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Abstract - We introduce an a posteriori spatial discretization error estimator for the discrete ordinates
transport equation. We estimate the residual and invert the discrete transport operator using the residual as a
source to estimate the error. This is compared to the true error calculated via the Method of Manufactured
Solutions as well as the estimated error as given by Ragusa and Wang.

I. INTRODUCTION

Spatially discretizing the discrete ordinates approximation
of the radiation transport equation results in a departure from
the spatially continuous solution quantified by a discretization
error. If this discretization error is known exactly, the true
solution of the spatially continuous equation projected onto
the discrete mesh can be found. Practically, of course, the
discretization error is not known exactly, meaning the error
must be estimated.

Unlike in Monte Carlo methods where errors or uncertain-
ties in the solution are always reported to indicate the statistical
quality of the estimated solution, deterministic solutions are
rarely accompanied by estimated discretization errors, likely
due to unproven usefulness. However, error estimators and
indicators – estimators that are intended to estimate the be-
haviour of the error rather than the error itself, but may or may
not estimate the error well – have provided uses beyond pure
estimation of the solution error. One use for error estimators is
calculating a reliable upper bound on the spatial discretization
error of a solution [1]. The most common use for spatial dis-
cretization error estimators and indicators is to drive adaptive
mesh refinement, a process in which the discrete domain, or
select subsections of it, are refined based on the estimated
error in each cell.

O’Brien and Azmy posited that an a posteriori method
of inverting the discrete transport operator on an estimated
residual could return an error estimation as good as the resid-
ual estimation – i.e., a perfect residual estimation will return
the exact error [2]. We show the validity of this approach, in-
troduce a residual estimator that is mathematically consistent,
and compare this new method with established estimators.

II. THEORY

1. Radiation Transport Equation

In this work, the steady-state, one-speed radiation trans-
port equation is solved on the domain D ∈ [0, X] × [0,Y]
contained in boundary ∂D. The angular discretization method
used in this work is the discrete ordinates (SN) method.

~Ωn · ∇ψn(x, y) + σtψn(x, y)

= σsφ(x, y) + q(x, y), (x, y) ∈ D, n = 1, ...,N, (1)

ψn(x, y) = ψBC,n, (x, y) ∈ ∂D, n̂ · ~Ωn < 0. (2)

Equations 1 and 2 show the complete transport equation
as used in this work, where the scalar flux is defined as
φ(x, y) ≡

∑N
n=1 wnψn(x, y). The angular nodes and weights, wn,

n = 1, ...,N, are calculated using Level Symmetric quadrature,
outlined in [3], although the methods outlined in this work are
applicable to all discrete ordinate quadrature methods.

Scattering is treated isotropically because this is all our
Method of Manufactured Solutions (MMS) reference solution
generator allows for, although there is no reason to believe that
the estimators presented in this work are limited to isotropic
scattering. The same is true of the homogeneous treatment of
cross sections. Additionally, restrictions on MMS limit this
work to fixed boundary conditions. We believe the modifica-
tions to this work to account for albedo or periodic boundary
conditions would be minor, though we would no longer have
the luxury of exact solutions provided by MMS for compari-
son.

2. Method of Manufactured Solutions

The Method of Manufactured Solutions is used to gener-
ate a radiation transport problem for which the true continuous
spatial solution is known [4] in order to benchmark and evalu-
ate with exact certainty the quality of a discretization method.
In the particular MMS that we employ, material properties
across the domain are constant, and the combined volumetric
source Q(x, y) – the sum of the fixed external source and the
scattering source, Eq. 3 – is also fixed and constant.

Q = Q(x, y) ≡ q(x, y) + σsφ(x, y) = const. (3)

Due to the fixed properties throughout the domain the spatially
continuous transport equation can be solved with no approx-
imation (in space) using the Method of Characteristics, Eq.
4.

ψn(x, y) =
ψ<B,T>,n(x − sign(µn)| µn

ηn
|ȳ)e

−σt
|ηn |

ȳ

+
Q
σt

(1 − e
−σt
|ηn |

ȳ), ȳ < | ηn
µn
|x̄,

ψ<R,L>,n(y − sign(ηn)| ηn
µn
|x̄)e

−σt
|µn |

x̄

+
Q
σt

(1 − e
−σt
|µn |

x̄), ȳ > | ηn
µn
|x̄,

(4)
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where x̄ =
1−sign(µn)

2 X + sign(µn)x and ȳ =
1−sign(ηn)

2 Y +
sign(ηn)y. To use MMS as a reference solution, the scattering
source portion of the combined source is subtracted from Q
and used as a fixed source input for the discrete problem:

q(x, y) = Q − σs

N∑
n=1

wnψn(x, y). (5)

Boundary conditions (BC’s) and the combined source term
are chosen to ensure a positive fixed source [5]. In each trans-
port problem (with one exception) there exists one singular
characteristic (SC) per ordinate emanating from the origin of
the transport sweep with a slope of ηn/µn . The SC is significant
because across this line the true, spatially continuous transport
solution has an irregularity of the same order as that where the
boundaries meet. This is illustrated in Table I, where it can be
seen that for a C0 solution, a solution which has jump disconti-
nuities along the SC, the boundary conditions differ. Note that
< B,T > subscripts refer to the bottom and top boundaries
while < R, L > refers to the right and left. However, when the

TABLE I: BC’s corresponding to continuity across SC

ψ<B,T>,n ψ<R,L>,n

C0 0 (Q−σs)/σs

C1 0 0

boundary conditions are the same this only results in a C1 so-
lution, in which the first order derivatives have discontinuities
along the SC; this is because the derivative at the disconti-
nuity is unbounded. By defining higher order derivatives of
the boundary conditions, arbitrarily high degrees of continuity
across the SC can be had, including infinite. However real-
world applications are limited to only C0 and C1, so these are
the only regularity orders considered in this work.

3. Discontinuous Galerkin Finite Element Method

All spatially discrete approximated transport solutions
in this work are calculated using the Discontinuous Galerkin
Finite Element Method of order Λ (DGFEM-Λ), where Λ is
the highest order spatial moment calculated in the numerical
method. DGFEM approximates the solution as a truncated
expansion of coefficients multiplying basis functions,

ψ(h)
n (x, y) =

Λ∑
k=0

Λ∑
l=0

ψn,k,lvk,l(x, y), (6)

where moments of the solution in discrete subcells Ki, j ∈

[xi−1, xi] × [y j−1, y j] with boundaries ∂Ki, j, where i = 1, ...,Nx
and j = 1, ...,Ny, are found through integration as follows:

ψ
(i, j)
n,k,l =

1
∆x∆y

∫
Ki, j

vk,l(x, y)ψ(h)
n (x, y)dA,

for k, l = 0, ...,Λ. (7)

Moments of other functions are found analogously. In this
work ∆x = XN−1

x and ∆y = YN−1
y are both constant and pro-

portional, so a generic ∆ will often be used when discussing

order of accuracy. Because it is a discontinuous method, so-
lution values on the subcell boundaries must be defined as
existing on either the external (+) or internal (−) traces. A
trace is defined as the limit of the value at coordinates that ap-
proach the cell boundary either from outside the cell (external)
or inside the cell (internal) [4].

The DGFEM-Λ method gives the following discrete trans-
port equation:

µn[〈v(i, j)(x+
i , y), ψ(i, j)

n (x−i , y)〉y−〈v(i, j)(x+
i−1, y), ψ(i, j)

n (x−i−1, y)〉y]

+ηn[〈v(i, j)(x, y+
j ), ψ(i, j)

n (x, y−j )〉x−〈v(i, j)(x, y+
j−1), ψ(i, j)

n (x, y−j−1)〉x]

− µn(
∂v(i, j)

∂x
, ψ

(i, j)
n (x, y)) − ηn(

∂v(i, j)

∂y
, ψ

(i, j)
n (x, y))

+ (v(i, j), σtψ
(i, j)
n (x, y)) = (v(i, j), σsφ(x, y) + q(x, y)). (8)

In this context 〈 f (ξ), g(ξ)〉ξ =
∫

∆ξ
f (ξ)g(ξ)dξ and

( f (ξ, η), g(ξ, η)) =
∫

∆ξ

∫
∆η

f (ξ, η)g(ξ, η)dξdη, where ξ and η
are generic spatial variables. The test functions are given as:

vk,l(x, y) = Pk(x̃)Pl(ỹ), for k, l = 0, ...,Λ, (9)

where Pk(x) is the Legendre Polynomial of order k. The vari-
ables x̃ and ỹ are transformed spatial variables about the cell
center, x̃ =

2(x−xc)
∆x and ỹ =

2(y−yc)
∆y . This work will focus on

the DGFEM-0 approximation, Eq. 10, although this could be
generalized to higher order Λ,

µn∆y[ψ(i, j)
n,0,0 − ψ

(i−1, j)
n,0,0 ] + ηn∆x[ψ(i, j)

n,0,0 − ψ
(i, j−1)
n,0,0 ]

+ σt∆x∆yψ(i, j)
n,0,0 = ∆x∆y[σsφ

(i, j)
0,0 + q(i, j)

0,0 ]. (10)

The definition of DGFEM-Λ is important to show because the
high-order approximations to be considered in the future will
have a different form as the order is increased.

MMS solutions are projected onto the discrete domain in
a manner analogous to Eq. 7, allowing for direct comparison
when calculating the true error as well as the various estima-
tors. The Source Iteration (SI) method is used to converge the
DGFEM solution, although conceivably any iteration method
should be consistent with the methods used in this work. The
iterations are converged to 10−10 to ensure validity of the error
comparisons presented below.

4. The Residual Source Estimator

Equation 1 in the domain D can be rewritten as

Lψ = Sψ + q, (11)

where L represents the continuous streaming plus total-
collision operator (the left-hand side of Eq. 1), S is the scat-
tering operator, q is the continuous fixed source, and ψ is the
true, continuous solution to the transport equation. Equation 8
on a mesh with cell size ’h’ can be rewritten as

Lhψ
(h) = Sψ(h) + qh, (12)

where Lh represents the discrete transport operator (the left-
hand side of Eq. 8), qh is the continuous fixed source projected
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onto the discrete domain, and ψ(h) is the solution to the discrete
transport equation that approximates the continuous transport
equation. Here, we define the residual R as the additional term
that exists when the true solution to the continuous transport
equation projected onto the domain, referred to as [ψ]h, is
inserted into Eq. 12,

R ≡ S[ψ]h + qh − Lh[ψ]h. (13)

The spatial discretization error is defined as ε ≡ ψ(h)−[ψ]h, and,
recognizing that the scattering and discrete transport operators
are linear and that qh = −Sψ(h) + Lhψ

(h), we can rearrange
terms and get the following equation for the error,

Lhε = Sε + R (14)

Equation 14 can be solved using the same iterative method
used to obtain the solution to the discrete transport equation.
The goal of this work is to accurately estimate this residual a
posteriori and, by extension, the error without any knowledge
of the true solution. The validity of this approach is examined
in a later section.

5. Defining Error and Error Norms

Because the error is an angular quantity and piecewise
continuous in space, we apply two norms in order to collapse it
into a discrete scalar quantity. Scalar quantities are preferable
because they are easier to work with and are more applicable
to adaptive mesh refinement. The first norm we define as the
local "angular L2 norm", or e(i, j)

ang., Eq. 15. It is called "angular"
because it emphasizes the difference in the angular flux.

e(i, j)
ang. ≡

∑
n

wn

∫
Ki, j

ε2
ndA

1/2

=

∑
n

wn

∫
Ki, j

(ψ(h)
n − ψn)2dA

1/2

. (15)

The other norm is the local "scalar L2 norm", or e(i, j)
sca., Eq. 16.

It is called "scalar" because it emphasizes the difference in the
scalar flux.

e(i, j)
sca. ≡

∫
Ki, j

(
∑

n

wnεn)2dA

1/2

=

∫
Ki, j

(φ(h) − φ)2dA
1/2

. (16)

These local norms can easily be modified to be global norms.
When an uppercase ’E’ is used it indicates that the error norm
being presented is the true error norm computed directly from
DGFEM and MMS solutions, whereas a lowercase ’e’ indi-
cates the error norm has been calculated via an error estimate.
In this work, the error’s accuracy is generally presented using
the local "effectivity index", Eq. 17,

θ
(i, j)
ang./sca. ≡

∣∣∣∣∣∣∣∣
e(i, j)

ang./sca.

E(i, j)
ang./sca.

∣∣∣∣∣∣∣∣ . (17)

A global effectivity index can be calculated with the global
norms analogously.

6. The Ragusa-Wang Estimator

Various works ([2],[6],[7]) have shown empirically that
the two-mesh difference-based estimator introduced by Ra-
gusa and Wang in [7] generally estimates the true error better
than the other estimators and indicators it has been compared
against. For this reason we use the Ragusa-Wang estimator as
the primary comparison for the residual source estimator de-
veloped in this work. The Ragusa-Wang estimator essentially
uses a solution on a uniformly refined mesh, designated with
superscript ’h/2’, as a reference solution. The Ragusa-Wang
estimator as defined in [7] is given in Eq. 18,

eRW ≡

∫
Ki, j

(φ(h) − φ(h/2))2dA∫
D φhdA

. (18)

To keep the estimator consistent with this work, we redefine
the Ragusa-Wang estimator using the same norms introduced
previously,

eRW(i, j)
ang. ≡

∑
n

wn

∫
Ki, j

(ψ(h)
n − ψ

(h/2)
n )2A

1/2

, (19)

eRW(i, j)
sca. ≡

∫
Ki, j

(φ(h) − φ(h/2))2dA
1/2

. (20)

The scope of this work does not include any analysis into the
computational costs of the Ragusa-Wang estimator versus the
residual source estimator.

III. RESULTS& ANALYSIS

A suite of MMS problems is used to assess the estimators’
accuracy in this work. The domain in all problems was square,
and S4 level-symmetric quadrature was used. The SI stopping
criterion was ||φnew − φold ||∞ ≤ 10−10.

1. Conceptual Validation of the Residual Source Estima-
tor

As a proof of concept for the residual source estimator the
MMS solutions are used to find exact residuals. This is done
by projecting the MMS solution onto the mesh and directly
calculating the residual via Eq. 13. By using this residual as a
fixed source for the DGFEM-0 solver, we were able to solve
for the true error as calculated by ε = ψ(h) − [ψ]h exactly.

Figure 1 highlights the features of the true residual. On
boundary cells the residual is orders of magnitude larger than
the residual in the domain. Also, on cells intersected by the
singular characteristic and cells immediately downwind from
those cells the residual is orders of magnitude greater. This
is because DGFEM-0 fails to capture the discontinuity in the
true solution along the SC’s. Cells immediately downwind
from cells intersected by the SC are affected because the flux
in the cell intersected by the SC is used in finding the flux
in the downwind cell, see Eq. 10. We also empirically find
that the leading order terms of cell-wise convergence of the
residual are O(∆) when in the domain, shown in Figure 2, and
O(1) (converges to a constant value as the mesh refines) when
on the boundary or SC, shown in Figures 3 and 4.
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Fig. 1: True residual for µn = ηn = 0.35002 ordinate; C0

irregularity along the SC, σt = 1.0, c = 0.9, Nx = Ny = 32

Fig. 2: Residual convergence with mesh refinement

Fig. 3: Boundary cell residual convergence with mesh
refinement

Fig. 4: SC residual convergence with mesh refinement

2. Approximating the Residual

Generally, the true solution is not known, so we approx-
imate it using an O(δ3) Taylor expansion about the origin of
cell Ki, j (note the partial derivative notation ∂ f

∂x = f x),

ψn(xi + δx, y j + δy) ≈ ψn(xi, y j) + δxψ
x
n(xi, y j) + δyψ

y
n(xi, y j)

+
δ2

x

2
ψxx

n (xi, y j) + δxδyψ
xy
n (xi, y j) +

δ2
y

2
ψ

yy
n (xi, y j). (21)

From here we will drop the discrete ordinate subscript n, and
no mesh superscript implies the quantity is evaluated at (xi, y j).
Equation 21 corresponds to the Legendre moment,

ψ
(i, j)
0,0 ≈ ψ +

∆x
2
ψx +

∆y
2
ψy

+
∆x2

6
ψxx +

∆x∆y
4

ψxy +
∆y2

6
ψyy. (22)

The Legendre moment in the preceding x-direction cell is

ψ
(i−1, j)
0,0 ≈ ψ −

∆x
2
ψx +

∆y
2
ψy

+
∆x2

6
ψxx −

∆x∆y
4

ψxy +
∆y2

6
ψyy, (23)

and the Legendre moment in the preceding y-direction cell is

ψ
(i, j−1)
0,0 ≈ ψ +

∆x
2
ψx −

∆y
2
ψy

+
∆x2

6
ψxx −

∆x∆y
4

ψxy +
∆y2

6
ψyy. (24)

These approximations are accurate up to O(∆3), except for
when the cell is intersected by a SC. Moments of the scattering
source and fixed source are identical to Eq. 22. Knowing that
in the absence of SC’s, DGFEM-0 will converge with O(∆) [8],
we seek an expression for the residual using these moments
that is accurate up to O(∆2). This is as simple as plugging
Eq.’s 22-24 into Eq. 10 and cancelling like terms, then the
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remaining terms are equal to the residual. The (i, j) superscript
for the residual indicates that this is cell-wise residual.

R(i, j) ≈ −{[σtψ+µψx +ηψy− (σsφ+q)]+σt(
∆x
2
ψx +

∆y
2
ψy)

+ (µ
∆y
2

+ η
∆x
2

)ψxy −
∆x
2

(σsφ
x + qx) −

∆y
2

(σsφ
y + qy)}

= −{σt(
∆x
2
ψx +

∆y
2
ψy) + (µ

∆y
2

+ η
∆x
2

)ψxy

−
∆x
2

(σsφ
x + qx) −

∆y
2

(σsφ
y + qy)}. (25)

The term in Eq. 25 contained in the square brackets is equal
to zero, since this is merely Eq. 1 rearranged. The remainder
is the residual on the interior cells accurate to O(∆2). Also we
see that the leading order term in the residual is O(∆), which
is in agreement with the empirically observed interior cell
residual convergence. However, the residual on a boundary
cell does not use the same expression, since the boundary flux
is known from the BC’s. The expressions for residuals on
boundary cells, denoted by a [B] superscript, are given by:

R([B], j) = −{
µ

∆x
[ψ([B], j)

0,0 − ψ<R,L>] +
η

∆y
[ψ([B], j)

0,0 − ψ
([B], j−1)
0,0 ]

+σtψ
([B], j)
0,0 −σsφ

([B], j)
0,0 − q([B], j)

0,0 } ≈ −{
µ

∆x
[ψ+

∆x
2
ψx +

∆y
2
ψy+

∆x2

6
ψxx +

∆x∆y
4

ψxy +
∆y2

6
ψyy − ψ<R,L>]

+
η

∆y
[∆yψy +

∆x∆y
2

ψxy] + σt[ψ +
∆x
2
ψx +

∆y
2
ψy]

− [σsφ + q +
∆x
2

(σsφ
x + qx) +

∆y
2

(σsφ
y + qy)]}.

Terms are cancelled and rearranged to give

R([B], j) ≈ −{[µψx + ηψy + σtψ<R,L> − (σsφ + q)]

+ µ[−
1
2
ψx +

∆y
2∆x

ψy +
∆x
6
ψxx +

∆y
4
ψxy +

∆y2

6∆x
ψyy]+

η
∆x
2
ψxy+σt[

∆x
2
ψx+

∆y
2
ψy]−[

∆x
2

(σsφ
x+qx)+

∆y
2

(σsφ
y+qy)]}.

The first term on the right-hand side is equal to zero. Since
the source is typically undefined on the boundaries, but does
exist on the interior trace of a boundary cell, we substitute
derivatives for angular flux quantities – i.e., (σsφ

x + qx) =
σtψ

x + µψxx + ηψxy,

R([B], j) ≈ −{µ[−
1
2
ψx +

∆y
2∆x

ψy +
∆x
6
ψxx +

∆y
4
ψxy +

∆y2

6∆x
ψyy]

+ η
∆x
2
ψxy + σt[

∆x
2
ψx +

∆y
2
ψy] −

∆x
2

[σtψ
x + µψxx + ηψxy]

−
∆y
2

[σtψ
y + µψxy + ηψyy]}.

Combining like terms gives Eq. 26, where a bar indicates that
the value is known directly from the BC’s,

R([B], j) ≈ −{µ[−
1
2
ψx +

∆y
2∆x

ψ̄y

−
∆x
3
ψxx −

∆y
4
ψxy +

∆y2

6∆x
ψ̄yy] − η

∆y
2
ψ̄yy}. (26)

A similar process for the top and bottom boundary cells as
well as the corner cells gives

R(i,[B]) ≈ −{−µ
∆x
2
ψ̄xx + η[

∆x
2∆y

ψ̄x

−
1
2
ψy +

∆x2

6∆y
ψ̄xx −

∆x
4
ψxy −

∆y
3
ψyy]}, (27)

and

R([B],[B]) ≈ −{µ[−
1
2
ψ̄x +

∆y
2∆x

ψ̄y−
∆x
3
ψ̄xx−

∆y
4
ψ̄xy +

∆y2

6∆x
ψ̄yy]

+ η[
∆x
2∆y

ψ̄x −
1
2
ψ̄y +

∆x2

6∆y
ψ̄xx −

∆x
4
ψ̄xy −

∆y
3
ψ̄yy]}. (28)

These residual expressions are O(∆2) accurate so long as
the true angular flux quantities are known. These expressions
converge to a constant with O(∆), which is in agreement with
our empirically observed boundary residual convergence. Note
that while all derivatives that appear in the corner cell residual
expression are known exactly, the corner cell by definition is
intersected by an SC.

Figure 5 shows that the derived Taylor-expansion-
approximated (TE) residual expressions accurately capture
the true residual, and we have observed that the leading error
term is O(∆2), in accordance with theory. An exception to this
is on the SC where the discontinuities in the angular flux and
higher order derivatives are not adequately approximated by
the Taylor expansion. Figure 6 shows the angular L2 effec-

Fig. 5: TE residual minus true residual for µn = ηn = 0.35002
ordinate; C0 irregularity along the SC, σt = 1.0, c = 0.9,

Nx = Ny = 32

tivity across the domain. The TE residual-estimated error is
accurate in regions untainted by the SC. However, near the
SC’s and especially in regions where the SC’s intersect the
estimated error under or overestimates. Intuitively this makes
sense, since, as shown in Fig. 1, the true residual is orders
of magnitude higher on the SC than in the domain, and since
our expressions do not capture the behaviour of the solution
along the SC’s appropriately (see Fig. 5), the estimated resid-
ual and, by extension, the estimated error would logically be
inaccurately estimated.
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Fig. 6: log10-scale angular L2 effectivity for TE
residual-estimated error; C0 irregularity along the SC,

σt = 1.0, c = 0.9, Nx = Ny = 32

Another observation is that as the optical thickness (σt)
of the problem is increased, the TE residual deviates from
the true residual. This is understandable because the spatial
gradient of the true solution will be higher and the Taylor
expansion approximation worse. However, the effect this
has on the estimated error is minor compared to that of poor
approximation on the SC’s.

3. Estimating Derivatives with DGFEM-0 Quantities

In the DGFEM-0 approximation, the angular flux is ap-
proximated as a piecewise constant function in space, meaning
that all derivatives are undefined (in fact, all derivatives order
Λ+1 and higher are undefined for a general DGFEM-Λ approx-
imation). This means that all derivative terms in the residual
expressions must be approximated using order 0 terms. On the
interior cells this is straightforward. The desired flux terms are
located on cell corners, where the flux is discontinuous due to
the DGFEM-0 approximation. The angular flux moments in
each cell in terms of the same Taylor series used to derive the
residual equations are given:
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The two first order angular flux derivatives as well as the cross
derivative that appear in the interior cell residual expression
can be approximated by,
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The scalar flux derivative is calculated analogously. However,
the continuous function of the fixed source should be known
exactly, so its derivatives need not be approximated. On the
boundaries the estimation of the same derivatives is nearly
analogous, except some values in the expressions are known
directly from the BC’s (denoted by a bar). For example, on the
x-boundary the flux moments in the boundary cells are given
by a Taylor series in Eq. 36:
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Immediately the issue with estimating derivatives on the
boundaries is seen, namely that there are three unknowns and
two equations. To remedy this we must reduce the order of
accuracy of our Taylor expansion and estimate the first order
derivative accuracy,

ψx =
1

∆x
(ψ([B], j)

0,0 + ψ
([B], j−1)
0,0 − 2ψ̄) + O(∆). (37)

However, this means that our residual approximation on the
boundary cells is only O(∆) accurate.

The approximated-derivative (AD) residual is calculated
by substituting approximate a posteriori derivative expres-
sions (Eqs. (24)-(26),(28)) for the true derivatives in the TE
residual equations. The moments used in approximating the
derivatives come from the DGFEM-0 transport solution, not
the MMS solution, meaning that this residual relies only on the
numerical solution. Figure 7 shows the difference between the
AD residual and the true residual in the domain. Here we see
that the AD residual estimation is significantly worse than the
TE residual estimation. The SC estimation is once again the
poorest in the domain, and, as the mesh is refined, the SC’s in
other ordinates begin to appear in the corresponding plot due
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Fig. 7: AD residual minus true residual for µn = ηn = 0.35002
ordinate; C0 irregularity along the SC, σt = 1.0, c = 0.9,

Nx = Ny = 32

Fig. 8: log10-scale angular L2 effectivity for AD
residual-estimated error; C0 irregularity along the SC,

σt = 1.0, c = 0.9, Nx = Ny = 32

to the discontinuities in the scattering source. However, per-
haps surprisingly, the AD residual results in a superior angular
L2 effectivity in the domain, Fig. 8. While the AD residual-
estimated error in the domain shares many of the same features
as the TE residual-estimated error, the former is contained in a
tighter range than the latter. The reason why the AD residual-
estimated error is better than the TE residual-estimated error
despite having more approximations is not clearly known, but
this was consistently observed for a variety of cases examined,
suggesting that perhaps this unexpected trend is not a fluke.
One case where this is not true is where the optical thickness
is large and derivative estimation is poor.

From Fig. 8 it is also clear that the worse estimation
comes from points on or near the SC’s and points that are
surrounded by SC’s. This is to be expected since the deviation
incurred by poor approximation of the residual about SC’s
is not confined to the cells intersected by the SC’s. When,

during a transport sweep to solve for the approximated error, a
significant deviation from the true residual is introduced by the
SC, it is spread downwind in subsequent cell calculations. This
contribution is relatively minor unless the SC’s are prominent
– i.e., the discontinuities are large – or other SC’s have also
contributed significantly to the inaccuracy of the residual in
that cell.

4. Residual Source Estimator and Ragusa-Wang Estima-
tor

We computed the error generated by the residual source
estimator with approximated derivatives and compared it to
the RW estimator on DGFEM-0 solutions for all combina-
tions of the following cases: C0 and C1 irregularity along
the SC, total cross-section σt = [0.1, 1.0, 10.0], scattering
ratio c = [0.1, 0.6, 0.9], and number of cells Nx = Ny =
[4, 8, 16, 32, 64, 128]. Results were varying, but the residual
source estimator and RW estimator are generally competitive
in terms of the effectivity. To highlight the varying results and
overall competitiveness of the two methods, we select three
cases for detailed exposition.

A. Case 1

Case 1 is the same as the previous examples presented
in this paper: C0 irregularity along the SC, σt = 1.0, and
c = 0.9, but to get a clearer picture of the behaviour of the
two estimators we increase the number of cells to Nx = Ny =
128. Figures 9 and 10 show log10-scale histogram plots of
the local angular and scalar effectivity, respectively, of the
residual source estimator. Color-coding is used to quantify the
magnitude of the absolute difference between estimated and
true error. We posited that in some cases poor estimation in
a relative sense could be caused by minuscule true error, but
this appears not to be true. Figures 11 and 12 show log10-

Fig. 9: Angular L2 effectivity for residual source estimator; C0

irregularity along the SC, σt = 1.0, c = 0.9, Nx = Ny = 128

scale histogram plots of the local angular and scalar effectivity,
respectively, of the RW estimator.

Here we see some differences that are consistent for all
comparisons between angular and scalar error norms for resid-
ual source and RW. Both scalar estimates result in tails that
span many orders of magnitude, although the RW estimator
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Fig. 10: Scalar L2 effectivity for residual source estimator; C0

irregularity along the SC, σt = 1.0, c = 0.9, Nx = Ny = 128

Fig. 11: Angular L2 effectivity for RW estimator; C0

irregularity along the SC, σt = 1.0, c = 0.9, Nx = Ny = 128

Fig. 12: Scalar L2 effectivity for RW estimator; C0

irregularity along the SC, σt = 1.0, c = 0.9, Nx = Ny = 128

tail favors overestimates. Also note that while these plots
appear to show that scalar estimates increase the number of
points in near perfect agreement, this is only due to widen-
ing bin widths in order to capture a wider range of effectivity
values.

In this case, and generally, both forms of the RW esti-

mator underestimate the true error, while the residual source
estimator is more centered about the true value, although it
does tend to favor underestimation slightly.

B. Case 2

Case 2 has C1 irregularity along the SC, σt = 10.0,
c = 0.1, and Nx = Ny = 128. This case was chosen as
one favorable to the residual source estimator. Figures 13, 14,
15, and 16 show the angular residual source, scalar residual
source, angular RW, and scalar RW effectivity results, respec-
tively. In Case 2 both residual source estimator error norms

Fig. 13: Angular L2 effectivity for residual source estimator;
C1 irregularity along the SC, σt = 10.0, c = 0.1,

Nx = Ny = 128

Fig. 14: Scalar L2 effectivity for residual source estimator; C1

irregularity along the SC, σt = 10.0, c = 0.1, Nx = Ny = 128

perform better than both RW estimator error norms. The resid-
ual source estimator angular effectivity has a peak at nearly
exact and a second peak slightly underestimating the true er-
ror. The underestimate peak is due to the shortcomings of the
Taylor expansion and derivative approximations.

C. Case 3

Case 3 is identical to Case 2 except the scattering ratio
has been changed so that c = 0.9. Figures 17, 18, 19, and
20 show the angular residual source, scalar residual source,
angular RW, and scalar RW effectivity results, respectively.
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Fig. 15: Angular L2 effectivity for RW estimator; C1

irregularity along the SC, σt = 10.0, c = 0.1, Nx = Ny = 128

Fig. 16: Scalar L2 effectivity for RW estimator; C1

irregularity along the SC, σt = 10.0, c = 0.1, Nx = Ny = 128

Fig. 17: Angular L2 effectivity for residual source estimator;
C1 irregularity along the SC, σt = 10.0, c = 0.9,

Nx = Ny = 128

This case highlights how poor approximation of the
derivatives can hamper the residual source estimator when
compared to the RW estimator. Poor derivative approxima-
tion is caused by the dual effect of a thick optical thickness
which results in a rapidly changing true solution that the low-

Fig. 18: Scalar L2 effectivity for residual source estimator; C1

irregularity along the SC, σt = 10.0, c = 0.9, Nx = Ny = 128

Fig. 19: Angular L2 effectivity for RW estimator; C1

irregularity along the SC, σt = 10.0, c = 0.9, Nx = Ny = 128

Fig. 20: Scalar L2 effectivity for RW estimator; C1

irregularity along the SC, σt = 10.0, c = 0.9, Nx = Ny = 128

order approximation cannot capture and a large scattering ratio
that increases the incorrect approximation of the angular flux
derivative in other ordinates as well. RW does not have this
issue, however, and it gives a precise, close underestimate of
the solution.
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IV. CONCLUSIONS AND DISCUSSION

The residual source estimator for DGFEM-0 has promis-
ing results. Despite poor estimation of the residual on the
SC’s and in the presence of steep gradients of the true solution,
the angular form of the residual source estimator typically
is contained within an order of magnitude in either direction
about exact estimation. In conditions that are more favorable,
the residual source estimator in the angular and scalar versions
peaks near the exact value. A drawback in the scalar version,
which the authors are aware is more readily applicable to most
transport codes, is the presence of under and overestimation
tails that, while diminishing quickly, extend several orders of
magnitude away from the ideal effectivity unit value.

When compared to the RW estimator on the basis of qual-
ity of estimation, there are certain configurations where the
RW estimator is advantageous, where the residual source es-
timator is advantageous, and where the two are competitive.
One advantage of the RW estimator in all cases is that the
scalar form of the RW estimator only exhibits an overestima-
tion tail, meaning it is more conservative, and the tail does
not span as many orders of magnitude in problems where the
SC’s adverse effects on the approximated residual are not as
pronounced. The RW estimator in general is advantageous
in situations where large gradients cause poor derivative ap-
proximation in the residual source estimator. The residual
source estimator is advantageous in situations where this ef-
fect is suppressed. In general, though, the residual source
estimator and RW estimator are competitive, particularly in
the angular norm sense, and ultimately, given the estimators
as presented in this work, there is no clear cut answer as to
which estimator is preferable for a given case. However, the
residual source estimator has the potential to nearly exactly
estimate the true error for many of the cells, whereas even
in situations extremely favorable to it, the RW estimator will
reliably underestimate, in agreement with [6].

One aspect of the residual estimator that is intriguing is
the fact that the exact residual produces exact error distribu-
tions and that the points at which the approximate residual
deviates substantially from the exact residual are identifiable.
This holds the potential for improving the derivative approxi-
mations and the approximation of the residual on the SC’s that
we conjecture will yield improvement of the error estimate
distribution. This foundation will ultimately be used to approx-
imate the residual on higher order DGFEM-Λ approximations.
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