
solution. With OTF weight functions, fine group cross sections
are periodically collapsed (or condensed) to a coarse group

structure, and the multigroup transport equation is solved on
the coarse energy grid. Fine group OTF weight functions are
obtained by applying a fit to the latest coarse group scalar
fluxes and scaling the original weight function by the fit. In
this paper, we focus on four piecewise linear (PL) fits, or pro-
longations, for mapping the coarse group fluxes to the fine
group structure.

Because the OTF prolongations are piecewise linear func-
tions, they are incapable of capturing rapid flux variations
within a coarse group, such as those caused by resonances. In-
stead of applying the prolongated fluxes directly, we use them
to scale the weight functions provided with the fine group
cross sections. In this work, the fine group cross sections and
weight functions were generated by NJOY with an array of
background cross sections. During run-time, these weight
functions are scaled by the OTF prolongations, and the re-
sultant weight function is used to re-collapse (re-condense)
the microscopic fine group cross sections. The Bondarenko
method [3] is then applied to these coarse group, σ0-dependent
cross sections to obtain the macroscopic cross sections used
by the transport solver.

In this paper, the four OTF prolongations are tested with
five simple problems (either 1-D or 2-D). 618 group cross
sections are generated using the LANL TD-4 weight function
[4] with background cross sections (σ0). The four OTF pro-
longations and the standard group collapse method are applied
to three standard LANL coarse group structures (30, 133, and
250 energy groups) [5]. The 618 group PARTISN solution
is used as a reference, and MCNP results are reported for ad-
ditional comparisons. In almost every case, the OTF results
show improvement in both eigenvalue and reaction rates over
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the standard condensation method. While a reduction in error
is seen with all three coarse group structures, the improve-
ment is more significant with fewer coarse groups. With 133
and 250 coarse groups, all four OTF prolongations perform
similarly.

II. BACKGROUND

Using a coarse group calculation to approximate the fine
group flux is not a new idea. For example, the generalized en-
ergy condensation (GEC) theory [6] uses orthogonal functions
to expand the flux within a coarse group in energy. This leads
to a series of multigroup equations that can be solved for flux
moments that are used to construct an approximate continu-
ous energy angular flux. By choosing orthogonal functions
to expand the flux it is possible to decouple the higher order
equations from each other, which greatly reduces the compu-
tational burden from solving additional multigroup equations.
The source for these extra equations depends only on the so-
lution to the zeroth-order equation, which is equivalent to the
standard multigroup equation. Unfortunately, this also means
that the eigenvalue remains unchanged from the original coarse
group solution.

A natural extension to GEC theory is to use the expanded
flux to re-collapse the fine group cross sections on-the-fly
[7], similar to this work. This allows the coarse group cross
sections to better capture the problem of interest, which was
shown to produce an improved eigenvalue. Rahnema et al.
demonstrated that with a sufficient number of flux moments
the coarse group solution can approach the best-case solution,
one where the cross sections had been collapsed with the
true fine group flux. A further improvement [8] introduced a
term to account for the angular dependence of the multigroup
total cross section. This extra term significantly reduced the
error seen with few group solutions, particularly in highly
anisotropic test problems.

Though it produces a continuous energy solution with
only coarse group calculations, GEC theory can suffer from
negative fluxes and unphysical oscillations near group bound-
aries. The discrete generalized multigroup (DGM) method [9]
was developed to address these concerns. The DGM method
modifies the GEC theory by applying discrete, rather than con-
tinuous, functions to expand the coarse group flux. This pro-
duces an expanded flux closer to the fine group flux solution.
Furthermore, source updates yield an improved eigenvalue and
eliminate all negative fluxes. Combining the DGM method
with re-condensation led to results on par with a fine group
solution after only a few DGM iterations [10].

Both GEC theory and the DGM method use additional
coarse group transport sweeps to obtain estimates of the contin-
uous or fine group fluxes for a problem. The accuracy of these
estimates depends on the expansion ordered selected. While
these extra equations have a known source and are quick to
solve, they still require additional sweeps over space. OTF
weight functions, while less accurate, require only simple cal-
culations for each coarse mesh spatial region and no additional
transport sweeps. Re-condensation of the multigroup cross
sections is performed identically for each method.

The subgroup decomposition (SGD) method [11] is an-

other method for re-collapsing cross sections on-the-fly. Un-
like GEC theory and the DGM method, it does not require ad-
ditional flux moments. Rather, it uses the coarse group fluxes
from an iteration to generate the source for a fixed-source fine
group problem. This fixed-source problem is solved with a sin-
gle “decomposition sweep,” which provides fine group fluxes
that are then used to re-collapse the fine group cross sections
for the next coarse group iteration. The primary difference
between our method and the SGD method is the decomposi-
tion sweep, which replaces the prolongation step in the OTF
method.

The SGD method, like GEC theory and the DGM method,
invariably produces more accurate solutions than our OTF
weighting method. However, it requires an additional fine
group sweep per outer iteration. For problems that require
many coarse group sweeps per outer iteration, this additional
sweep adds only a small computational burden. For problems
with few transport sweeps per outer iteration, or many more
fine groups than coarse groups, this additional sweep may
significantly impact run-time. In many time-dependent simula-
tions, for instance, very few outer iterations are performed per
time step. Thus, adding a fine group sweep for every time step
could lead to run-times comparable to a standard fine group
calculation.

III. MULTIGROUP THEORY

We apply the OTF weighting method to the 1-D, steady-
state, multigroup transport equation:

µ
∂

∂x
ψg (x, µ) + Σt,g (x)ψg (x, µ)

=

G∑
g′=1

∫ 1

−1
Σs,g′→g

(
x, µ′ → µ

)
ψg′

(
x, µ′

)
dµ′ (1)

+
1
k

G∑
g′=1

χg′→g (x) νΣ f ,g′ (x) φg′ (x) ,

where ψg(x, µ) is the multigroup neutron angular flux for group
g, Σg(x) is a macroscopic multigroup cross section (t = total,
s = scattering, f = fission), χg′→g(x) is the fission transfer
matrix, ν is the average number of neutrons produced per
fission, k is the multiplication factor, and φg is the multigroup
scalar flux:

φg (x) =

∫ 1

−1
ψg (x, µ) dµ . (2)

The multigroup cross sections in Eq. (1) are obtained
by weighting the continuous energy cross sections with a
predetermined weight function, f (E), over an energy group,
∆g = [Eg+1/2, Eg−1/2], which yields [1, 2]:

Σt,g (x) =

∫
∆g Σt (x, E) f (E) dE

fg
, (3a)

Σs,g′→g
(
x, µ′ → µ

)
= (3b)∫

∆g

∫
∆g′ Σs (x, E′→E, µ′→µ) f (E′) dE′dE

fg′
,
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and

νΣ f ,g (x) =

∫
∆g νΣ f (x, E) f (E) dE

fg
, (3c)

where
fg =

∫
∆g

f (E) dE . (3d)

The fission transfer matrix is fission-weighted, rather than
flux-weighted:

χg′→g (x) = (3e)∫
∆g

∫
∆g′ χ (x, E′→E) νΣ f (x, E′) f (E′) dE′dE∫

∆g′ νΣ f (x, E′) f (E′) dE′
.

Clearly, the accuracy of ψg(x, µ) is linked to the accuracy
of the weight function, f (E). A poor choice for f (E) will
lead to poorly defined multigroup cross sections and an in-
accurate angular flux. On the other hand, if f (E) is the true
continuous energy scalar flux for the problem (i.e. f (E) is
space-dependent, and f (x, E) = φ(x, E)), then Eqs. (1) – (3)
are exact (ignoring any potential angular dependence of the
multigroup total cross section). We rarely (if ever) have the
exact solution when calculating multigroup constants and are
instead forced to use an estimate of φ(x, E).

Typically, multiple group collapses (e.g., from continuous
energy to fine group to coarse group) are performed with a
different weight function at each stage. For collapsing from the
continuous energy cross sections (actually point-wise, with
tens of thousands of energy points), a generic spectrum is
often used for each isotope. Self-shielding corrections may be
applied to this spectrum to better account for multiple isotopes
in a single material.

One correction method is to introduce a “background
cross section” (σ0) to approximate the other isotopes in a
material. By breaking the macroscopic total cross section of a
material into two parts,

Σt (E) = Nmσm
t (E) +

∑
n,m

Nnσn
t (E) , (4)

we can replace the summation in Eq. (4) with a background
cross section:

Σt (E) = Nm
(
σm

t (E) + σm
0 (E)

)
, (5)

where
σm

0 (E) =
1

Nm

∑
n,m

Nnσn
t (E) . (6)

Including σ0 adjusts the weight function for each iso-
tope ( f (E) → f m(E, σ0)), producing a set of σ0-dependent
microscopic multigroup cross sections. Once the parame-
terized multigroup data is obtained, a self-shielding tech-
nique, such as the Bondarenko method [3], is used to generate
self-shielded macroscopic multigroup cross sections for each
problem-dependent material.

Because the microscopic total cross sections σn
t (E) in

Eq. (6) may also be self-shielded, an iterative technique is
required to converge the background cross sections. Once one

obtains self-shielded total cross sections for an initial guess
of σm

0 , updated background cross sections are calculated with
Eq. (5), and new total cross sections are obtained. This process
is repeated until the change in σm

0 from one iteration to the
next is within a desired tolerance.

Often the fine group data includes fine group weight func-
tions for each isotope and background cross section

(
f m
g (σ0)

)
so that further group collapses can be performed without any
additional calculations. Alternately, coarse group cross sec-
tions can be obtained by performing a fine group transport
calculation for each material or region and using the flux so-
lution to collapse the fine group cross sections. In reactor
physics, this calculation is typically performed for either a
pin cell or a fuel assembly with self-shielded cross sections.
Because reflecting boundary conditions are often used, this is
referred to as a “lattice calculation.”

Performing a group collapse from a fine group structure
to a coarser one is similar to condensing the continuous energy
cross sections to multigroup. Rather than a weighted integral
over energy, we use a weighted summation over energy groups.
Given a fine group structure with K groups and a coarse group
structure with G groups, Eqs. (3) become:

Σt,g (x) =

∑hg−1/2

k=hg+1/2
Σt,k (x) fk

fg
, (7a)

Σs,g′→g
(
x, µ′→µ

)
= (7b)∑hg−1/2

k=hg+1/2

∑hg′−1/2

k′=hg′+1/2
Σs,k′→k (x, µ′→µ) fk′

fg′
,

νΣ f ,g (x) =

∑hg−1/2

k=hg+1/2
νΣ f ,k (x) fk

fg
, (7c)

fg =

hg−1/2∑
k=hg+1/2

fk , (7d)

and

χg′→g (x) =

∑hg−1/2

k=hg+1/2

∑hg′−1/2

k′=hg′+1/2
χk′→k (x) νΣ f ,k′ (x) fk′∑hg′−1/2

k′=hg′+1/2
νΣ f ,k′ (x) fk′

, (7e)

where k = hg±1/2 is the upper (-) or lower (+) fine group in
coarse group g.

These methods are far from the only options to obtain
multigroup cross sections. The Oak Ridge National Labora-
tory code CENTRM performs a 1- or 2-D fixed-source calcula-
tion with point-wise cross section data [12]. The flux solution
is then used to collapse the continuous energy cross sections to
multigroup. These calculations can be computationally expen-
sive, particularly because they must be performed at run time
for each region of interest. However, the result is more accu-
rate than simpler self-shielding methods because CENTRM
explicitly handles heterogeneities and overlapping resonances.

In this work, we use the TD-4 weight function [4] for
f (E). The TD-4 weight function consists of four main regions
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– a thermal Maxwellian spectrum, a 1/E slowing down region,
a fission spectrum, and a fusion peak. Isotope-dependent 618
group cross sections are calculated with the NJOY nuclear
data processing system [13] for six background cross section
values, ranging from σ0 = 0.1 to σ0 = 1010 (infinitely dilute).

The fine group cross sections are collapsed to the three
LANL coarse group structures by one of two methods. The
first is the standard method, which uses the fine group weights
from NJOY for each individual isotope to collapse the 618
group cross sections. In the second method, the fine group
weight functions from NJOY are periodically scaled by the
OTF prolongations. The fine group data is then re-condensed
with the adjusted weight functions. Both methods perform
group collapses with Eqs. (7); they differ only in the weight
function used.

Once the coarse group cross sections are obtained for
each isotope, they are mixed with the Bondarenko method.
For the Bondarenko method, PARTISN calculates σm

0,g for
each isotope m and energy group g, and then interpolates
between points in the background cross section grid to obtain
self-shielded, group-dependent cross sections

(
σm

g (σm
0,g)

)
. The

σm
0,g interpolation is performed with the square root of the

background cross sections:

σm
g

(
σi

0,g

)
=
σm

g

(
σm

0,g,h

)
− σm

g

(
σm

0,g,h−1

)
√
σm

0,g,h −
√
σm

0,g,h−1

(√
σm

0,g −
√
σm

0,g,h−1

)
+ σm

g

(
σm

0,g,h−1

)
, (8)

where σm
g (σ0) is a microscopic cross section for group g and

background cross sectionσ0, σm
0,g is the calculated background

cross section, σm
0,g,h is a point on the background cross section

grid, and
σm

0,g,h−1 ≤ σ
m
0,g ≤ σ

m
0,g,h . (9)

The choice of square-root interpolation was motivated by the
original WIMS lattice code [14]. Modern neutron transport
codes use more complicated interpolation schemes. For exam-
ple, the transport code MPACT [15] uses “Segev” interpolation
[16].

IV. ON-THE-FLY WEIGHTING

The OTF weighting method is illustrated in Figure 1 and
detailed below.

First, we define a fine group structure with K energy
groups and a coarse group structure with G energy groups,
where G < K. Fine group cross sections and weight func-
tions are obtained from NJOY as a function of isotope (m) and
background cross section (σ0). The fine group weight func-
tions are collapsed to the coarse group structure before being
prolongated with one of the OTF methods back onto the fine
group structure. The fine group weight functions

(
fm,k(σ0)

)
,

cross sections
(
Σm,k(σ0)

)
, and prolongated weight functions(

f̂m,k(σ0)
)

are all stored.
Initial coarse group cross sections are obtained by per-

forming a group collapse on the fine group cross sections with
the weight functions from NJOY and combining the results
with the Bondarenko method. These cross sections

(
Σ

(0)
j,g

)
are

NJOY

Σm,k(σ0) fm,k(σ0)

fm,g(σ0)

f̂m,k(σ0)

Σ
(`)
m,g (σ0)

Σ
(`)
j,g

Transport Sweep (`)

Converged?

φ(`)
j,g

φ̂(`)
j,k

f̃ (`)
j,m,k(σ0)

Finished

Collapse

Prolongation

Collapse (` = 0)

Bondarenko Interpolation

No

Prolongation

Scale

Re-Collapse

(`)

Yes

Fig. 1: OTF Weighting Flow Chart
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then used in a outer iteration. At the end of an outer iteration
(`), coarse group scalar fluxes are calculated for each coarse
mesh region ( j). These fluxes

(
φ(`)

j,g

)
are then prolongated onto

the fine group structure with the same OTF method used pre-
viously to obtain prolongated fluxes for iteration `

(
φ̂(`)

j,g

)
.

Next, the stored fine group weight functions are scaled
by a ratio of the current iteration’s prolongated fluxes to the
stored prolongated weight functions:

f̃ (`)
j,m,k (σ0) = fm,k (σ0)

φ̂(`)
j,k

f̂m,k (σ0)
. (10)

The fine group cross sections are then re-condensed to the
coarse group structure with the scaled weight functions(

f̃ (`)
j,m,k (σ0)

)
and once more combined with the Bondarenko

method. These iteration-dependent coarse group cross sec-
tions

(
Σ

(`)
j,g

)
are used in the next outer iteration. This process is

repeated until a desired convergence is reached.
In this work, the fine group cross sections are re-collapsed

after every outer iteration. However, this group collapse could
be performed every few iterations, which would decrease the
additional time spent re-collapsing the cross sections while po-
tentially changing the total number of iterations. We chose to
repeat the group collapse every iteration to ensure the accuracy
of the solution.

By scaling the fine group weight functions from NJOY,
we preserve the original multigroup resonance information
while also including spatial effects. Rather than using multi-
dimensional calculations to obtain a weight function (e.g., a
lattice or a CENTRM calculation), we use fluxes obtained in
the course of a transport iteration to add spatial information
to 0-D weight functions. Although multidimensional calcula-
tions might produce more accurate multigroup cross sections,
they are problem specific. If one changes the design of a reac-
tor fuel assembly, for example, then new lattice calculations
must be performed. With OTF weighting, only self-shielded
0-D spectrums are required.

While we chose to use the OTF prolongations to scale
the weight functions from NJOY, this is far from the only
option. This on-the-fly weighting method can be applied to
any given set of fine group cross sections and weight functions.
For instance, one could perform infinite medium calculations
for each material with the fine group cross sections and scale
the resulting fluxes. Alternately, one could first combine the
fine group data with the Bondarenko method and collapse
these cross sections with a weight function scaled by the OTF
prolongations. We chose to scale the isotope-dependent fine
group weight functions to better match the LANL cross section
processing code NDI [17].

Four prolongation methods are presented here. Each pro-
longation method assumes that the continuous energy weight
function or neutron density has an average slope that is lin-
ear in either speed (v) or energy (E) within a coarse group.
The slope is obtained from the coarse group fluxes or neutron
densities for the given coarse group (g) and its two neighbors
(g + 1, g − 1). The first and last coarse groups use a flat slope.

It is important to mention that only the shape of the weight
function within a coarse group matters during a group collapse.

None of the methods below preserve the total flux in a coarse
group, but they are not intended to. The OTF weight functions
are only meant to provide a solution-dependent shape within a
coarse group, and not to produce consistent fine group fluxes.

1. Piecewise Linear N(v)

To derive the first OTF prolongation, we begin by as-
suming the neutron density within a coarse group g may be
represented by

Ñ (v) =
Ng + Ng+1

2

+

(
Ng−1 + Ng

)
/2 −

(
Ng + Ng+1

)
/2

∆vg

(
v − vg+1/2

)
=

Ng + Ng+1

2
+

Ng−1 − Ng+1

2∆vg

(
v − vg+1/2

)
. (11)

Here ∆vg is the speed width of energy bin g, vg+1/2 is the
speed at the lower boundary of group g, and Ng is the average
neutron density in group g, calculated by

Ng =

〈
1
v

〉
g

φg

Vg
, (12)

where
Vg =

∫
∆vg

v2dv =
1
3

(
v3

g−1/2 − v3
g+1/2

)
, (13)

〈
1
v

〉
g

=

∫
∆vg

1
vφ (v) dv

φg
, (14)

and vg−1/2 is the speed of the upper boundary of group g.
To obtain the corresponding approximate fine group flux

for group k (φ̃k, k ∈ g), we integrate vÑ(v) over ∆vk =[
vk+1/2, vk−1/2

]
:

φ̃k =

∫
∆vk

vÑ (v) v2dv (15)

=

[ (
Ng + Ng+1

2
−

Ng−1 − Ng+1

2∆vg
vg+1/2

) v4
k−1/2 − v4

k+1/2

4

+
Ng−1 − Ng+1

2∆vg

v5
k−1/2 − v5

k+1/2

5

]
.

φ̃k may now be used to scale the original fine group weight
functions, as previously described.

There are two important things to note in Eq. (15). First,
we chose to calculate the fine group flux (φ̃k) rather than the
fine group number density (Ñk) because group collapses are
typically performed using scalar fluxes as weights to preserve
reaction rates [1, 2]. However, because we are using a ratio of
OTF prolongations to scale a fine group weight function, we
are not necessarily limited to using φ̃k.

Second, we do not bother normalizing φ̃k because the fine-
to-coarse group collapse depends on the relative magnitude
of the flux within a coarse group. In other words, as long
as the fine group fluxes are properly normalized relative to
each other within a single coarse group, we do not need to
normalize them across the entire energy domain.
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2. Piecewise Linear φ(v)

For the second prolongation method, we assume the neu-
tron flux, rather than the neutron density, is linear in v within
a coarse group:

φ̃ (v) =
φ̂g + φ̂g+1

2
+
φ̂g−1 − φ̂g+1

2∆vg

(
v − vg+1/2

)
, (16)

where

φ̂g =
φg

Vg
(17)

is the average neutron flux in group g. An average neutron
flux is necessary to avoid biasing the flux by the group bin
width.

Integrating Eq. (16) over ∆vk yields

φ̃k =

 φ̂g + φ̂g+1

2
−
φ̂g−1 − φ̂g+1

2∆vg
vg+1/2

 v3
k−1/2 − v3

k+1/2

3

+
φ̂g−1 − φ̂g+1

2∆vg

v4
k−1/2 − v4

k+1/2

4
. (18)

3. Piecewise Linear N(E)

Here and in the following section, we assume that the
neutron density and neutron flux, respectively, are piecewise
linear in energy, rather than speed.

Representing the neutron density within a coarse group g
by a linear function of E, we have:

Ñ (E) =
Ng + Ng+1

2
+

Ng−1 − Ng+1

2∆Eg

(
E − Eg+1/2

)
. (19)

Here Eg+1/2 is the energy at the lower boundary of group g and
Ng is again the average neutron density in group g, which is
now calculated with the volume element of group g in energy-
space, rather than speed-space:

Vg =

∫
∆Eg

dE = Eg−1/2 − Eg+1/2 = ∆Eg . (20)

To obtain an estimate of the fine group flux, we integrate
vÑ over ∆Ek =

[
Ek+1/2, Ek−1/2

]
, yielding:

φ̃k =

√
2
m

[ (
Ng + Ng+1 −

Ng−1 − Ng+1

∆Eg
Eg+1/2

) E3/2
k−1/2 − E3/2

k+1/2

3

+
Ng−1 − Ng+1

∆Eg

E5/2
k−1/2 − E5/2

k+1/2

5

]
, (21)

where Ek+1/2 and Ek−1/2 are the lower and upper energy bounds
of the fine group k, respectively, and v =

√
2E/m.

Eq. (21) is used in the same way as Eqs. (15) and (18).
Because we are concerned only with ratios of prolongated
fluxes, we neglect the

√
2/m term.

4. Piecewise Linear φ(E)

In our fourth method, we assume the neutron flux shape
within a coarse group g may be represented by:

φ̃ (E) =
φ̂g + φ̂g+1

2
+
φ̂g−1 − φ̂g+1

2∆Eg

(
E − Eg+1/2

)
, (22)

where φ̂g is defined in Eq. (17).
Integrating over a fine group ∆Ek, we obtain

φ̃k =

 φ̂g + φ̂g+1

2
−
φ̂g−1 − φ̂g+1

2∆Eg
Eg+1/2

 ∆Ek (23)

+
φ̂g−1 − φ̂g+1

2∆Eg

E2
k−1/2 − E2

k+1/2

2
,

our final OTF prolongation.

5. Other variations

There are many other potential prolongation methods. In
the above four we assumed the neutron density and flux were
piecewise linear functions of either speed or energy. We could
have, for instance, used a spline interpolation or an expansion
in energy squared. The choice of a piecewise linear in speed
neutron density was based on a similar approximation in PAR-
TISN for moving material momentum advection corrections
[18]. The other three prolongations were natural extensions of
this one.

As shall be shown in the following section, the choice of
prolongation is frequently less important than having some
prolongation to adjust cross sections on-the-fly.

V. TESTING

The OTF weighting method was tested with five prob-
lems: (1) a 1-D uranium oxide (UO2) slab; (2) a 1-D slab of
mixed-oxide (MOX), water, and UO2; (3) a 1-D slab of Pu/U
metal, liquid sodium, and UO2; (4) a 2-D Cartesian problem
with UO2 and water; and (5) a 2-D Cartesian problem with
Pu/U and sodium. Their isotopics are presented in Table I.
The geometries for the 1-D problems are also given in Table
I, while the geometry and boundary conditions for the 2-D
problems are shown in Figure 2. The UO2 slab has a vacuum
boundary condition on the right and a reflecting boundary
condition on the left, while the MOX-water-UO2 (MWU) and
plutonium/uranium-sodium-UO2 (PuNaU) problems have re-
flecting boundary conditions on both sides.

1. Test Problem Flux Comparison

Figure 3 compares the calculated 618 group PARTISN
scalar fluxes integrated over the entire geometry for each prob-
lem to the infinitely dilute TD-4 weight function. It is impor-
tant to again note that differences in weight functions are only
important within a coarse group. Even if their magnitudes
are dissimilar, two different weight functions can still lead to
similar coarse group cross sections. In Figure 3 the ordinate
axis is the multigroup flux divided by lethargy bin width (∆u).
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TABLE I: Problem Definitions

Length (cm) Number Number Number
Problem Region or Area (cm2) Isotope 1 Density Isotope 2 Density Isotope 3 Density
UO2 Slab 1 20 cm U-235 0.00320772 U-238 0.021265613 O-16 0.0489467

MWU Slab 1 0.1837237 cm Pu-239 0.00124814 U-238 0.023225193 O-16 0.0489467
2 1 cm H-1 0.05008667 O-16 0.025043333
3 0.5505 cm U-235 0.00124814 U-238 0.023225193 O-16 0.0489467

PuNaU Slab 1 0.125 cm Pu-239 0.002527705 U-238 0.02137352
2 0.625 cm Na-23 0.0121410395
3 0.25 cm U-235 0.002139046 U-238 0.008665411 O-16 0.0145637

UO2 2-D 1 281.25 cm2 U-235 0.00457455 U-238 0.0182982 O-16 0.0457642
2 618.75 cm2 H-1 0.0496224 O-16 0.0248112 B-10 0.0000107

Pu 2-D 1 281.25 cm2 Pu-239 0.0120793761 U-238 0.0362381282
2 618.75 cm2 Na-23 0.01214104
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Fig. 2: 2-D Geometry

Fig. 3: Weight function comparison

Unsurprisingly, the two problems with water, MWU and
UO2 2-D, have thermal spectrums, while the other three have
fast spectrums. The Pu 2-D problem has the fastest spectrum
because it has a poor moderator (sodium) and vacuum bound-
ary conditions, which allow neutrons to escape before they can
thermalize. While the UO2 slab also has vacuum boundary
conditions, the problem is sufficiently large that neutron leak-
age is less significant. Likewise, the PuNaU slab, which has
the same moderator as the Pu 2-D problem, has a spectrum
comparable to the UO2 slab because there is no leakage.

Many of the resonances at higher energies (400 keV to 10
MeV) come from O-16. The dip at 2.8 keV seen in the PuNaU
and Pu 2-D problems come from a sharp Na-23 resonance, as
does the dip at 53 keV. Between 1 eV and 20 keV, we see the
effects of the uranium and plutonium resonances. They are
likely less evident in the 2-D problem because the integration
over the entire geometry includes more moderator than with
the PWU slab. The shoulder at 4 MeV seen in most of the
spectrums is from the elastic scattering cross section for the
actinides.

2. Test Problem Results

Reaction rates (RR) and eigenvalues were obtained for
each problem, collapsing method, and coarse group structure
in order to evaluate the accuracy of OTF weight functions.
Both removal (taken as (n,2n) + (n,3n) + (n,γ) + (n,α) + (n,p)
+ (n,d) + (n,t) + (n,f)) and fission reaction rates are compared.
MCNP results are presented for further comparisons. For the
2-D problems, fission source errors relative to the 618 group
solution are shown for each 30 group solution as a function of
space.

The OTF weight functions typically improved the coarse
group PARTISN solution over the standard group collapse
method when compared to the 618 group PARTISN solution,
though this improvement varied. The eigenvalue error was
reduced for every problem except the 30 group MWU slab and
the UO2 2-D 133 group solution. Likewise, the reaction rate
errors decreased for all but the MWU and PuNaU problems.
In those two problems, the OTF weighting methods struggled
to capture the removal rate in the moderator.
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TABLE II: UO2 Slab

Removal Fission
k Center Middle Edge Sum Center Middle Edge Sum

MCNP 0.95188 0.00329 0.00256 0.00125 0.00710 0.00172 0.00134 0.00066 0.00372
618 0.95268 0.00335 0.00249 0.00127 0.00711 0.00175 0.00131 0.00067 0.00372

∆k ∆RR (% Error)
30 Standard -0.011181 -0.403% -0.454% -0.579% -0.452% -1.135% -1.157% -1.176% -1.150%

PL N(v) -0.004367 -0.094% -0.099% -0.123% -0.101% -0.443% -0.435% -0.412% -0.435%
PL φ(v) -0.003404 -0.056% -0.054% -0.064% -0.057% -0.345% -0.334% -0.307% -0.334%
PL N(E) -0.003992 -0.101% -0.102% -0.114% -0.104% -0.408% -0.398% -0.368% -0.397%
PL φ(E) -0.003137 -0.092% -0.087% -0.082% -0.088% -0.323% -0.310% -0.273% -0.310%

133 Standard -0.001496 -0.088% -0.085% -0.074% -0.084% -0.162% -0.156% -0.132% -0.155%
PL N(v) -0.000553 -0.050% -0.039% -0.009% -0.039% -0.068% -0.057% -0.024% -0.056%
PL φ(E) -0.000539 -0.051% -0.041% -0.010% -0.040% -0.067% -0.056% -0.022% -0.055%

250 Standard -0.000451 -0.027% -0.026% -0.020% -0.025% -0.050% -0.048% -0.038% -0.047%
PL φ(E) -0.000153 -0.017% -0.014% -0.003% -0.013% -0.020% -0.017% -0.005% -0.016%

In all five problems, the OTF results varied little between
prolongations for 133 and 250 groups. Therefore, only se-
lected results are presented.

In Tables II – VI, eigenvalue errors are presented as the
difference between the 618 group PARTISN solution and the
coarse group solutions:

∆k = kPART IS N, Fine − kPART IS N, Coarse , (24)

while reaction rate errors are given as percent errors:

∆RR =
RRPART IS N, Fine − RRPART IS N, Coarse

RRPART IS N, Fine
× 100% . (25)

Reaction rates were normalized to neutron production such
that for each solution

1
k

∫
V

G∑
g=1

νΣ f ,gφgdV = 1 . (26)

A. UO2 Slab Results

Eigenvalue and reaction rate results for this simple prob-
lem are presented in Table II. The slab is split into three equal
length regions for reporting reaction rates – the center, middle,
and edge. The size of this problem, along with oxygen acting
as the primary moderator, yielded a spectrum (see Figure 3)
almost as fast as the Pu 2-D problem.

In every case, OTF weighting improved the eigenvalue
and the integral reaction rates. However, the errors for each
coarse group structure were slight even with the standard group
collapse (less than 1.2%), particularly for 133 and 250 energy
groups. Therefore, only the relative improvement (comparing
the OTF errors to the standard collapsing method errors) is
significant. For example, the 30 group standard removal rate
error for the central region is -0.403%. With PL N(v), the
error is -0.094%. Thus, while the absolute improvement is
only 0.309%, the relative improvement is greater than a factor
of four.

The reduction in both eigenvalue and reaction rate error
is comparable for all four OTF weight functions. The relative
improvement in reaction rates increases towards the boundary
of the problem, where the vacuum boundary condition has
a greater impact on the spectrum. With 30 groups, we see a
common trend – while the prolongation with the most accu-
rate eigenvalue has the most accurate fission rates, another
prolongation more accurately captures the removal rates. A
comparison of the fission rate errors as a function of space
showed little variation between the methods (variations of up
to 0.06%).

B. MOX-Water-UO2 Slab Results

The MOX-Water-UO2 (MWU) slab, with results shown
in Table III, is the second-most thermal problem tested. There-
fore, epithermal resonances, such as those seen in U-235,
U-238, and Pu-239, have a significant impact on the final solu-
tion. This is the only problem where, for 30 groups, the OTF
methods yielded a less accurate eigenvalue than the standard
group collapse. It is also one of two problems where, for 30
groups, the most accurate eigenvalue does not correspond to
the most accurate fission reaction rates.

While the OTF methods generally show improvement in
the reaction rate errors over the standard group collapse, these
improvements are slight. Furthermore, the OTF methods per-
formed worse in the moderator region than the standard group
collapses. These inaccuracies are likely responsible for the
increased 30 group eigenvalue error: as the removal reaction
rate error in the water increases, so does the eigenvalue error.
Additionally, the reaction rate errors are lopsided – both re-
moval and fission rates were underestimated in the MOX and
overestimated in the UO2.

Again, these errors are small compared to the 618 group
solution, on the order of 2.5% or less. Variations between the
methods thus led to no more than a 0.5% change in the relative
error. When comparing the fission rate as a function of space,
errors are as large as 6%. While OTF weighting improved this
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TABLE III: MOX-Water-UO2 Slab

Removal Fission
k MOX Water UO2 MOX Water UO2

MCNP 1.44474 0.003915 0.000225 0.005903 0.002133 0.000000 0.003398
618 1.44957 0.003916 0.000222 0.005902 0.002141 0.000000 0.003408

∆k ∆RR (% Error)
30 Standard 0.003213 2.110% 2.011% -1.538% 1.583% 0.000% -0.777%

PL N(v) 0.003491 2.028% 2.183% -1.470% 1.514% 0.000% -0.689%
PL φ(v) 0.003727 1.869% 2.349% -1.369% 1.355% 0.000% -0.545%
PL N(E) 0.003711 1.961% 2.257% -1.427% 1.453% 0.000% -0.619%
PL φ(E) 0.004193 1.761% 2.535% -1.303% 1.268% 0.000% -0.426%

133 Standard 0.002395 0.928% 0.052% -0.622% 0.718% 0.000% -0.240%
PL N(v) 0.001055 0.620% -0.072% -0.410% 0.364% 0.000% -0.140%
PL φ(E) 0.001470 0.626% -0.000% -0.417% 0.383% 0.000% -0.105%

250 Standard 0.000504 0.486% -0.113% -0.320% 0.421% 0.000% -0.249%
PL φ(E) -0.000296 0.251% -0.120% -0.163% 0.187% 0.000% -0.174%

TABLE IV: PuNaU Slab

Removal Fission
k Pu/U Na UO2 Pu/U Na UO2

MCNP 1.43169 0.004443 0.000030 0.005602 0.002151 0.000000 0.003251
618 1.43890 0.004420 0.000025 0.005627 0.002160 0.000000 0.003271

∆k ∆RR (% Error)
30 Standard -0.014246 0.124% 1.116% -0.176% -0.915% 0.000% -0.968%

PL N(v) -0.009105 0.002% 2.603% -0.112% -0.602% 0.000% -0.611%
PL φ(v) -0.007963 -0.035% 2.053% -0.071% -0.554% 0.000% -0.512%
PL N(E) -0.008314 -0.015% 2.173% -0.095% -0.552% 0.000% -0.556%
PL φ(E) -0.006796 -0.045% 1.428% -0.057% -0.461% 0.000% -0.446%

133 Standard -0.002782 0.057% 0.492% -0.033% -0.204% 0.000% -0.177%
PL φ(E) -0.001151 0.008% 1.566% 0.005% -0.113% 0.000% -0.052%

250 Standard -0.000880 0.034% 0.930% -0.013% -0.066% 0.000% -0.055%
PL φ(E) -0.000536 0.013% 0.865% -0.003% -0.051% 0.000% -0.026%

error, the improvement is small.

C. PuNaU Slab Results

The Pu/U-Na-UO2 (PuNaU) slab has a spectrum com-
parable to the UO2 slab, though with significant dips due
to Na-23 resonances. Table IV shows the eigenvalue and
reaction rate errors for this problem. Once more, the OTF
methods yielded less accurate solutions (compared to the stan-
dard group-collapse) in the moderator for 30 and 133 groups
while producing more accurate solutions in the fuel regions.
Eigenvalue errors were decreased by up to a factor of two, and
reaction rate errors (when improved) were similarly decreased.

The spatial fission rate distribution once more showed
minimal variation between the methods (variations of up to
0.04%), similar to the UO2 problem. This, however, masks
the flux error in the sodium revealed by the reaction rates.

D. UO2 2-D Slab Results

Reaction rates and eigenvalues are given in Table V for
this large, thermal, 2-D problem. The OTF weighting methods
yielded significantly lower reaction rate errors for the 30 group
solutions (on average, the errors were reduced by more than
50%). The difference in these errors decreases as the number
of energy groups increases until, with 250 energy groups, the
OTF removal reaction rates are less accurate than the standard
collapsing method. Eigenvalue errors are also inconsistent,
with the OTF methods performing worse than the standard
method for 133 groups, likely due to cancellation of errors
(the standard 133 group eigenvalue is more accurate than even
the 250 group solution).

Figures 4a – 4e show the fission rate error (based on the
618 group solution) as a function of space for the five 30 group
solutions, with the problem split into 5 cm by 5 cm regions
for reporting the fission rates. The OTF weighting methods
reduced the root-mean-square (RMS) error by more than a
factor of two. Again we see little deviation between the OTF
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TABLE V: UO2 2-D

Removal Fission
k Fuel Water Fuel

MCNP 0.95380 106182.46 54604.20 69550.55
618 Standard 0.95561 106246.84 54147.26 69686.24

∆k ∆RR (% Error)
30 Standard -0.001491 -0.571% 0.751% -0.119%

PL N(v) 0.000346 -0.191% -0.076% 0.063%
PL φ(v) 0.000587 -0.134% -0.196% 0.087%
PL N(E) 0.000377 -0.185% -0.105% 0.065%
PL φ(E) 0.000567 -0.157% -0.183% 0.065%

133 Standard 0.000007 -0.088% 0.086% 0.007%
PL N(v) 0.000030 -0.034% -0.006% 0.007%
PL φ(E) 0.000025 -0.038% 0.005% 0.006%

250 Standard 0.000143 -0.003% -0.069% 0.017%
PL N(v) 0.000002 0.015% -0.087% 0.001%
PL φ(E) -0.000014 0.013% -0.077% -0.001%

TABLE VI: Pu 2-D

Removal Fission
k Pu/U Na Pu/U

MCNP 1.05206 182167.00 46.00 108327.31
618 Standard 1.05196 182204.82 44.57 108318.36

∆k ∆RR (% Error)
30 Standard 0.003704 -0.746% -2.840% 0.372%

PL N(v) 0.000708 -0.043% -0.237% 0.095%
PL φ(v) 0.000436 -0.029% -0.161% 0.065%
PL N(E) 0.000742 -0.070% -0.121% 0.094%
PL φ(E) 0.000722 -0.097% -0.120% 0.088%

133 Standard 0.000587 -0.086% -1.457% 0.058%
PL φ(E) 0.000065 -0.009% -0.357% 0.006%

250 Standard 0.000205 -0.029% 0.008% 0.020%
PL N(v) -0.000006 -0.004% -0.178% -0.001%
PL φ(E) -0.000009 -0.004% -0.164% -0.001%

methods. By RMS error, φ(v) produced the most accurate
results while N(v) yielded the least. The integral fission rates,
however, show the opposite. This reinforces that one must be
careful when comparing integral reaction rates.

E. Pu 2-D Slab Results

Table VI presents results for the Pu 2-D problem, which
has the fastest spectrum of the five test problems. Here, the
OTF methods yielded more accurate eigenvalues and reaction
rates, even in the moderator. The only exception was the 250
group removal rate in the sodium. Eigenvalue errors decreased
by a factor of five or more, while reaction rate errors were
improved by a factor of four or more. Once more, there is no
consistently “best” OTF method: for 30 groups, φ(v) is the
most accurate; for 133 groups, φ(E); for 250 groups, arguably
either N(v) or φ(E).

Figures 5a – 5e show the fission rate error (based on the

618 group solution) as a function of space for the five 30 group
solutions. Here the improvement with OTF weight functions
is clearly evident when compared to the standard collapsing
method. The OTF weight functions decrease the RMS error
by anywhere from a factor of four to a factor of thirteen. N(v)
yielded the best results by RMS error, while φ(E) yielded the
worst. However, by the integral fission rate, φ(v) is the most
accurate (see Table VI). Again, integral reaction rates should
be viewed with caution, as they are more easily affected by
cancellation of error.

3. Test Problem Summary

In general, the OTF methods improved the coarse group
solutions for each test problem. This improvement was far
from consistent; for the MWU, PuNaU, UO2 2-D, and Pu
2-D problems, the OTF weight functions occasionally yielded
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less accurate solutions than the standard weight function. For
the two slabs (both reflecting), the OTF methods struggled
to capture the removal reaction rate in the moderator regions,
where the removal rates are small. The UO2 2-D and Pu 2-D
problems both led to inaccurate 250 group removal rates –
for UO2 in both the fuel and moderator; for Pu only in the
moderator. For the 30 group MWU slab and the 133 group
UO2 2-D problems the OTF solutions showed an increase
in eigenvalue error. For the former, the errors correspond to
errors in the moderator. For the latter, this increase likely
comes from cancellation of error.

Despite these less accurate examples, the OTF weight
functions have shown that, given a set of fine group cross
sections, they can produce coarse group solutions that are fre-
quently closer to the fine group solution than with the standard
group collapse. While this improvement was slight in some
cases, such as the MWU and PuNaU reflecting slabs, OTF
weight functions, on average, reduced eigenvalue errors by
more than 200%, and reaction rate errors by more than 300%.
OTF weighting appears to do better in problems with fewer
resonances. It performed the best with the Pu 2-D test prob-
lem, which has the fewest resonances (see Figure 3), and the
worst with the MWU slab, which had the most resonances,
particularly in the epithermal range. However, while the OTF
methods may improve eigenvalues and reaction rates relative
to the fine group solution, they will not necessarily make the
solution more accurate compared to MCNP. As with the stan-
dard group collapse, we can only expect the coarse group
solution to do as well as the fine group solution.

The differences between the four OTF methods were in-
consistent from problem to problem. Occasionally, one of
the four prolongations would yield the most accurate k, while
another would produce more accurate reaction rates. Despite
these inconsistencies, PL φ(E) was most frequently the most
accurate prolongation, followed by PL N(v).

The eigenvalue errors typically mirrored the fission reac-
tion rates at the expense of the removal rates. In other words,
the case with the most accurate eigenvalue frequently had the
most accurate fission reaction rates, while another case would
have the more accurate removal rates. Because k is primarily
determined by the fission rate, an accurate eigenvalue only
requires the flux to be accurate where νΣ f is large. This does
not guarantee that the flux will be accurate at other energies,
where other cross sections may dominate.

Because group collapses are performed with φ(E), one
might assume that piecewise linear in φ(E) would be the most
accurate method. Each of the four OTF prolongations is, in
essence, a polynomial expansion of E within in a group. As
such, there is no reason to expect a linear expansion in E (as
with the φ(E) OTF prolongation) to do better than the three
other prolongations.

VI. CONCLUSIONS

In this paper, we have presented a new method for collaps-
ing fine group cross sections on-the-fly that relies solely on the
previous iteration’s coarse group fluxes and the information
from NJOY. With OTF weight functions, we saw significant
decreases in the eigenvalue errors for the coarse group solu-

tions, particularly in the 2-D problems. Only in a few cases
(the MWU 30 group cases and UO2 2-D 133 group cases) did
the OTF prolongations yield a less accurate eigenvalue than
the standard weight functions. Reaction rate errors, while less
consistent than the eigenvalues, were nevertheless frequently
improved with the OTF weight functions, often by more than
a factor of three. Only in moderator regions in the reflecting
1-D slabs and the 250 group 2-D problems, as well the fuel
region for the 250 group UO2 2-D case, did we see increases
in removal reaction rate errors.

The piecewise linear φ(E) weight function often proved
the most accurate, though all four prolongations improved the
solution. This implies that the choice of which OTF weight
function method is less important than having an OTF weight
function. In other words, introducing information from the
problem of interest yielded better results than a traditional
static group collapse, as expected. Furthermore, as the number
of energy groups increased, the differences between the four
methods decreased considerably. As the width of each coarse
group decreases, variations in a group are likely to be smaller,
which decreases the impact of the weight function method.

Our results ultimately show that with OTF weight func-
tions one can run a coarser group structure and obtain results
close to the fine group solution, thus increasing the speed of a
calculation without significantly compromising accuracy. We
have not yet investigated the increased run time with OTF
weighting because it has not yet been optimized. Although
not shown, OTF weighting had a minimal impact on the num-
ber of inner iterations (within-group scattering sweeps) when
compared to the standard condensation method. While OTF
weighting occasionally decreased the number of outer itera-
tions, the total number of inner iterations varied by no more
than 15%. When OTF did increase the total number of itera-
tions, it did so by no more than 3%.

While other re-condensation schemes exist, ours is unique
in requiring neither an additional fine group transport solu-
tion nor additional coarse group equations. Furthermore, be-
cause we have no additional transport equations, there is no
additional impact for time-dependent calculations (e.g., in-
creased storage). For instance, a time-dependent SGD cal-
culation would require a fine group time-derivative, which
would require storage of the fine group angular fluxes from
iteration to iteration. The OTF re-condensation scheme pre-
sented here may also be more parallelizable than the other
methods. With spatial domain decomposition, the re-collapse
can be performed separately on each coarse mesh, minimizing
communication.

More tests, particularly ones that are more heterogeneous
or 3-D, are required before categorically stating whether or not
OTF weighting is superior to the standard weighting methods.
The initial results presented here indicate that OTF weighting
performs better when resonances are less significant. Once we
have further investigated the applicability of OTF weighting
to a range of problems, we will study the applicability of OTF
weighting to time-dependent problems.

The OTF method can be easily modified to apply to time-
dependent problems. In addition to the steps in the OTF
weighting flow chart, one would only need to recalculate σ0
as the material compositions changed with time. Furthermore,
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rather than re-collapsing the cross sections after an outer itera-
tion, one could collapse the fine group cross sections only at
the beginning of time step using the previous time’s flux solu-
tion, reducing the total time spent re-collapsing cross sections.
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Fig. 4: UO2 Fission Rate Spatial Errors



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

0 5 10 15 20 25 30

x (cm)

0

5

10

15

20

25

30

y
 (

cm
)

-0.25%

-0.20%

-0.15%

-0.10%

-0.05%

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

(a) Standard, RMS Error = 0.112 %

0 5 10 15 20 25 30

x (cm)

0

5

10

15

20

25

30

y
 (

cm
)

-0.25%

-0.20%

-0.15%

-0.10%

-0.05%

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

(b) N(v), RMS Error = 0.008 %

0 5 10 15 20 25 30

x (cm)

0

5

10

15

20

25

30

y
 (

cm
)

-0.25%

-0.20%

-0.15%

-0.10%

-0.05%

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

(c) φ(v), RMS Error = 0.014 %

0 5 10 15 20 25 30

x (cm)

0

5

10

15

20

25

30

y
 (

cm
)

-0.25%

-0.20%

-0.15%

-0.10%

-0.05%

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

(d) N(E), RMS Error =0.009 %

0 5 10 15 20 25 30

x (cm)

0

5

10

15

20

25

30

y
 (

cm
)

-0.25%

-0.20%

-0.15%

-0.10%

-0.05%

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

(e) φ(E), RMS Error = 0.025 %

Fig. 5: Pu Fission Rate Spatial Errors


