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Abstract – We examine radiation transport in stochastic media consisting of an arbitrary number of 

materials.  We derive the statistical transport equations and LP closure for such media when the material 

statistics is Markovian.  The atomic mix closure, previously derived in one-dimensional slab geometry for 

binary media, is extended to an arbitrary number of materials.  Results demonstrate that the atomic mix 

closure is generally more accurate than the LP closure, but is problematic for higher-order quadratures 

when the problem is sufficiently thick.  In such cases a subgrid model may be used, which is also observed to 

be more accurate than the LP model.  

 

I. INTRODUCTION 

 

Much of the past research into the accurate modeling of 

stochastic media in radiation transport calculations has 

focused on binary media.  A few early papers performed 

some theoretical analysis with an arbitrary number of 

materials [1,2], but extension and application appear to be 

limited to binary media.  In the present work we extend some 

of this analysis to an arbitrary number of materials.  We 

derive generalizations of the statistical transport equation and 

the Levermore-Pomraning (LP) closure [1,3,4] for such 

problems when the material statistics is Markovian.  We also 

generalize the atomic mix closure [5], which we observe to 

be more accurate than LP in almost all cases studied. 

Our work is organized as follows.  In Section II we 

derive various equations and closures for an arbitrary number 

of materials.  In Section III we present results for these 

models and compare them against benchmarks.  We present 

conclusions and suggestions for future work in Section IV. 

 

II. DESCRIPTION OF THE ACTUAL WORK 

 

1. Extension of Statistical Transport Equation and LP 

Closure 

 

In [1] is a formal derivation of the energy-dependent 

statistical transport equation for arbitrary mixing statistics 

and also a derivation of what is now generally called the LP 

closure.  At about the same time a different derivation of the 

monoenergetic statistical transport equation and 

corresponding LP closure based on a control volume 

approach was obtained for binary media [4].  In this section 

we extend the latter analysis to an arbitrary number of 

materials for Markovian media. 

In [4] the following balance equation was derived:  

 
1

𝑣

𝜕[𝑝𝑖〈𝜓𝑖〉]

𝜕𝑡
+ Ω⃗⃗ ⋅ ∇[𝑝𝑖〈𝜓𝑖〉] + 𝜎𝑡,𝑖𝑝𝑖〈𝜓𝑖〉

=
𝜎𝑠,𝑖
4𝜋

𝑝𝑖 ∫𝑑Ω⃗⃗ 
′〈𝜓𝑖(Ω⃗⃗ 

′)〉 + 𝑝𝑖𝑞𝑖 + 𝜃𝑖  

      (1a) 

 

𝜃𝑖 = − lim
𝑉→0

[
1

𝑉
〈𝜓(Ω⃗⃗ ) ∫ 𝑑𝑠�⃗� 𝑖 ⋅ Ω⃗⃗ Γ

〉]  (1b) 

 

Here 𝜃𝑖  describes the average fluxes crossing a material 

interface into or out of material i.  Although subsequent 

analysis was restricted to binary media, Eqs. (1) are actually 

valid for an arbitrary number of materials. 

In a manner more general than that in [4] we can rewrite 

𝜃𝑖 in terms of specific types and orientations of interfaces:  

 

𝜃𝑖 = lim
𝑉→0

1

𝑉
[−∑〈𝜓(Ω⃗⃗ ) ∫ 𝑑𝑠�⃗� 𝑖 ⋅ Ω⃗⃗ 

Γ𝑖𝑗

〉

𝑗≠𝑖

+∑〈𝜓(Ω⃗⃗ ) ∫ 𝑑𝑠�⃗� 𝑗 ⋅ Ω⃗⃗ 

Γ𝑗𝑖

〉

𝑗≠𝑖

] 

      (2) 

 

We can rewrite Eq. (2) as:  

 

𝜃𝑖 = −∑〈𝜓𝑠,𝑖𝑗〉𝑄𝑖𝑗(Ω⃗⃗ )

𝑗≠𝑖

+∑〈𝜓𝑠,𝑗𝑖〉𝑄𝑗𝑖(Ω⃗⃗ )

𝑗≠𝑖

 

      (3a) 

 

    〈𝜓𝑠,𝑖𝑗〉 = 〈𝜓(Ω⃗⃗ ) ∫ 𝑑𝑠�⃗� 𝑖 ⋅ Ω⃗⃗ Γ𝑖𝑗
〉 / 〈∫ 𝑑𝑠�⃗� 𝑖 ⋅ Ω⃗⃗ Γ𝑖𝑗

〉 (3b)  

 

𝑄𝑖𝑗(Ω⃗⃗ ) = lim
𝑉→0

[
1

𝑉
〈∫ 𝑑𝑠�⃗� 𝑖 ⋅ Ω⃗⃗ Γ𝑖𝑗

〉]  (3c) 

 

By means of a differential volume analysis we obtain:  

 

𝑄𝑖𝑗(Ω⃗⃗ ) =
𝑝𝑖

𝜆𝑖
𝑃(𝑗|𝑖)  (4) 

 

The physical interpretation of Eq. (4) is that 𝑝𝑖  is the 

probability that an arbitrary location is in material i, 𝜆𝑖 is the 

probability per unit path length that there is an interface there, 

and 𝑃(𝑗|𝑖) is the probability that material j is on the other side 

of the interface.  A similar result was obtained in [4], where 

𝑃(𝑗|𝑖) was identically unity since only binary media were 
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considered.  In the present analysis for an arbitrary number of 

materials 𝑃(𝑗|𝑖) depends on the material statistics. 

For the sake of our analysis we assume that we are 

dealing with Markovian media.  In that case we can use the 

following expressions:  

 

𝑃(𝑗|𝑖) =
𝑝𝑗

1−𝑝𝑖
   (5a) 

 

𝜆𝑐 = 𝜆𝑖(1 − 𝑝𝑖), ∀𝑖  (5b) 

 

Combining the above equations gives a monoenergetic 

statistical transport equation for Markovian media with an 

arbitrary number of materials:  

 
1

𝑣

𝜕[𝑝𝑖〈𝜓𝑖〉]

𝜕𝑡
+ Ω⃗⃗ ⋅ ∇[𝑝𝑖〈𝜓𝑖〉] + 𝜎𝑡,𝑖𝑝𝑖〈𝜓𝑖〉

=
𝜎𝑠,𝑖
4𝜋

𝑝𝑖 ∫𝑑Ω⃗⃗ 
′〈𝜓𝑖(Ω⃗⃗ 

′)〉 + 𝑝𝑖𝑞𝑖

+ 𝜆𝑐
−1𝑝𝑖∑𝑝𝑗[〈𝜓𝑠,𝑗𝑖〉 − 〈𝜓𝑠,𝑖𝑗〉]

𝑗≠𝑖

 

      (6) 

 

If we assume stationary statistics, we obtain:  

 
1

𝑣

𝜕〈𝜓𝑖〉

𝜕𝑡
+ Ω⃗⃗ ⋅ ∇〈𝜓𝑖〉 + 𝜎𝑡,𝑖〈𝜓𝑖〉

=
𝜎𝑠,𝑖
4𝜋

∫𝑑Ω⃗⃗ ′〈𝜓𝑖(Ω⃗⃗ 
′)〉 + 𝑞𝑖

+ 𝜆𝑐
−1∑𝑝𝑗[〈𝜓𝑠,𝑗𝑖〉 − 〈𝜓𝑠,𝑖𝑗〉]

𝑗≠𝑖

 

      (7) 

 

This equation is formally exact for stationary Markovian 

mixing statistics.  Unfortunately, an additional set of 

equations is needed to relate the two types of conditional 

averages.  The LP closure, generalized to an arbitrary number 

of materials, is obtained by assuming that 〈𝜓𝑠,𝑖𝑗〉 = 〈𝜓𝑖〉: 

 
1

𝑣

𝜕〈𝜓𝑖〉

𝜕𝑡
+ Ω⃗⃗ ⋅ ∇〈𝜓𝑖〉 + 𝜎𝑡,𝑖〈𝜓𝑖〉

=
𝜎𝑠,𝑖
4𝜋

∫𝑑Ω⃗⃗ ′〈𝜓𝑖(Ω⃗⃗ 
′)〉 + 𝑞𝑖

+ 𝜆𝑐
−1∑𝑝𝑗(〈𝜓𝑗〉 − 〈𝜓𝑖〉)

𝑗≠𝑖

 

      (8) 

 

For binary materials Eqs. (7) and (8) reduce to their more 

familiar forms.  

 

2. Derivation of Atomic Mix Closure 

 

In [5] we derived a new “atomic mix” closure for 

binary stochastic media.  Here we repeat that derivation for 

an arbitrary number of materials.  

In [6] we proposed a family of closures of the following 

form:  

 
[〈𝜓𝑠〉] = 𝑅[〈𝜓〉]   (9) 

 

To determine R we proposed a set of subsidiary calculations 

to relate [〈𝜓𝑠〉] and [〈𝜓〉] to boundary fluxes [〈𝜓𝑏〉]: 
 

[〈𝜓〉] = 𝑅𝑢[〈𝜓𝑏〉],

[〈𝜓𝑠〉] = 𝑅𝑠[〈𝜓𝑏〉] = 𝑅𝑠𝑅𝑢
−1[〈𝜓〉] ≡ 𝑅[〈𝜓〉]

 (10) 

 

These subsidiary calculations involve a deterministically-

generated ensemble of geometric realizations; weighted 

transport calculations on this ensemble yield numerical 

approximations to R.  Depending on the problem this 

ensemble can be quite large.  We note that the LP closure uses 

the identity matrix for R in Equation (9).  

In order to develop our new model for R we depict an 

arbitrary realization in Figure 1 for a stochastic transport 

problem in one-dimensional slab geometry.  In the regions 

centered around location r we explicitly note the distinct 

materials at the extremities and on either side of r; there may 

be material interfaces within these regions (not depicted).  

These are surrounded by “buffer” regions extending to the 

problem boundary in which we replace distinct material 

regions with atomically mixed material.  The motivation for 

the atomic mix layers is to reduce the number of explicit 

material regions and interfaces that we will eventually need 

to computationally model; we assume that material 

distribution details near r are more important.  We depict the 

(known) boundary fluxes and the (unknown) fluxes at r.  This 

is a generalization of the approach we took in [6], which did 

not include any atomic mix layers and was specialized for the 

“rod” (two-point Gauss-Lobatto angular quadrature) 

problem.  

 

 
 

Fig. 1. General slab-geometry stochastic transport model. 

 

With the above description of the problem we can relate the 

conditionally-averaged interior fluxes to the boundary fluxes 

as a function of the material distributions:  
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〈𝜓𝑘,𝑚𝑟
−〉 = 𝑝𝑚𝑟

−
−1 ∑∑∑∑𝑝𝑟,𝑚𝑟

−𝑚𝑟
+𝑚−𝑚+𝑅𝑟,𝑘′𝑘,𝑚𝑟

−𝑚𝑟
+𝑚−𝑚+𝜓𝑏,𝑘′,𝑚−

𝑚+𝑚−𝑚𝑟
+𝑘′

,

〈𝜓𝑠,𝑘,𝑚𝑟
−〉 = 𝑝𝑚𝑟

−
−1 ∑ ∑ ∑∑𝑝𝑟,𝑚𝑟

−𝑚𝑟
+𝑚−𝑚+𝑅𝑠,𝑟,𝑘′𝑘,𝑚𝑟

−𝑚𝑟
+𝑚−𝑚+𝜓𝑏,𝑘′,𝑚−

𝑚+𝑚−𝑚𝑟
+≠𝑚𝑟

−𝑘′

 

      (11) 

 

The various response functions R in Equation (11) are derived 

from ensemble-averages of the conditional interior fluxes 

depicted in Figure 1 and are in general unknown.  

In [6] Equation (11) was approximately solved by 

creating a finite ensemble of realizations, performing 

transport calculations on each realization for each boundary 

flux, and then using the computed interior fluxes to obtain R.  

We had intended (and still do intend) to perform a similar 

process in the present work, which we hope will obtain 

reasonable accuracy at reduced computational cost.  

However, we have discovered an interesting limit which has 

proved quite fruitful and forms the basis of the atomic mix 

closure. 

If we allow ∆𝑥𝑙,𝑟 → ∆𝑥𝑟,𝑟 → 0 and the atomic mix buffer 

regions to grow accordingly, we find that 𝑚𝑙 → 𝑚𝑟,𝑙  and 

𝑚𝑟 → 𝑚𝑟,𝑟.  In this limit we find that Equation (11) simplifies 

to 

 

〈𝜓𝑘,𝑚𝑟
−〉 = ∑𝑅𝑟,𝑘′𝑘𝜓𝑏,𝑘′,𝑚𝑟

−

𝑘′

,

〈𝜓𝑠,𝑘,𝑚𝑟
−〉 =

{
 
 

 
 ∑ 𝑅𝑟,𝑘′𝑘𝜓𝑏,𝑘′,𝑚𝑟

−

𝜇𝑘′>0

+ ∑ 𝑅𝑟,𝑘′𝑘 ∑
𝑝𝑚𝑟

+

1 − 𝑝𝑚𝑟
−
𝜓𝑏,𝑘′,𝑚𝑟

+

𝑚𝑟
+≠𝑚𝑟

−𝜇𝑘′<0

, 𝜇𝑘 > 0

∑ 𝑅𝑟,𝑘′𝑘 ∑
𝑝𝑚𝑟

+

1 − 𝑝𝑚𝑟
−
𝜓𝑏,𝑘′,𝑚𝑟

+

𝑚𝑟
+≠𝑚𝑟

−𝜇𝑘′>0

+ ∑ 𝑅𝑟,𝑘′𝑘𝜓𝑏,𝑘′,𝑚𝑟
−

𝜇𝑘′<0

, 𝜇𝑘 < 0

 

      (12) 

 

where the first equation defines the elements of Ru and the 

second one defines Rs. We note two important properties of 

this equation.  First, Ru and Rs contain similar matrix elements 

but with various permutations and weighted sums.  This 

results directly from the fact that in this thin limit there are 

either no material interfaces (with probability approaching 

unity) or there is a single material interface (with probability 

approaching unity, conditioned on there being at least one 

interface).  If there are no material interfaces the driving 

boundary flux will traverse the same material both upstream 

and downstream of the location of interest.  If there is a 

material interface the driving flux will pass through the 

material of interest and then some other material (or vice 

versa).  Interestingly, if we do not make this distinction then 

Ru=Rs and we obtain the LP closure.  Second, each Rr,k’k can 

be obtained by transport calculations on a single realization, 

namely one filled entirely with atomically mixed materials.  

This can be accomplished with N transport calculations, 

where N is the number of angular quadrature points, for R at 

some location in the domain (R in general is spatially 

dependent).  If the angular quadrature is symmetric one may 

use only N/2 calculations. 

 

 

III. RESULTS 

 

In order to test the above models, we reexamine the 

benchmark problems first reported in [4].  These problems 

consist of nine different combinations of binary media and 

mixing statistics for three different slab widths.  The material 

properties of these tests are listed in Table I, where we note 

that cases 1 and 4, 2 and 5, and 3 and 6, respectively, differ 

only in their characteristic chord lengths (in subsequent 

discussion any reference to cases 1, 2, or 3 will implicitly 

include cases 4, 5, and 6).  The problems are monoenergetic 

in one-dimensional slab geometry; both the rod and “planar” 

(S16 Gauss-Legendre) variants are studied.  The problems are 

driven by an isotropic flux on the left boundary.  All 

scattering is isotropic.  The reflected and transmitted currents 

are the transport quantities examined.  In the present work we 

do not restrict ourselves to the particular chord lengths in 

Table I; instead we examine a continuum of length scales.  

We also do not restrict ourselves to binary media; we freely 

form additional combinations of those materials. 

 

Table I. Stochastic material properties [4] 

case 𝜎𝑡,0 𝜎𝑡,1 𝑐0 𝑐1 𝜆0 𝜆1 

1 10/99 100/11 0 1 99/100 11/100 

2 10/99 100/11 1 0 99/100 11/100 

3 10/99 100/11 0.9 0.9 99/100 11/100 

4 10/99 100/11 0 1 99/10 11/10 

5 10/99 100/11 1 0 99/10 11/10 

6 10/99 100/11 0.9 0.9 99/10 11/10 

7 2/101 200/101 0 1 101/20 101/20 

8 2/101 200/101 1 0 101/20 101/20 

9 2/101 200/101 0.9 0.9 101/20 101/20 

 

 

We generated the atomic mix results and atomic mix response 

matrices in Equation (12) with the Sceptre deterministic code 

[7] using its discretization of the first-order form of the linear 

monoenergetic Boltzmann equation.  Unaccelerated source 

iteration errors were controlled to be less than 10-7 with the 

aid of spectral radius estimates to guard against false 

convergence.  Uniform mesh refinement and Richardson 

extrapolation were used to achieve a spatial error of less than 

10-6.  A variant of Sceptre that can solve Equations (8) and 

(9) was used to obtain LP and atomic mix closure results.  We 

also used Sceptre to generate benchmarks using Monte Carlo 

sampling to create ensembles of realizations.  Each 

realization was solved with iterative errors below 10-4 and 

spatial errors below 10-3; sufficient realizations were used to 

obtain statistical errors less than 1% in most cases. 

 

1. Rod Problems 

 

A few of our results for the rod problems are presented 

in Figures 2-7 for a slab thickness Δx=1 and in Figures 8-13 

for Δx=10.  These figures depict the reflected and transmitted 
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fluxes in one binary material (the continuum involving case 

1), in four materials (equal proportions of cases 1 and 2), and 

in twelve materials (equal proportions of all unique materials 

listed in Table I).  These figures contain results for our 

benchmark calculations, for an atomic mix calculation, for 

the LP treatment, and for the atomic mix closure (using the 

response matrix computed in the center of the geometry).  

Note that the “atomic mix” results are the directly computed 

reflection and transmission from an atomic mix realization, 

not the results generated by means of the corresponding 

closure.  

 

 
 

Fig. 2. Reflection results, case 1, rod, Δx=1. 

 

 
 

Fig. 3. Transmission results, case 1, rod, Δx=1. 

 

 

 

 
 

Fig. 4. Reflection results, cases 1/2, rod, Δx=1. 

 

 
 

Fig. 5. Transmission results, cases 1/2, rod, Δx=1. 

 

 

 
 

Fig. 6. Reflection results, all materials, rod, Δx=1. 
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Fig. 7. Transmission results, all materials, rod, Δx=1. 

 

 

 

 
 

Fig. 8. Reflection results, case 1, rod, Δx=10. 

 

 
 

Fig. 9. Transmission results, case 1, rod, Δx=10. 

 

 

 
 

Fig. 10. Reflection results, cases 1/2, rod, Δx=10. 

 

 
 

Fig. 11. Transmission results, cases 1/2, rod, Δx=10. 

 

 
 

Fig. 12. Reflection results, all materials, rod, Δx=10. 
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Fig. 13. Transmission results, all materials, rod, Δx=10. 

 

 

We see here that the atomic mix closure is generally 

more accurate than LP regardless of chord length.  Similar 

results have been observed for all of the other problems we 

have studied with these problem thicknesses.  Only 

occasionally is LP slightly more accurate in the limit of very 

large chord lengths. 

In Figures 14-19 we show results for the planar problem 

and Δx=1.  These and other unreported results demonstrate 

similar behavior as the rod problems; the atomic mix closure 

appears to be more accurate than LP. 

As noted earlier we have used the atomic mix closure 

matrix R generated from the center of an atomic mix 

realization throughout our solution of Eq. (9) rather than 

position-dependent closures in the above results.  In general 

R could vary spatially.  We have performed calculations that 

make use of spatially-dependent response matrices (not 

shown here), but have observed that this has little effect on 

the results. 

 

 

 
 

Fig. 14. Reflection results, case 1, planar, Δx=1. 

 

 
 

Fig. 15. Transmission results, case 1, planar, Δx=1. 

 

 
 

Fig. 16. Reflection results, cases 1/2, planar, Δx=1. 

 

 
 

Fig. 17. Transmission results, cases 1/2, planar, Δx=1. 
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Fig. 18. Reflection results, all materials, planar, Δx=1. 

 

 
 

Fig. 19. Transmission results, all materials, planar, Δx=1. 

 

We turn now to planar problems with Δx=10.  These 

problems exhibit different behaviors than the ones reported 

above.  In every case source iteration was observed to be 

unstable.  Examination of R reveals that it is not diagonally-

dominant in these cases.  Not only will this cause source 

iteration to be unstable, it is not clear that a solution to the 

atomic mix closure equation exists.  This lack of diagonal-

dominance makes sense on physical grounds, since the 

interior fluxes in Eq. (10) will no longer be governed 

primarily by boundary fluxes in the same direction once there 

is sufficient scattering material to suppress the effects of 

uncollided fluxes.  The notable exception will be problems 

with two-point quadratures, which will preserve diagonal-

dominance regardless of problem thickness.  This is 

consistent with our experience with thick rod problems 

reported earlier. 

In order to overcome the above issue, we attempt a 

subgrid approach.  Instead of generating R with an 

atomically-mixed realization of the same width as the 

stochastic problem, we instead use an atomically-mixed 

realization with an optical thickness of unity in an attempt to 

guarantee diagonal-dominance while still incorporating some 

non-local material effects.  Results generated using this 

subgrid approximation to R are depicted in Figures 20-25 for 

planar problems with Δx=10.  These results appear 

qualitatively the same as our earlier results; the subgrid 

atomic-mix closure is generally more accurate than LP. 

 

 
 

Fig. 20. Reflection results, case 1, planar, Δx=10. 

 

 
 

Fig. 21. Transmission results, case 1, planar, Δx=10. 
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Fig. 22. Reflection results, cases 1/2, planar, Δx=10. 

 

 
 

Fig. 23. Transmission results, cases 1/2, planar, Δx=10. 

 

 

 
 

Fig. 24. Reflection results, all materials, planar, Δx =10. 

 

 
 

Fig. 25. Transmission results, all materials, planar, Δx=10. 

 

 

IV. CONCLUSIONS 

 

Obtaining solutions to stochastic transport problems can 

be quite difficult.  Transport calculations on an ensemble of 

explicit realizations generated by Monte Carlo sampling can 

be prohibitively expensive.  Atomic mix or LP calculations 

are relatively inexpensive, but they can be inaccurate.  The 

present work illustrates an approach that is less expensive 

than Monte Carlo sampling yet more accurate than atomic 

mix or LP approximations.  The atomic mix closure requires 

a modest number of subsidiary calculations on a single 

homogenized realization, which if done as a subgrid model 

will be less expensive than the full-geometry calculations.  

The same closure may be used for any chord length as long 

as the relative material proportions remain the same.  In 

almost every case we have studied it is more accurate than 

LP. 

We still need to analyze the reasons why the atomic mix 

closures derived for thicker problems lead to source iteration 

instabilities.  It is not clear if the closure itself induces an ill-

posed problem or if it is merely the iterative process that is 

problematic.  We hope to examine alternative source terms to 

drive the subsidiary calculations.  We also want to extend the 

work to multigroup and multidimensional problems. 

 

NOMENCLATURE 

 

Δxl,am = width of left atomic mix buffer region 

Δxl,r = width of region(s) to left of r 

Δxr,am = width of right atomic mix buffer region  

Δxr,r = width of region(s) to right of r  

 Γ = surface between any dissimilar materials 

 Γ𝑖𝑗 = surface between materials i and j 

c  = average combined chord length in stochastic material 

i  = average chord length in material i 
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ml = material at left boundary 

mr = material at right boundary 

mr,l = material to left of r 

mr,r = material to right of r 

m- = material at upstream boundary 

m+ = material at downstream boundary 

mr
- = material upstream of r 



r
m  = opposite of material upstream of r 

mr
+ = material downstream of r 

k  = direction k of angular quadrature 

�⃗� 𝑖 = unit outer normal on surface of material i 

Ω = direction of particle travel 

pm = probability of material m 

mkb ,',  = boundary flux in direction k’ entering material m 

i  = ensemble-averaged angular flux in material i 

ijs,  = ensemble-averaged angular flux at a surface 

leaving material i and entering material j  

qi = internal source in material i  

Qij = geometric factor at interface between materials i and j 

r = spatial location 

R = response matrix  

Rs = surface-averaged response matrix 

Ru = unconditionally-averaged response matrix 

is,  = scattering cross section in material i 

it ,  = total cross section in material i 

𝜃𝑖 = net average fluxes leaving material i at interface 

V = control volume 
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