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Abstract - A p-CMFD with two-parameter relaxation is suggested newly to enhance convergence of the p-

CMFD and some numerical results are also provided for the slab geometry. Two relaxation parameters are 

applied when obtaining scalar fluxes of the fine meshes extending from the coarse mesh solution. With the 

new p-CMFD with two-parameter relaxation, the convergence analysis with Fourier ansatz has been 

carried out and a few numerical tests are also done to confirm Fourier analysis. Comparison results with 

CMFD and CMR are also provided. 

 

I. INTRODUCTION  

 

In order to speed up the convergence of neutron 

transport equation, lots of acceleration methods have been 

implemented including diffusion synthetic acceleration 

(DSA) method and coarse mesh rebalance (CMR) 

method.[1]-[3] Among them, the partial current based 

coarse mesh finite difference acceleration method (p-

CMFD) has been suggested by extending the conventional 

coarse mesh finite difference method (CMFD) and the p-

CMFD has been applied various application areas of the 

neutron transport method.[4]-[7] Recently, a relaxation 

approach of diffusion coefficient was proposed to get stable 

solutions of coarse mesh finite difference method 

(CMFD).[8]-[10] It is found out that the relaxation 

parameter plays important role in stabilization through over-

relaxation or extrapolation and in fast convergence through 

under-relaxation or interpolation. 

This paper provides a Fourier analysis for the two-

parameter relaxed p-CMFD method, which provides more 

redundancy compared with the previous one-parameter 

relaxation method. Some numerical results for a slab-

geometry problem are provided including other acceleration 

methods with two-parameter relaxation. 

 

 

II. P-CMFD FORMULAR WITH RELAXATION 

 

The high order discrete equation of the slab geometry 

with diamond differencing method is given as follows. 
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where l is an iteration index and k is an fine mesh index 

and others are typical notations are used.[4] The low order 

partial current based coarse mesh finite difference equation 

is given as  








 

N

n

l
innn

l
i wJ

1

2/1
2/1,

2/1
2/1 .

2

1


                           (3) 








 

2/

1

2/1
2/1,

2/1,
2/1 .||

2

1
N

n

l
innn

l
i wJ 

                        (4) 








 

N

Nn

l
innn

l
i wJ

12/

2/1
2/1,

2/1,
2/1 .||

2

1


                       (5) 

1,

2/1





l

iJ  
2

ˆ2
~ 2/1,1

2/1

2/12/1

12/1







 


l

i

l

i

l

i

l

ii DD             (6) 

1,

2/1





l

iJ
 

2

ˆ2
~ 2/1

1

,1

2/1

2/12/1

12/1











 


l

i

l

i

l

i

l

ii DD            (7) 

,
2

)(
~

2ˆ
2/1

2/12/1

12/1

2/1,

2/1,1

2/1 














l

i

l

i

l

ii

l

il

i

DJ
D



                (8) 

,
2

)(
~

2ˆ
2/1

1

2/12/1

12/1

2/1,

2/1,1

2/1 
















l

i

l

i

l

ii

l

il

i

DJ
D



                 (9) 

where i denotes the coarse mesh index. 

In the CMFD, the net current is adjusted by one 

correction factor. The final form of p-CMFD equation with 

relaxation is  
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The two relaxation parameters(, ) are applied to obtain 

fine mesh fluxes from the coarse mesh fluxes which are 

solution of Eq. (10).  
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where p is the number of fine meshes in a coarse mesh as 

shown in Fig. 1 
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Fig. 1. Index of coarse and fine meshes. 

 

The first relaxation parameter () is widely used to 

obtain fast extrapolated solution. The second relaxation 

parameter () is suggested newly to enhance the 

convergence of p-CMFD by extending the differences of the 

previous two scalar fluxes. This idea is similar as the two-

parameter source extrapolation in acceleration of k 

eigenvalue in the power method.[9] When the first and the 

second parameters are unit and zero, respectively, no 

relaxation is applied to the p-CMFD. In the case of the other 

coarse mesh rebalance methods such as CMR and CMFD, 

two parameter relaxation of Eq.(11) is applied easily 

without additional modifications.  

 

III. CONVERGENCE ANALYSIS OF P-CMFD 

FORMULAR WITH RELAXATION 

 

The Fourier ansatz are applied to linearize the p-CMFD 

equation with two-parameter relaxation as follows [4] 
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Then the linearized p-CMFD with relaxation is obtained 

by taking the first order of )(O  with the simple arithmetic 

derivation.  
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To obtain spectral radius of iterative scheme, Fourier 

ansatz are defined as follows 
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From Eqs.(16) and (17), the following relation is derived 

definitely by the following the coarse mesh rebalance 

case.[2]  

  

,AHB                             (26) 

where 

,][,][ 1)1(1)1(

T

ippi

T

ippi AABB    AB  

,

01

1

10

010





















M ,

10

01

01

001





















I
 

])exp()[exp(
1

IMK  jj
j

 ,])exp()[exp( 1 IM  jj  

.])/2([
2

1 12

1





  KKIH hw n

N

n

n   

From Eq. (18), we can obtain the matrix equation as[4] 
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Eq.(19) is changed into the matrix form after simple steps 
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Combining Eqs.(27) and (29), the final form of 

eigenvalue problem is obtained, which is similar formula as 

those of results the original p-CMFD.[4] 
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The eigenvalue is obtained by solving the quadratic 

polynomial equation as  
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The spectral radius is given as 

.|)(|sup                              (34) 

In the case of CMFD and CMR with two parameter 

relaxation, the same results are derived but the parameter    

in Eq. (28)[4], that is, 

 

CMR :   , 

CMFD : )3/(2 ph  , 

p-CMFD :   )3/(2 ph . 
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Table II shows the trend of spectral radius by changing 

two parameters. From the results, it is found that for a fixed 

 , the optimal   is existing, which provides smaller 

spectra( ) radius than p-CMFD without relaxation( ). And 

it is also found that the spectral radius may decrease by 

choosing combination of the larger   and the 

smaller  parameters. The optimal selection of two 

parameters is under investigation.  

 
Table I. Spectral Radius for p-CMFD With and Without 

Relaxation 
     a  b 

0.5 0.0 0.7 0.79 

0.5 0.0 0.9 0.93 

0.5 0.6 0.9 0.88 

0.5 1.0 0.9 0.74 

0.5 1.2 0.9 0.87 

0.8 0.0 0.7 0.75 

0.8 0.0 0.9 0.92 

0.8 0.6 0.9 0.78 

0.8 1.0 0.9 0.90 

0.8 1.2 0.9 1.00 

1.0 0.0 0.9 0.90 

1.0 0.7 0.9 0.84 

1.0 1.0 0.9 1.00 

1.2 0.3 0.9 0.81 

1.2 0.7 0.9 0.93 
a: p-CMFD without relaxation, 
b: p-CMFD with relaxation. 

  

IV. RESULTS  

 

The test problem is chosen as the one dimensional slab 

problem as shown in Fig. 2.[4] 

0 cm
s

Vacuum
 =1    = 0.9

10 cm

cm
-1

Q= 1.0
Vacuum

cm
-1

#/cm3 sec

 
Fig. 2. Configuration of 1D slab test problem. 

 

The convergence criterion is 1.0E-9 for the maximum 

fine mesh scalar flux. For spatial discretization, the diamond 

differencing scheme is used and S16 Gauss-Legendre 

quadrature set is used for angular discretization.  

Table II shows the solution of the source iteration(SI), 

CMR, CMFD, p-CMFD with and without relaxation. 

Various combinations of two parameters are tested in order 

to provide fast convergence based on analysis results. 

Without relaxation, the number of iteration decreases as the 

optical size (h) increases and the trends of three different 

coarse mesh rebalance methods are slightly different due to 

their convergence characteristics, which is consistent to the 

previous analysis.[4] However the proper relaxation 

provides quite different results. When the number of fine 

meshes is same as that of coarse meshes (p=1), all three 

methods provided convergent solution with two parameter 

relaxation. Especially, CMR provides the best results when 

number of coarse mesh is 5. The iteration number of the 

CMFD acceleration is very large, which comes from 

unadjusted relaxation parameters for CMFD only. In this 

test, two parameters are adjusted roughly for the p-CMFD. 

Thus, p-CMFD provides better robust and stabilized 

convergence. When p increases up to 4, the divergent region 

of CMFD becomes convergent due to relaxation. The CMR 

results are enhanced up to 4 coarse meshes but for 2 coarse 

mesh problem, it is not converged either. The performance 

of p-CMFD results are enhanced with two-parameter 

relaxation and it may well provide better convergence when 

the relaxation parameters are optimized.  

 

Table I. Number of Iterations and Numerical Spectral 

Radius (c=0.9) 

p 
Relaxation h a 

(I b) 

SI CMR CMFD p-CMFD 

1 

No Relax- 

ation 

=1 

=0 

0.1 

(100) 

145 c 

0.8781 d 

23 

0.4248 

12 

0.1758 

12 

0.1908 

1.0 
(10) 

144 
0.8779 

22 
0.4041 

22 
0.4041 

13 
0.1905 

2.0 

(5) 

143 

0.8772 

N.C. e N.C. 32 

0.5269 

=0.8 

=0.04 

1.0 

(10) 

- 128 

0.4000 

14 

0.1848 

15 

0.3169 

2.0 
(5) 

- 7 
0.0400 

113 
0.8384 

14 
0.1217 

4 

No Relax- 

ation 

=1 

=0 

0.625 

(4) 

- 22 

0.4041 

48 

0.6613 

66 

0.7538 

1.25 
(2) 

- N.C. N.C. 62 
0.7394 

=0.8 

=0.3 

0.625 
(4) 

- 18 
0.3000 

34 
0.2397 

34 
0.3078 

1.25 

(2) 

- N.C.  36 

0.6387 

36 

0.7165 
a:Total cross section () x Mesh size of fine mesh (h),   
b:Number of coarse meshes, c:Number of iterations,   
d: Numerical spectral radius,  e: Not converged. 

 

IV. CONCLUSIONS  

 

This paper provides convergence analysis for p-CMFD 

with two-parameter relaxation. The relaxation is carried out 

when obtaining scalar fluxes of fine meshes after coarse 

mesh rebalancing. Two parameters are taken into 

consideration including the two previous step scalar fluxes. 

From the convergence analysis, the eigenvalue matrix 

formula becomes in the same framework of the original p-

CMFD. Therefore, it is easy to represent the general forms 

of coarse mesh rebalance methods such as CMR and CMFD 

methods in the same framework. From the simple numerical 

tests of a slab-geometry problem, it is confirmed that the 

relaxation becomes a way to extend convergence region of 

various coarse mesh rebalance methods.  

As a future work, the optimal selection of relaxation 

parameter will be studied. One of solution is to apply the 

advanced optimization approach. If possible to express 
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arithmetic equation, non-linear numerical search algorithms 

are good candidates. 

 

NOMENCLATURE 

 

 = polar angle cosine, cos 

 = angular flux, 

 = scalar flux, 

J = net current, 

J+ = positive partial current, 

J- = negative partial current, 

 = macroscopic total cross section, 

s= macroscopic scattering cross section, 

a= macroscopic absorption cross section, 

Q= external source. 
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