
M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

Subplane-based Control Rod Decusping Techniques for the 2D/1D Method in MPACT1

Aaron M. Graham,∗ Benjamin S. Collins,† Thomas Downar∗

∗Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI
†Reactor Physics Group, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN

aarograh@umich.edu, collinsbs@ornl.gov, downar@umich.edu

Abstract - The MPACT transport code is being jointly developed by Oak Ridge National Laboratory and
the University of Michigan to serve as the primary neutron transport code for the Virtual Environment for
Reactor Applications Core Simulator. MPACT uses the 2D/1D method to solve the transport equation by
decomposing the reactor model into a stack of 2D planes. A fine mesh flux distribution is calculated in each 2D
plane using the method of characteristics (MOC), and then the planes are coupled axially by using the 1D P3
approximation wrapped in a two-node nodal expansion method (NEM-P3) solver. This iterative calculation is
then accelerated using the coarse mesh finite difference method (CMFD).

Control rod cusping is a problem that arises frequently when using the 2D/1D method. This occurs when
the tip of a control rod falls between the boundaries of an MOC plane, requiring that the rodded and unrodded
regions be axially homogenized for the 2D MOC calculations. Performing a volume homogenization does
not properly preserve the reaction rates due to an error known as cusping. The most straightforward way to
resolve this problem is by refining the axial mesh, but this can significantly increase the computational expense
of the calculation. The other way of resolving the partially inserted rod is through the use of a decusping
method. This paper presents new decusping methods implemented in MPACT that can dynamically correct the
rod cusping behavior for a variety of problems.

I. INTRODUCTION

The Consortium for Advanced Simulation of Light-Water
Reactors (CASL) [1] is developing an advanced code pack-
age called the Virtual Environment for Reactor Applications
(VERA). VERA is intended to provide tools for high-fidelity
modeling and simulation of LWRs beyond what has been his-
torically been possible with tools available to industry. These
tools include codes to perform neutronics, thermal-hydraulics,
fuel performance, and other calculations, as shown in Figure
1. MPACT is the deterministic neutronics code in VERA and
uses the 2D/1D method to provide 3D pin-resolved power
distributions for the entire reactor [2, 3]. The work discussed
in this paper focuses on improvements made to control rod de-
cusping techniques in MPACT’s 2D/1D implementation using
the subplane scheme.

The 2D/1D method [3, 4, 5, 6] takes advantage of the ge-
ometry in the reactor by noting that most heterogeneity occurs
in the radial direction. Therefore, the problem is decomposed
into a stack of 2D planes. In MPACT, each radial plane is
solved using the 2D method of characteristics (MOC), which
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is capable of resolving complicated geometries accurately.
These planes are then coupled in the axial direction using the
1D P3 approximation wrapped in a two-node Nodal Expansion
Method (NEM-P3) solver [7, 8] that performs calculations on
a coarse, pin-homogenized mesh. Additionally, this scheme
uses 3D coarse mesh finite difference (CMFD) [9] to acceler-
ate the convergence of the solution. This iteration scheme can
provide highly accurate 3D power distributions, and it is still
much faster than performing a direct 3D transport calculation.

One significant requirement for the 2D/1D method to
provide accurate results is that the materials be axially homo-
geneous in each 2D MOC plane. Typically, this is accom-
plished by correctly meshing the problem so that MOC plane
boundaries align with axial heterogeneities. However, for
long calculations with moving control rods, selecting an axial
mesh to resolve all the control rod positions can be tedious
and may dramatically increase computational requirements.

Fig. 1. VERA code package.
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Fig. 2. 2D/1D method with the subplane scheme used for the 3D CMFD and 1D axial calculations.

Thus, other methods are required to address the problem of a
partially inserted control rod.

II. THEORY

The problem of rod cusping is described below, followed
by a brief description of the subplane CMFD and NEM-P3
calculations. Lastly, each of the three decusping techniques
implemented in MPACT are described.

1. Rod Cusping

The rod cusping effect occurs when a strong absorber
such as a control rod is partially inserted into an MOC plane.
Because the MOC calculations are 2D in the radial direction,
the control rod must be homogenized with the material under-
neath it. This is normally done up front with a simple volume
homogenization to preserve the volume and mass of the con-
trol rod. However, because the strong absorber is smeared
downward across the entire plane, this introduces an artificial
dip in the local flux and global reactivity, as shown in Figure
3 [10].

2. Subplane CMFD and NEM-P3

The CMFD method is used to accelerate the convergence
of transport calculations. The fine mesh used by the MOC
calculations usually has approximately 50 regions per pin cell.
To accelerate the convergence, each pin cell is homogenized
into a single region, preserving total reaction rates in the pin
cell. A 3D diffusion calculation is then performed to obtain
a global flux shape. After this calculation is complete, the
CMFD flux shape is projected back to the MOC mesh to scale

Fig. 3. Control rod cusping effects [10].

the magnitude of the fine mesh flux solution and to accelerate
it.

Because CMFD uses the diffusion approximation, the cur-
rents in the axial direction used to couple the MOC planes will
not be accurate. To prevent this, a 1D NEM-P3 calculation is
performed on the homogenized coarse mesh. This calculation
uses NEM to capture the spatial shape of the flux and the 1D
P3 method to capture the angular shape of the flux, resulting
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in more accurate interface currents to couple the MOC planes.
In MPACT, this calculation is performed after the 3D CMFD
solve and before the 2D MOC solve.

Refining the axial mesh in 2D/1D by using a large num-
ber of thin MOC planes will improve the accuracy of the
calculations. However, because the MOC planes are the most
expensive part of 2D/1D, refining the mesh can significantly
increase runtime. Furthermore, thin MOC planes require more
under-relaxation for the 2D/1D iteration scheme to remain
stable [11], further increasing the runtime. Because of this, a
balance must be struck in the axial mesh to obtain sufficiently
accurate solutions without excessively burdensome computa-
tional cost, limiting the mesh refinement that can be done to
prevent rod cusping.

To do obtain this balance, the subplane scheme [12] was
implemented in MPACT [13]. This method divides each MOC
plane into multiple subplanes for the CMFD and 1D axial
calculations while still using just one plane for the MOC cal-
culations. This ensures that the CMFD cells remain sufficiently
thin to prevent instabilities, and it increases the accuracy of
the CMFD and NEM-P3 calculations without increasing the
computational burden from the MOC calculations.

3. Decusping Methods

One downside to decreasing the number of MOC planes
is that partially inserted control rods, and thus rod cusping
effects, become more important. To alleviate this, new con-
trol rod decusping methods are being developed to work in
conjunction with the subplane method. This section describes
three different decusping methods available in MPACT. The
first is the default method that was already available in MPACT
and does not use the subplane scheme at all. The other two are
new methods that make use of the subplane scheme to provide
more general, accurate decusping capabilities.

A. Polynomial Decusping

The polynomial decusping uses pregenerated functions to
adjust the volume fraction of the control rod during the homog-
enization step [14]. To generate these functions, two series
of simulations were completed on 3×3 assembly cases with a
rod inserted in the center assembly. The first series of cases
had the rod at various partially inserted positions in an MOC
plane. The second series repeated these calculations with extra
MOC planes to eliminate the need for homogenization. The
ke f f values for each of these cases was then used to generate a
sixth-order polynomial of the reactivity as a function of rod in-
sertion into a plane. The partially inserted control rod volume
fraction is then reduced according to the expected reactivity
error modeled by the polynomial. This procedure was done
for AIC, B4C, and Tungsten control rod materials, allowing it
to be useful for most pressurized water reactor (PWR) models
of interest.

B. Subplane Decusping

The subplane scheme traditionally uses the same cross-
sections for all subplane cells in an MOC pin cell. However,
this does nothing to address a partially inserted rod. To im-

prove the subplane scheme to capture axial heterogeneities,
modifications were made to both the subplane and MOC cross-
sections. When performing the cross-section homogenization
for CMFD, regions where the control rod was homogenized
use unrodded cross-sections in the lower subplanes and rodded
cross-sections in the upper subplanes, as opposed to using a
single homogenized cross-section in all subplanes. This mod-
ification allows the CMFD calculations to capture the sharp
gradient in the axial flux profile around the rod tip instead
of a more gradual change in the flux due to homogenized
cross-sections.

After the CMFD calculation and projection to the MOC
mesh, the MOC cross-sections are then modified to account
for the axial flux shape from the subplane CMFD calculations.
To do this, the subplane fluxes are used with the rodded and
unrodded cross-sections to perform a flux-volume homoge-
nization as opposed to performing volume homogenization or
using the polynomial decusping method as might normally be
done. This calculation is shown in Equation 1:
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where superscript j denotes the axial level, J indicates the
total number of axial levels in each MOC plane, i is the ra-
dial cross-section region index on the MOC mesh, φax is the
cell-averaged sub-plane flux, φrad is the average flux in cross-
section region i, Σi is the cross-section in region i, h is the
height of the axial level, and Σi is the homogenized cross-
section used by the MOC calculations. In addition to capturing
the effects of a partially inserted rod, this expression can also
capture cases in which a heterogeneous rod might cause cusp-
ing effects at material interfaces within the rod. For subplane
decusping, φ j

rad,i is the same for all axial levels. This will not
be true in the following section in which both axial and radial
effects of the rod are captured.

C. Collision Probabilities Decusping

Fig. 4. Radial variation in axial flux profiles for a partially
rodded pin cell [10].

The subplane decusping scheme described above cap-
tures the axial effects of the partially inserted rod. However,
the radial flux shapes used to calculate the subplane CMFD
cross-sections are those generated by the 2D MOC calcula-
tions. These calculations were performed using homogenized
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cross-sections and do not accurately reflect the radial shape in
either the rodded or unrodded regions. Figure 4 [10] shows
axial flux profiles in a partially rodded node as a function of
radial position, an effect that cannot be captured using homog-
enized cross-sections in MOC. To account for these effects,
the collision probabilities (CP) method [15] can be applied. In
this method, the partially rodded pin cell is cylindricized by
changing the moderator region to an annulus while preserving
the volume. Then the surrounding pin cells are flux-volume
homogenized into an additional ring outside the moderator.
This buffer region is added to provide a fission source to drive
the CP calculations. With the moderator and buffer regions
set up, 1D CP calculations can be carried out, first with the
rodded cross-sections, then with the unrodded cross-sections.

These calculations give a unique radial flux profile for
each axial region of the partially inserted rod. These radial
profiles are then used in place of the MOC flux when per-
forming the cross-section homogenization described in the
previous section. This further improves the accuracy of the
subplane CMFD calculations for the partially inserted rod by
allowing the CMFD cross-sections to capture some of the ra-
dial effects of the rod, as well as the axial effects. After the
CMFD calculations are completed, the MOC cross-sections
are then homogenized using Equation 1, as with the subplane
decusping. An illustration of the CP calculations is shown in
Figure 5.

Fig. 5. Decusping with subplane scheme and 1D collision
probabilities.

III. RESULTS AND ANALYSIS

To test the effectiveness of each of these decusping meth-
ods, Problem 4 from the VERA Progression Problems [16]
was selected. This is a 3×3 assembly problem with a control
rod in the center assembly. The assemblies are Westinghouse
17×17 assemblies with an active fuel height of 365.76 cm.
Each assembly has 6 spacer grids 3.810 cm in height in the
active fuel region. Using conventional 2D/1D in MPACT, this
problem would normally be simulated using a total of 58 MOC
planes and 49 planes in the active fuel region. Each spacer
grid is 1 plane, and the spans between grids are divided into

Fig. 6. Axial description of Westinghouse 17×17 fuel assem-
bly in Watts Bar Unit 1.

Fig. 7. VERA Problem 4 assembly layout.

6 planes of about 8 cm each. An example fuel assembly is
shown in Figure 6, and the radial layout of Problem 4 is shown
in Figure 7.

The control rod described in this model is a heteroge-
neous rod. It consists of an AIC poison with a B4C follower
and stainless steel tip. This heterogeneous design introduces
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TABLE I. Comparison of Rod Decusping Methods in MPACT for VERA Progression Problem 4 for Homogeneous Control Rods

Rod Material Case ke f f Pin Power Differences 2D/1D Iterations Runtime
Difference (pcm) RMS Max (Core-Hours)

AIC

Reference – – – 15 19.6
No treatment −29.5 1.531% 11.839% 12 14.7
Polynomial −0.3 0.444% 4.081% 12 14.3
Subplane −11.5 0.726% 8.209% 12 14.2
Subplane + 1D-CP −5.6 0.368% 4.248% 12 15.3

B4C

Reference – – – 15 16.9
No treatment 112.0 6.978% 69.372% 12 12.7
Polynomial 112.6 6.886% 66.731% 12 12.1
Subplane −17.9 1.142% 11.357% 13 15.2
Subplane + 1D-CP −11.0 0.687% 6.367% 12 13.4

Tungsten

Reference – – – 15 23.5
No treatment −8.4 0.370% 3.374% 12 15.5
Polynomial −4.4 0.239% 2.720% 12 14.5
Subplane 1.6 0.069% 0.598% 12 13.9
Subplane + 1D-CP −0.9 0.055% 0.941% 12 15.6

cusping-like effects at each material interface in the rod rather
than just at the tip, making this model useful for testing the
decusping methods for a variety of material combinations.
This section will discuss results for three different groups of
simulations based on VERA Problem 4: homogeneous control
rod, heterogeneous control rod, and rod worth calculations.

1. Homogeneous Control Rod

To isolate the effects of cusping and the accuracy of the
decusping methods, VERA Problem 4 was modified, replacing
the heterogeneous control rod with a homogeneous control
rod made of either AIC, B4C, or tungsten. The rods were with-
drawn 88 steps to position the tip at an elevation of 155.9875
cm, about 144 cm above the bottom of the active fuel. This
position caused the tip of the rod to be partially inserted into an
MOC plane extending from 153.5 cm to 165.5975 cm, causing
severe rod cusping.

These calculations were run on a small development clus-
ter with 2.3 GHz AMD processors (OpteronT M Processor
6376). Each of the decusping cases used 43 MOC planes,
corresponding to one plane per spacer grid with 4 planes be-
tween each pair of grids. Each MOC plane was divided into
enough subplanes so that each subplane was no more than 8
cm thick. The reference case used the same meshing parame-
ters with an extra MOC plane boundary aligned with the tip of
the control rod. This ensured no cusping effects were present
in the reference case.

The results of the homogeneous rod calculations are
shown in Table I. The B4C rod uses the strong thermal ab-
sorber boron, causing it to have the largest errors. Furthermore,
this prevents the polynomial decusping from being effective in
resolving the partially inserted rod. The subplane decusping
greatly improves the result, indicating that for this rod, the ax-
ial effects are dominant. However, obtaining a more accurate

radial shape from the CP calculations significantly improves
on the subplane result. The errors while using subplane and
CP are still higher than desired for 2D/1D calculations but
are more acceptable than with no treatment or the polynomial
decusping method.

The AIC rod causes much smaller errors than the B4C rod.
For this rod, the polynomial decusping performs reasonably
well, with a maximum pin power error of about 4%. The
errors in the subplane decusping method without 1D CP are
much larger than in the polynomial decusping. The AIC rod
is strongly absorbing at higher energies than the B4C rod,
and silver, indium, and cadmium all have resonances in their
absorption cross-sections. Because of this, the lack of a radial
correction in the subplane decusping produces unacceptably
large errors. Finally, when using the 1D CP calculations as
well, the errors are much smaller than without. The maximum
power difference is slightly larger than for the polynomial
decusping, but the ke f f difference is negligibly small and the
RMS power difference is better.

Because the tungsten rod is a gray rod, the cusping errors
it produces are much smaller than for the other two rods. The
polynomial decusping still reduces the errors, but by much less
than for the AIC rod. Both subplane-based methods reduce
the maximum power distribution error to less than 1%, with
the 1D CP producing a higher maximum error but lower RMS
error. Overall, all three methods perform well on this rod,
and the subplane-based methods reduce the errors to levels
that may be acceptable for certain applications of the 2D/1D
method in MPACT.

Table I also shows the number of iterations and core-hours
required for each calculation. In the reference case, the ex-
tra MOC plane boundary causes a 2.5 cm thick MOC plane
to be present. This forces the 2D/1D iteration to use more
under-relaxation to remain stable, slowing the convergence of
the problem. Since the cases using the decusping methods do
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TABLE II. Comparison of Rod Decusping Methods in MPACT for VERA Progression Problem 4 for Heterogeneous Control
Rod

Case ke f f Pin Power Differences 2D/1D Iterations Runtime
Difference (pcm) RMS Max (Core-Hours)

Reference – – – 15 16.6
No treatment −45.9 2.427% 20.450% 12 13.8
Polynomial −2.5 0.457% 5.067% 12 13.0
Subplane −17.3 1.101% 11.771% 13 14.9
Subplane + 1D-CP −5.5 0.415% 3.866% 12 14.7

not have this thin plane, they converge in 12 iterations (except
for one case which required 13) instead of 15 iterations. This
reduction in iterations reduces the runtime of the calculations
using the decusping methods. The decusping cases also used
slightly fewer cores than the reference cases, further contribut-
ing to the reduction in core-hours observed by each of the
decusping methods.

In general, the subplane-based decusping techniques are
slightly slower than the polynomial decusping method. The
1D CP calculations are efficient enough that they are negligi-
ble compared to the total calculation time, and the 2D MOC
and 1D NEM-P3 calculations perform a fixed number of inner
iterations for each 2D/1D outer iteration. This indicates that
the additional runtime incurred by the subplane-based meth-
ods is due to the CMFD calculations. This occurs because
the changes to the cross-sections used by CMFD affects the
convergence of the linear solver. Thus, the subplane-based
methods require a few more CMFD inner iterations during the
first few 2D/1D outer iterations, causing a small increase in
the total runtime.

2. Heterogeneous Control Rod

The homogeneous rod calculations were repeated using
the full heterogeneous rod from the original VERA Problem
4 specifications. This rod has three interfaces of interest: the
tip of the stainless steel plug in contact with moderator, the
interface between the plug and the AIC absorber, and the
interface between the AIC and the B4C follower. The rod
was withdrawn to 88 steps, so these interfaces were located
at positions of 155.9875, 157.8875, and 259.4875. The first
two interfaces fell within the same MOC plane extending from
153.5 cm to 165.5975 cm, and the third interface was in a
different MOC plane extending from 257.9 cm to 269.9975
cm.

Again, each of the decusping cases again 43 MOC planes
for the heterogeneous rod. The reference case had 3 extra
MOC plane boundaries added to eliminate cusping effects at
each of the 3 control rod interfaces, resulting in a total of 46
MOC planes for the reference case. All 5 cases were run using
1 core per plane.

Table II shows results for the heterogeneous rod calcula-
tions. Again it can be seen that using subplane with 1D-CP
performs most effectively. The ke f f result is slightly less accu-
rate than with the polynomial decusping since the polynomials
were generated based on ke f f . However, the power compar-

isons are more accurate with the 1D-CP method, reducing the
maximum pin power error to 3.117%. The subplane decusping
without the 1D-CP corrections performs the least accurately
of the three methods, with a maximum power difference of
10.668%. This shows the importance of capturing the radial
self-shielding effects in the rodded region of the MOC plane.
Ignoring these effects overestimates the absorption and intro-
duces significant errors.

It should also be noted that the 1D-CP decusping is cap-
turing the effects of the stainless steel rod plug, while the
polynomial decusping ignores the stainless steel completely.
While effect of the steel is small compared to the other ma-
terials in the rod, it is contributing to the effects some. The
1D-CP decusping can capture these effects on the fly, while
the polynomial decusping cannot currently account for them.
The subplane decusping without 1D-CP treats the axial effects
of the stainless steel, but not the radial effects.

As with the homogeneous rods, a significant improvement
in runtime is observed for the decusping methods compared
to the refined mesh reference case. Calculations with the de-
cusping methods converged in 12 iterations instead of 15 due
to thicker MOC planes. Furthermore, 3 fewer cores were re-
quired for the calculations, further contributing to the decrease
in core-hours required for the calculations.

3. Rod Worth Calculations

The last set of calculations used to test MPACT’s decus-
ping methods is a set of rod worth calculations. For these
calculations, VERA Problem 4 was simulated with the het-
erogeneous rod at every position from 0 steps to 230 steps
withdrawn. The differential rod worth was then defined as
total change in ke f f in pcm divided by the number of steps
withdrawn. This was done using each of the three decusping
methods and once with no decusping treatment. This shows
the effects of rod cusping and the decusping techniques as the
rod moves through various planes in the model.

Because of the number of calculations required, the mesh
was coarsened to only 30 MOC planes for all rod worth cal-
culations. The maximum subplane thickness was set to 3.2
cm to maximize accuracy and stability while using the coarse
MOC mesh. Each calculation was performed using 270 cores
on Titan [17], so each quarter assembly in each plane was on
a single core.

The differential rod worth curves are shown in Figure 8.
The blue markers show the cusping effects of the rod when
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Fig. 8. Differential rod worth curves for MPACT decusping techniques.

no decusping treatment is used. The polynomial decusping
prevents the large cusps seen with no decusping treatment.
However, in the lower half of the core, there are still some large
fluctuations from the expected shape. Because the polynomial
corrections were generated using a more refined mesh and a
single MOC plane, they are susceptible to large errors when the
conditions are significantly different from those under which
the they were generated. The subplane decusping performs
more predictably than the polynomial. It still shows some
cusping behavior, but with a much smaller deviation from
the expected curve. This occurs because the axial effects are
captured reasonably well, but the radial effects are ignored.
Finally, the black markers show the subplane decusping with
radial 1D-CP. This curve smoothly follows the anticipated
shape, showing that this method does the best job capturing
the cusping effects.

A problem with the stability is seen in the subplane-based
methods as they are currently implemented. At times, a control
rod boundary may be very close to an MOC plane boundary.
Aligning a subplane with the rod boundary can then result in
subplanes less than 1 cm thick. This is sometimes sufficient
to prevent the calculations from converging. In Figure 8, the

subplane and 1D-CP rod worth curves include a few gaps.
These gaps exist because of calculations that diverged due to
an extreme axial mesh. Because the polynomial decusping
does not rely on subplanes, it does not experience this behavior.
However, the implementation of the subplane-based decusping
methods can be improved to prevent these types of extreme
meshes while still effectively preventing cusping effects.

In addition to looking at the shape of the rod worth curves,
the Monte Carlo code KENO-VI [18] was used to develop
Monte Carlo reference solutions every 23 steps (10% with-
drawal) from 0 to 230 steps. Using these reference solutions,
ke f f and 3D power distributions can be compared at various
points along the differential rod worth curves. The endpoints
(0 and 230 steps) were omitted because no significant cusp-
ing effects occur in those positions, and the points at 69 and
184 steps are omitted due to convergence difficulties with the
subplane-based methods in those configurations.

Table III shows the average ke f f and pin power distribu-
tion differences for each decusping method for the seven rod
positions that had cusping effects and converged solutions for
each decusping method. Uncertainties in the Monte Carlo
solution have been propagated and are shown for the ke f f and
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TABLE III. Average Differences between MPACT and KENO-VI for VERA Problem 4

Decusping Method ke f f Difference Pin Power Difference
RMS Max

None −24.9 ± 0.6 5.380% 25.902 ± 0.097%
Polynomial 34.8 ± 0.6 1.502% 8.957 ± 0.109%
Subplane 34.6 ± 0.6 0.984% 4.597 ± 0.094%
Subplane + 1D-CP 41.4 ± 0.6 0.763% 3.386 ± 0.104%

maximum pin power differences. Uncertainties in the RMS
are approximately 10−5 and therefore not included in the table.
The KENO-VI solutions were generated originally for ke f f
comparisons, so the pin power statistics are not as good as
would usually be desired for a Monte Carlo reference solution.
However, it is clear from these results that the uncertainties
are much smaller than the differences between the decusp-
ing solvers, making the comparisons between MPACT and
KENO-VI useful.

The subplane decusping with 1D-CP radial treatment is
the most accurate on average and for each of the individual
positions where comparisons were made, as expected. The
average RMS difference is reduced by about half, and the
maximum power difference is reduced by nearly a factor of 3.
The subplane decusping performed better than the polynomial
decusping on average. There were some positions where the
polynomial decusping performed comparably to the subplane-
based decusping methods, but on average, it was the least
effective of the three methods regarding power distributions.
For the ke f f differences, each of the decusping methods adds
about 60 pcm to the uncorrected ke f f . The differences between
the methods for ke f f are insignificant compared to the power
distribution results.

IV. CONCLUSIONS AND FUTURE WORK

To address the rod cusping problem in MPACT’s 2D/1D
method, two new decusping methods were implemented and
compared with the old decusping method. It was found that
the subplane decusping method with no radial self-shielding
treatment was comparable to the old polynomial method, per-
forming better or worse, depending on the problem. However,
adding 1D collision probabilities calculations to the subplane
decusping consistently showed significant improvements over
the other two methods because of the capability to capture the
radial effects of the partially inserted rod. It was also shown
that using subplane as a foundation for decusping methods
prevents the need to refine the axial mesh as much, reducing
the runtime and improving the convergence rate in many cases.

While these new methods were shown to be effective,
there are several areas of improvement. First, stability is an
issue with the subplane-based decusping methods, as seen
in the rod worth calculations shown in Figure 8. Because
the current implementation requires that subplanes be aligned
with the control rod boundaries for the new decusping methods
to work properly, CMFD and 1D NEM-P3 can easily result
in very thin cells, which can cause instabilities. This can be
addressed in one of two ways. One possible solution is to

develop a more stable axial solver that can handle the thin
cells. Another solution is modify the decusping solvers so
that the subplanes are not required to align exactly with the
control rod material boundaries when it might cause instability.
The second solution may have some small negative impact on
the accuracy of this solution, but it would likely still be much
better than the current results from the polynomial decusping.

A second limitation in these decusping solvers is that
they are currently unable to account for higher order scatter-
ing. The collision probabilities method inherently assumes
isotropic scattering, causing the solution to be limited by the
accuracy of the transport-corrected cross-sections. Using a
different method in lieu of the collision probabilities, such as a
small, standalone MOC calculation, would allow higher order
scattering to be accounted for.

A third limitation that will be addressed moving forward
is the transient problem. The polynomial decusping is cur-
rently available for a limited set of transient calculations, but
neither of the subplane-based methods support transient calcu-
lations yet.

Finally, it is desired to address the cusping problem di-
rectly in the 2D MOC calculations if possible. These methods
significantly improve the results, but they still rely on cross-
section corrections for the MOC portion of the calculation.
Moving forward, novel methods for handling the cusping prob-
lem directly in the MOC calculation will be combined with
the subplane-based methods presented in this paper. Pursuing
this type of method should further increase the flexibility and
accuracy of the decusping methods in MPACT.
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