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Abstract – Stochastic systems are those in which the observed behavior of the system may differ greatly 
from the expected or average behavior of the system. Typically this occurs in systems with low neutron 
populations where the random behavior of the individual neutrons is observable in the systems’ aggregate 
behavior. These systems cannot be characterized by their mean behavior alone. In this paper, a Monte 
Carlo method for calculating statistical moments of the neutron number and fission number for stochastic 
systems is presented. This method has been implemented in the Monte Carlo Application ToolKit (MCATK), 
which is used to generate results for two numerical test problems. The results presented in this paper 
indicate that the Monte Carlo method provides a viable alternative to deterministic methods for calculating 
these statistical moments. 

 
I. INTRODUCTION 

 
Typical nuclear engineering applications are concerned 

with systems in which the neutron population is large. In 
such a system there are so many neutrons that fission chains 
overlap, and the average behavior of the neutrons is 
sufficient to describe the system. Systems that are well 
characterized by their mean behavior may be referred to as 
deterministic. 

However, in systems with weak neutron sources, i.e., 
small neutron populations, the fission chains do not overlap, 
and the random behavior of the individual neutrons and 
fission chains is observable in the systems’ aggregate 
behavior. For example, even in a static system, the total 
neutron population may vary wildly as individual fission 
chains grow or die away. In criticality accidents with weak 
sources, it is possible that all fission chains terminate, 
resulting in no harm done, or that some small number of 
them diverge, causing possible harm to exposed workers. 
One must therefore characterize the distribution of possible 
stochastic system states using more than just the average 
state in order to fully understand criticality accident 
scenarios. Analysis of neutron noise in stochastic systems is 
also important for nuclear material characterization in 
safeguards applications. 

Deterministic equations for characterizing stochastic 
systems were first developed by Bell [1]. These coupled 
equations take the form of adjoint transport equations with 
modified source terms. Deterministic analysis of stochastic 
systems has been implemented in PARTISN [2] and 
PANDA [3]. 

Since the systems being considered are stochastic, it is 
quite natural to apply the Monte Carlo method to 
characterize their behavior. Because the individual fission 
chains do not overlap and must be considered as 
independent entities, we must follow individual fission 
chains and observe their stochastic behavior. 

For example, if one wanted to calculate the risk of a 
specific criticality excursion, one could tally for every 
fission chain the dose at a particular location. If this is done 

for enough chains, one may form a distribution of doses that 
could be observed during an accident and estimate the 
probability that a particular criticality excursion results in a 
dose exceeding a certain level. Another way to characterize 
a stochastic system is to create a distribution of the number 
of neutrons alive in the system at a particular instant in time 
(referred to here as the “neutron number”), or a distribution 
of the total number of fissions that have occurred up to an 
instant in time (referred to here as the “fission number”). 
These distributions may be characterized by their moments. 

Other quantities of interest that may be obtained via 
fission chain analysis are: (1) system multiplication – the 
expected number of progeny produced for each source 
particle, (2) probability of initiation (POI) – the probability 
of a fission chain persisting for an infinite period of time, 
and (3) probability of survival (POS) – the probability of a 
fission chain persisting, or surviving, until a designated end 
time. Monte Carlo POI capabilities have been implemented 
in the Mercury code [4,5,6], a research version of the 
MCNP code [7], and the Monte Carlo Application ToolKit 
(MCATK) [8]. Monte Carlo POS capabilities for dynamic 
systems have also been implemented in MCATK [9]. 
MCATK is a component-based toolkit developed at Los 
Alamos National Laboratory and designed to enable rapid 
development of specialized Monte Carlo applications [10]. 

In this work, we show how moments of the neutron and 
fission number distributions can be calculated by direct 
forward Monte Carlo simulation. This method has been 
implemented in MCATK. 

In the following sections, we review the dynamic 
fission chain analysis algorithm implemented in MCATK. 
We then show how this capability can be extended to 
calculate the moments of the neutron and fission number 
distributions for single fission chains. Next, we show how 
formulas describing compound Poisson distributions can be 
applied to combine source rate information with the single 
chain moments to obtain moments that account for the 
presence of multiple fission chains. The methodology is 
applied to two simple systems, and Monte Carlo results are 
compared to deterministic calculations. We conclude with a 
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brief summary of the work and discussion of proposed 
future work. 

 
II. DYNAMIC FISSION CHAIN ANALYSIS 
ALGORITHM IN MCATK 

 
An algorithm for fission chain analysis of dynamic, 

stochastic systems has been implemented in MCATK [9]. 
The fission chain algorithm requires that each source 
particle receive a unique ID number. All progeny of that 
source particle are given the same ID number, allowing each 
to be identified as a member of a unique fission chain. With 
this information, the population of a chain at any given time 
is known, and virtually any standard tally can be 
accumulated on a chain by chain basis based on the ID of 
the particle being tallied. In this work, we will tally the 
neutron number and fission number for every chain at 
specified points in time. 

In a dynamic system, every fission chain must be 
followed through the evolving system until its death or the 
end of simulation. If the chains are allowed to grow in an 
analog fashion, divergent chains may reach a population 
that exceeds memory limitations on a given computer. 
Population control is used in MCATK simulations of 
deterministic systems to limit maximum size of the Monte 
Carlo particle population for supercritical systems, or to 
prevent the Monte Carlo particle population from vanishing 
for subcritical systems [11]. We have applied the population 
control method to the fission chain algorithm. 

In supercritical stochastic systems, some chains may 
diverge but many will die out naturally. Since the death of a 
fission chain is something we are interested in observing, it 
is undesirable to keep the chain alive via population control. 
Thus, we cannot apply population control to the entire 
Monte Carlo particle population. Instead, we must allow the 
chains to behave stochastically until the instantaneous chain 
population exceeds a threshold, at which point we consider 
that chain “deterministic”. Each chain will be considered 
stochastic or deterministic on an individual basis. 

Once a chain becomes deterministic, the standard 
population control used in MCATK is applied to that chain, 
but not to the overall Monte Carlo particle population. The 
population control is only applied at the end of a time step. 
Each chain begins with a weight equal to the weight of the 
initiating particle. Nominally, every particle in the chain 
will have this same weight. When population control is 
applied to a chain, the individual particle weights vary. The 
chain weight is set to the target average particle weight, that 
is, the desired weight of particles surviving population 
control in order to preserve the pre-population control 
weight of the chain. 

Typical criticality excursions may be supercritical for a 
time, but then enter a subcritical state. At this point, chains 
that had diverged will begin to shrink. As the population 
shrinks, splitting will be applied and the chain and particle 
weights will be reduced. If the splitting process were 

allowed to continue indefinitely, the once-divergent chains 
would never die. To avoid this undesirable behavior, when 
the chain weight drops below its original starting weight due 
to repeated splitting, the chain is once again considered 
stochastic, and the population control is turned off. 

MCATK has the ability to load balance parallel runs by 
shifting particles from one process to another. In fission 
chain analysis mode, the communication required to identify 
all particles in the same fission chain is thought to be 
prohibitive. Thus, chains are kept entirely on one process. 
This restriction can lead to load imbalance, resulting in 
decreased performance and possibly code failure due to 
some processors exceeding memory limitations. To avoid 
exceeding memory limits in this mode, one may have to use 
more processors than would be required if load balancing 
were used, or else use more aggressive population control. 

Source time biasing has been implemented in MCATK. 
Fission chains that originate near first criticality (the time in 
an accident scenario in which the system first becomes 
supercritical) will have the longest opportunity to grow. 
Therefore, these chains are the most important, and it can be 
helpful to bias the source towards times near first critical. 

Spontaneous fission sources in MCATK are typically 
modeled by emitting exactly one fission neutron per source 
event, and multiplicity is accounted for by increased the 
source rate. Thus, there is no correlation accounting for 
multiple neutrons emitted from a single fission. MCATK 
now includes the ability to sample from multiplicity data 
(data obtained from [12]) for various isotopes in order to 
create between 0 and 9 neutrons per source event. In the 
fission chain analysis mode, all of these neutrons are treated 
as part of the same fission chain. Source neutrons emitted 
from the same event are correlated in space and time, but 
their energies and angles are still sampled independently. 
Thus, the multiplicity treatment is only approximate. 

 
III. CALCULATING MOMENTS OF THE NEUTRON 
AND FISSION NUMBER DISTRIBUTIONS 

 
In this section, we derive a Monte Carlo method for 

calculating the moments of the neutron and fission number 
distributions. The moments are tallied for individual fission 
chains, and then this information is used in conjunction with 
source information to obtain moments for the full system, 
which contains a random number of fission chains. Tallying 
the moments requires identifying which particles belong to 
each unique fission chain, as described in Section II. 

 
1. Calculation of Moments of the Neutron and Fission 
Number Distributions for Individual Fission Chains 

 
Each fission chain is independent of all other fission 

chains, and therefore serves as an independent sample of the 
neutron and fission numbers for a single fission chain. Let 
the independently and identically distributed (IID) variable 
Y represent the distribution of the desired quantity, either 
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neutron or fission number. Let the neutron or fission number 
of a single chain i be yi, and the weight of that fission chain 
be wi. Then the first four zero-based moments of that 
distribution (i.e., moments about zero, rather than about the 
sample mean) are given by: 

 
[Y] ,i i i

i i
E w y w=∑ ∑  (1) 

2 2[Y ] ,i i i
i i

E w y w=∑ ∑  (2) 

3 3[Y ] ,i i i
i i

E w y w=∑ ∑  (3) 

4 4[Y ] .i i i
i i

E w y w=∑ ∑  (4) 

 
MCATK computes these four moments at the end of 

every time step in dynamic simulations. Fission chains that 
have died, i.e., no longer have any living neutrons, score a 0 
to the neutron number, but may still score a non-zero fission 
number because that quantity is the number of fissions 
observed up to that point in time. 

 
2. Calculation of Moments of the Neutron and Fission 
Number Distributions for a Specified Source Rate 

 
Once zero-based moments of neutron and fission 

number are known for an individual chain, we must account 
for the fact that the number of fission chains in the system is 
random and dependent on the expected source rate. Let the 
distribution X represent the total neutron and fission 
numbers for the system at a given time. This distribution is a 
sum of distributions for individual fission chains over all the 
fission chains actually in the system: 

 

1
X ,

N

i
i

Y
=

=∑   (5) 

 
where N is itself a random variable representing the number 
of fission chains. Spontaneous fission is a Poisson process, 
and so N is described by a Poisson distribution. The Poisson 
distribution has a single parameter, λ, which is the expected 
number of events within a designated interval. Therefore, λ 
is the source rate (neutrons per second or fissions per second 
depending on if spontaneous fission multiplicities are used) 
multiplied by time elapsed between the start of the problem 
and the current time step. By convention, if N=0, the sum in 
Eq. (5) is 0. 

In general, distributions given by a random sum of 
random variables, as in Eq. (5), are referred to as compound 
distributions. When the variable N is defined by a Poisson 
distribution, as is the case in radioactive decay, the 
distribution is a compound Poisson distribution. Compound 
Poisson distributions appear frequently in actuarial 
mathematics. For example, the IID Y could represent the 

cost of a single insurance claim, while the number of claims 
observed would be given by the IID N, which is also 
described by a Poisson distribution. Thus, the mean, 
variance, skewness, and kurtosis of the compound Poisson 
distribution are well known, and are given by [13,14]: 

 
E[X] [ ],E Yλ=    (6) 

2 2( ) [ ],X E Yσ λ=    (7) 
3 3Skew( ) [ ] ( ) ,X E Y Xλ σ=   (8) 

4 4Kurt( ) [ ] ( ).X E Y Xλ σ=   (9) 
 
We see that the moments of the total neutron or fission 
numbers can be calculated using only the expected number 
of fission chains initiated in the time interval and the zero-
based moments of the neutron or fission number for single 
chains given by Eqs. (1)-(4). As one would expect, the 
expected neutron or fission number is simply the expected 
number for a single chain multiplied by the expected 
number of chains. Perhaps most interestingly, we observe 
that as the source rate (i.e., λ) increases, the skewness and 
kurtosis decrease, and the mean increases faster than the 
standard deviation. In other words, as the source rate 
increases, the neutron and fission numbers become first 
normal, and then approach a delta function. This confirms 
the idea that systems with strong sources behave 
deterministically, being sufficiently characterized by only 
their mean behavior, while systems with weak sources 
behave stochastically and must be characterized by 
additional statistical moments. 
 
IV. RESULTS 
 

We now demonstrate the Monte Carlo calculation of 
moments of the neutron and fission number distributions as 
described in Section III. The moment tallies were 
implemented in MCATK, and are applied to two example 
problems. The MCATK moment tally results are compared 
to PARTISN results gathered from other sources. 

Neither test problem makes use of the spontaneous 
fission source multiplicity capability in MCATK. There are 
two reasons for this. First, an equivalent deterministic 
capability is not implemented in PARTISN at this time. 
Second, preliminary results indicated that the effect on the 
moments was not significant. The results did suggest that 
fewer chains exist at any given time with only one or two 
neutrons, as would be expected since not every chain is born 
with exactly one neutron. However, the effect on the 
moments of the neutron and fission numbers, if any, was 
smaller than the statistical uncertainty of those moments. 

 
1. Static Test Problem: Plutonium Sphere 

 
We consider a 6.5 cm sphere of enriched plutonium 

(95.5 wt% Pu-239 and 4.5 wt% Pu-240) with density 15.66 
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g/cc. The total source rate is 0.847254 n/μs. For simplicity, 
all source neutrons are sampled using Pu-240 data. The 
dominant source of spontaneous fission is Pu-240, with 
roughly 0.03% coming from Pu-239. Therefore, using only 
Pu-240 neutrons is expected to have negligible effect. 

Dynamic simulations are performed for 0.5 μs, and the 
moments of the neutron and fission number distributions are 
calculated at this final time. Thirty independent calculations 
are performed with 38.4 million Monte Carlo fission chains 
per calculation (7.5E4 fission chains for each of 512 parallel 
processes in each calculation). Fission chains are initiated 
with one source particle, i.e., without sampling spontaneous 
fission multiplicity data. Time biasing is used such that 20% 
of the fission chains are born in each of 5 time intervals: 
[0.00, 0.01, 0.03, 0.10, 0.20, 0.50] μs. The mean and 
standard deviation of the first four zero-based moments of 
the neutron and fission numbers are calculated using the 
thirty independent samples of these quantities (see Table I). 

 
Table I. Mean and Standard Deviation of Zero-Based 
Moments of Single Fission Chain Neutron and Fission 
Number for Pu Test Problem. 

 

Neutron Number Fission Number 

Mean Relative 
Std. Dev. Mean Relative 

Std. Dev. 
[ ]E Y  1.389e1 1.924e-3 1.454e2 1.698e-3 

2[ ]E Y  5.945e4 3.221e-3 6.133e6 3.315e-3 
3[ ]E Y  5.206e8 6.977e-3 5.476e11 7.542e-3 
4[ ]E Y  6.922e12 1.557e-2 7.432e16 1.629e-2 

 
Table II. Comparison of MCATK and PARTISN Neutron 
Number Distribution Parameters for Pu Test Problem. 

 MCATK PARTISN Rel. Diff. 
Mean 5.884e0 6.055e0 -2.824e-2 

Std. Dev. 1.587e2 1.620e2 -2.057e-2 
Skewness 5.519e1 5.480e1 7.049e-3 
Kurtosis 4.624e3 4.569e3 1.204e-2 

 
Table III. Comparison of MCATK and PARTISN Fission 
Number Distribution Parameters for Pu Test Problem. 

 MCATK PARTISN Rel. Diff. 
Mean 6.158e1 6.301e1 -2.268e-2 

Std. Dev. 1.612e3 1.638e3 -1.582e-2 
Skewness 5.539e1 5.501e1 6.938e-3 
Kurtosis 4.664e3 4.609e3 1.194e-2 

 
Given the source rate of 0.847254 neutrons/μs and 

simulation time of 0.5 μs, we find that the Poisson 
parameter λ (i.e., the expected number of fission chains) is 
0.423627. Introducing the zero-based single fission chain 
moments from Table I into Eqs. (6)-(9) gives us the first 
four statistical moments of the neutron and fission number 
distributions for the system (see Tables II and III). 

The ability to calculate the moments of the neutron and 
fission number distributions has also been implemented in 
the SN code PARTISN [15]. PARTISN results for this 
problem, provided by E. Fichtl of Los Alamos National 
Laboratory, are also shown in Tables II and III. 

We see that the differences between the codes is 
roughly 1-3%, which for the mean and standard deviation is 
outside the statistical uncertainty of those quantities. Still 
these errors are reasonable considering the differences 
between the methods used to calculate the moments. 
PARTISN uses the SN method to solve a series of related 
adjoint transport equations with non-standard source terms. 
The four adjoint equations for the first four moments must 
be solved sequentially, and a separate calculation must be 
performed to calculate the moments for every desired point 
in time. By comparison, the Monte Carlo method performs a 
single, standard forward calculation with non-standard 
tallies, and while keeping track of which fission chain each 
particle belongs to. The single calculation yields the 
moment at every time step. The Monte Carlo method also 
does not require approximate angular treatments, and, 
perhaps most significantly, uses continuous energy, rather 
than multigroup, cross section data. Given these differences 
between the methodologies, the agreement between the two 
codes is acceptable. 

 
2. Dynamic Test Problem: Uranium Sphere with 
Changing Enrichment 

 
Next, we consider a benchmark criticality excursion 

first proposed by Baker [16] and again studied by Fichtl 
[15]. The system is a 17.25 cm sphere of a time-varying 
mixture of uranium-235 and uranium-238. The total density 
of the sphere is a constant 15 g/cc. The densities of the two 
uranium isotopes versus time are given in Table IV. The 
isotopic compositions vary linearly between the times 
shown in Table IV, but are only updated at the end of each  
1 sh time step. We note that unit of time shake [sh] used 
throughout this section is equivalent to 1e-8 sec. The system 
first reaches criticality at 200 sh, is at its maximum 
criticality from 400 to 500 sh, and returns to a subcritical 
state at 700 sh. 

 
Table IV. Isotopic Densities for the U Test 
Problem. 

Time 
[sh] 

U235 Density 
[g/cm3] 

U238 Density 
[g/cm3] 

0 5.0 10.0 
200 6.5 8.5 
400 14.0 1.0 
500 14.0 1.0 
700 6.5 8.5 
900 5.0 10.0 

1000 5.0 10.0 
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The source used in the MCATK calculations is 
monoenergetic and uniformly distributed in space. The 
source energy, 14.1627 MeV, was chosen to be consistent 
with energy group 7 of the 133 group MENDF6 multigroup 
cross section set.  Unfortunately, the anticipated PARTISN 
calculations at this source energy have not yet been 
completed. Instead, we will compare the MCATK 
calculations to the original PARTISN calculations [15], 
which used a uniformly distributed source in space and 
energy (i.e., every energy group had an identical source 
rate). Time biasing was used in order to increase the number 
of fission chains born around the time of first criticality. The 
biased number of fission chains per time step as a function 
of time is given in Table V. The total number of fission 
chains per calculation is 182400. 
 

Table V. Monte Carlo Fission Chain Sampling 
Rates versus Time for the U Test Problem. 

Start 
[sh] 

Stop 
[sh] 

Chains Per 
Shake 

0 150 64 
150 300 512 
300 500 256 
500 700 128 
700 1000 64 

 
Forty calculations were performed with a combing 

threshold of 1000. Another thirty-four have been run so far 
with a combing threshold of 10000. The lower threshold 
runs are performed using 64 processors per calculation, and 
take approximately 3.5-4.0 hours to complete. The higher 
threshold runs are performed using with varying numbers of 
processors. In all cases, calculations are run 
“undersubscribed”, meaning that fewer than the maximum 
number of processors are used per compute node in order to 
increase the memory available per process. Several 
calculations used 16 nodes each, with 16 processors out of 
36 per node, and each took between 6.75-7.25 hours to 
complete. 

Each calculation for a given threshold serves as an 
independent sample of the moments, which enables the 
calculation of their mean and relative error. The mean and 
relative error of the neutron and fission moments at first and 
second criticality are presented in tables VI and VII. 

The first moment of both the neutron and fission 
number distributions is relatively unaffected by the value of 
the combing threshold. However, the higher moments are 
greatly affected, with the kurtosis changing by over two 
orders of magnitude at second criticality (out of roughly 220 
orders of magnitude). Increasing the population control 
threshold decreases the relative standard deviation of the 
moments significantly at second criticality. The effect of the 
threshold on the mean values indicates that the moment 
tallies are not fully converged with a threshold of only 1000 
particles. This is because with only 1000 particles per chain,  
 

Table VI. Mean and Standard Deviation of Zero-Based 
Moments of Single Fission Chain Neutron Number for the 
U Test Problem. 

 First Critical (Time = 200 sh) 

 

Population Control 
Threshold = 1e3 

Population Control 
Threshold = 1e4 

Mean Relative 
Std. Dev. Mean Relative 

Std. Dev. 
[ ]E Y  0.799e-1 0.06564 7.868e-1 0.06695 

2[ ]E Y  4.749e1 0.17034 4.701e1 0.16947 
3[ ]E Y  5.436e3 0.32028 5.480e3 0.32300 
4[ ]E Y  8.722e5 0.49970 8.999e5 0.51465 

 Second Critical (Time = 700 sh) 

 

Population Control 
Threshold = 1e3 

Population Control 
Threshold = 1e4 

Mean Relative 
Std. Dev. Mean Relative 

Std. Dev. 
[ ]E Y  1.202e52 0.12213 1.201e52 0.05841 

2[ ]E Y  1.493e107 0.83677 4.600e106 0.13961 
3[ ]E Y  8.985e162 2.07834 3.634e161 0.26397 
4[ ]E Y  1.209e219 3.37413 4.408e216 0.52738 

 
 
 

Table VII. Mean and Standard Deviation of Zero-Based 
Moments of Single Fission Chain Fission Number for the 
U Test Problem. 

 First Critical (Time = 200 sh) 

 

Population Control 
Threshold = 1e3 

Population Control 
Threshold = 1e4 

Mean Relative 
Std. Dev. Mean Relative 

Std. Dev. 
[ ]E Y  1.332e1 0.04549 1.321e1 0.04510 

2[ ]E Y  4.767e3 0.16629 4.593e3 0.16530 
3[ ]E Y  4.619e6 0.34160 4.331e6 0.33283 
4[ ]E Y  6.844e9 0.56660 6.283e9 0.56083 

 Second Critical (Time = 700 sh) 

 

Population Control 
Threshold = 1e3 

Population Control 
Threshold = 1e4 

Mean Relative 
Std. Dev. Mean Relative 

Std. Dev. 
[ ]E Y  8.660e52 0.12232 8.647e52 0.05763 

2[ ]E Y  7.572e108 0.92997 2.377e108 0.13771 
3[ ]E Y  3.325e165 2.29824 1.347e164 0.26723 
4[ ]E Y  3.284e222 3.52879 1.175e220 0.56840 
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and with chains achieving such large weights, random, large 
fluctuations in the total weight of the chain can occur. Using 
10000 particles per chain is certainly better, but the 
population control threshold should be increased further to 
verify that the tallies have converged with respect to the 
combing threshold. This will be left for future work. 
Although the errors may seem large at first glance, they are 
quite small when one considers that the neutron population 
grows 53 orders of magnitude between first and second 
criticality, and that the largest moments exceed 10220. 

Figures 1 and 2 show the neutron and fission number 
moments as a function of time for a source rate of 0.01 n/sh. 
The combing threshold for these results was 10000. True  
 

 
 

(a) MCATK with combing threshold = 1e4. 

 
 

(b) PARTISN. Figure reproduced from Ref. 15, Fig. 3. 
 
Fig 1. Natural log of the moments of the neutron number 
distribution for the uranium sphere test problem. The 
MCATK plot depicts, for each moment, calculations with 
the highest and lowest peak values (lighter, thinner lines), as 
well as the average over all calculations (darker, thicker 
lines). 

error bars for these moments cannot be computed at this 
time. The relative errors of the various zero-based moments 
are clearly correlated (a high weight chain will score high to 
all moments), but their covariances are not computed at this 
time. Therefore, the error in the zero-based moments cannot 
be propagated to the skewness and kurtosis of the neutron 
and fission number distributions, as these distributions are 
calculated using multiple zero-based moments (see Eqs. (8) 
and (9)). In order to visualize the errors in these moments, 
we have simply identified the individual calculations with 
the highest and lowest peak values of the moments, and 
plotted these alongside the average values of the moments. 
This gives an approximate bound on the fluctuations in the 
moments that may be observed. 

The natural log of the moments of the neutron number 
for a source rate of 0.01 n/sh are plotted for MCATK and 
PARTISN in Figure 1. The PARTISN figure is reproduced 
from Ref. 15, Figure 3. The codes exhibit good agreement, 
especially considering that they each used a different source 
definition. Furthermore, it may be necessary to perform the 
simulation with a higher population control threshold in 
order to fully converge the Monte Carlo solution. This is the 
subject of future work. The high, low, and average MCATK 
values of each moment are, for the most part, too similar to 
distinguish. 

The natural log of the moments of the fission number 
for a source rate of 0.01 n/sh are plotted for MCATK in 
Figure 2. No PARTISN results are available at this time for 
the fission number moments for this particular problem. The 
behavior of the fission number moments is similar to the 
neutron number moments. Again, the high, low, and average 
values of the moments are too similar to distinguish. 

 

 
 
Fig 2. Natural log of the moments of the fission number 
distribution for the uranium sphere test problem. The plot 
depicts, for each moment, calculations with the highest and 
lowest peak values (lighter, thinner lines), as well as the 
average over all calculations (darker, thicker lines). 
Combing threshold = 1e4. 
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Figures 1 and 2 each consider only one source rate: 
0.01 n/sh. Next, we consider the effect of changing the 
source rate. The natural log of the neutron number moments 
at second criticality (time = 700 sh) are plotted as a 
functionof source strength for both MCATK and PARTISN 
in Figure 3. The PARTISN figure is reproduced from Ref. 
15, Figure 4(a). Again the agreement is good. Only the 
higher moments, skewness and kurtosis, show any visible 
differences. The differences can likely be attributed to a 
combination of different source specifications, and possibly 
need to increase the population control threshold in the 
MCATK calculation in order to fully converge the solution. 
 

 
(a) MCATK with combing threshold = 1e4. 

 

 
 

(a) PARTISN. Figure reproduced from Ref. 15, Fig. 
4(a). 
 

Fig 3. Natural log of the moments of the neutron number 
distribution at second criticality (time = 700 sh) as a 
function of source strength. 

 
The behavior of the moments matches the discussion in 

Section III.2. To reiterate, the skewness and kurtosis 
decrease as the source rate increases. The standard deviation 

increases, but the mean increases faster. All this confirms 
the idea that as the source rate in a system continues to 
increase, the neutron and fission number distributions 
become first normal, and then approach a delta function, 
i.e., the system ceases to be stochastic and becomes 
deterministic. 

The natural log of the fission number moments at 
second criticality (time = 700 sh) are plotted as a function of 
source strength for both MCATK and PARTISN in Figure 
4. The behavior is the same as for the moments of the 
neutron number. 

 

 
Fig 4. Natural log of the moments of the fission number 
distribution at second criticality (time = 700 sh) as a 
function of source strength. Combing threshold = 1e4. 

 
V. CONCLUSIONS AND FUTURE WORK 
 

In this work, we have presented a novel Monte Carlo 
algorithm for calculating the moments of the neutron and 
fission numbers for stochastic systems. Zero-based 
moments are tallied for individual fission chains, which are 
tracked by giving all neutrons an ID specifying which chain 
they belong to. The zero-based moments are then introduced 
into simple formulas describing compound distributions in 
order to obtain the mean, variance, skewness, and kurtosis 
of the neutron and fission numbers accounting for all the 
fission chains in the system. 

Other new features of interest to the fission chain 
analysis algorithm are: (1) the ability to emit multiple 
neutrons per spontaneous fission event by sampling from 
available multiplicity data (results not presented here) and 
(2) the implementation of source time biasing in order to 
sample more fission chains with large neutron and fission 
numbers. 

The moments of the neutron and fission number 
distributions were calculated for two simple test problems 
using the Monte Carlo method in MCATK and compared to 
SN results from PARTISN. The two codes are in good 
agreement with one another. 
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The comparisons of the Monte Carlo and deterministic 
algorithms for calculating moments of the neutron and 
fission number distributions yield familiar conclusions. The 
Monte Carlo algorithm is computationally expensive, and 
the fission chain algorithm is particularly constrained by 
memory requirements. However, the Monte Carlo algorithm 
does have the usual advantages over the deterministic 
algorithm as well: it uses fewer approximations and does 
not suffer from discretization errors in space, energy, or 
angle. The agreement demonstrated here indicates that the 
Monte Carlo method is a viable alternative to deterministic 
methods for calculating moments of the neutron and fission 
number distributions. 

The test problems studied here should be re-run using 
the spontaneous fission multiplicity, in order to better 
characterize its effect on the tallied moments. If possible, 
runs with a higher combing threshold should be performed 
to verify that the moment tallies are converged. 

Future work should investigate the effect of load 
balancing on the fission chain analysis algorithm. The 
parallel overhead in the code would be increased as fission 
chains could span multiple processes. However, it would 
ease restrictions on memory, currently the dominant 
limitation, by ensuring that large fission chains could not 
overwhelm some processes while others sit idle. The fission 
chain analysis algorithm may also be extended to 
characterize the burst wait time for pulsed reactor 
experiments. 
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