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Abstract - Binary stochastic media arise in several radiation transport applications including photon, neutron,
or charged particle transport through clouds, plasma-air structures, heterogeneous radiation shields, and
BWR coolant. Methods for solving transport quantities in such media have generally focused on simple
material homogenization or closures for the stochastic transport equation, but yield accurate results only in
special mixing regimes. In this work we demonstrate an efficient representation of binary stochastic media for
radiation transport applications using a Nataf transformation coupled with a Karhunen-Loève expansion and
further reduce the stochastic complexity using stochastic collocation. For some problems, this approach is
more accurate than existing approximate methods while being less computationally expensive than brute force
solution methods. Additionally, it can provide higher-order statistics of the solution response than currently
used approximate methods, lends well to application in different mixing statistics, and provides a means by
which to estimate and further resolve computational error.

I. INTRODUCTION

Transport through binary stochastic media has been a
topic of interest for a few decades [1, 2, 3, 4] and remains
under active research [5, 6, 7, 8]. The grandest goal is to
develop a method that is accurate, efficient, has quantifiable
and reducible error, and can be applied to a wide range of
material mixing types in one-, two-, or three-dimensional
geometry. A close second to this goal is development of a suite
of methods which each fill a niche and as a set achieve these
attributes well enough for individual problems of interest.

Despite a growing suite of approaches to solving the trans-
port equation involving stochastic media, the most widely used
are the atomic mix (AM) approximation and the Levermore-
Pomraning (LP) closure [1, 9, 10]. The atomic mix approxi-
mation homogenizes the material throughout the domain as
if mixed at the atomic scale. It performs best in finely mixed,
heavily scattering problems. It is the simplest of the meth-
ods to implement and can be utilized for any type of material
mixing statistics, but is also generally the least accurate of
the mainstream methods. The LP closure and its Monte Carlo
equivalent [11] are exact for purely-absorbing media. It is
generally more accurate than the AM approximation when
scattering is extant, except in optically thick media where LP
does not reproduce the correct atomic mix diffusion equation.
The LP closure has been developed for application in materials
with Markovian mixing statistics. Neither the AM approxi-
mation nor the LP closure provide estimates of the error of or
second order information for quantities solved. Additionally
the error yielded by these methods is not reducible without a
modification of the method itself.

Another method often used to produce benchmark so-
lutions for stochastic transport problems is to create a large
ensemble of realizations of the random material and effect
transport on each realization. It is accurate and provides a
means for error estimation and reducibility, but is also very
slow, relying on Monte Carlo convergence in stochastic space,
and is limited to application in problems for which there exists

a known method for creating realizations.
In this paper we examine a method for modeling binary

stochastic media for transport computations by applying a
Nataf transformation to the Karhunen-Loève (KL) expan-
sion [12, 13]. This discontinuous Karhunen-Loève (DKL)
method uses the autocovariance function of a random mate-
rial to characterize the media in terms of a finite number of
random variables. While we have only applied the method to
materials with Markovian mixing, a topic of future work is
to apply the method to materials with other covariance func-
tions [13]. Characterization of stochastic media in terms of
random variables using DKL enables the stochastic problem
to be treated as a "classic" uncertainty quantification prob-
lem, and in addition to random sampling (RS) of the vari-
ables to create realizations, methods like stochastic collocation
(SC) can be used to increase the efficiency of the approach.
Since the KL expansion provides a naturally anisotropic set
of random variables, we have used anisotropic SC, though
other forms of efficient SC may be applied, such as sparse
grids [14, 15, 16] and adaptive methods [16, 17]. We here
demonstrate that the DKL method models stochastic media
accurately within a second-order representation of the mate-
rial mixing statistics, that it can be efficient when appropriate
uncertainty quantification methods are applied, and that error
can be reduced through additional computational cost. The
method has been shown to provide means for estimating er-
ror [18] and to model materials with non-Markovian mixing
statistics in multi-dimensional problems [12]. It is also possi-
ble to use other stochastic processes to model random media
using principles of this approach [19].

Previous work by the authors using the KL expansion
to model stochastic media [5, 18, 20, 21, 22] has primar-
ily focused on modeling spatially continuous random media,
whereas this paper builds on newer work [18] and uses the KL
expansion to model spatially discontinuous random media for
radiation transport applications.
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II. STOCHASTIC TRANSPORT MODEL

The stochastic transport equation of interest is

µ
∂ψ(x, µ, ω)

∂x
+ Σt(x, ω)ψ(x, µ, ω) =

Σs(x, ω)
2

∫ 1

−1
dµ′ψ(x, µ′, ω),

0 ≤ x ≤ L; − 1 ≤ µ ≤ 1
ψ(0, µ) = 2, µ > 0; ψ(L, µ) = 0, µ < 0,

(1)

in which x and µ are the particle spatial and angular vari-
ables and the label ω denotes a material realization. We
consider a Markovian mixture of two immiscible fluids in
one-dimensional planar geometry, with chord lengths λ given
by the exponential distribution [1, 10]:

p(λ) =
1
Λi

exp
[
−
λ

Λi

]
, (2)

where Λi is the average chord length in material i, i = {0, 1}.
Two realizations of the mixture, obtained by successively sam-
pling the chord length distribution in each material, are shown
in Fig. 1. The likelihood of Material 0 at a randomly chosen
location x in a realization ω of the material is computed as

p0 =
Λ0

Λ0 + Λ1
, (3)

and the correlation length of the material is solved as

λc =
Λ0Λ1

Λ0 + Λ1
. (4)
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Fig. 1. Example benchmark realizations

In this work, we use a nonlinear transformation and the
Karhunen-Loève theorem to map the discontinuous random
field representing the material mixing to a finite number of
Gaussian-distributed random variables that allows application
of stochastic collocation techniques [16] to transport in binary

mixtures. The stochasticity of the media is represented by ran-
dom material index Z, such that either Material 0 or Material
1 exists at each point x in each realization ω:

Z(x, ω) =

0 if in Material 0
1 if in Material 1

(5)

The autocovariance of process Z for media with Markovian
mixing is exponential:

CZ(x, x′) = σ2 exp
[
−
|x − x′|
λc

]
, (6)

where σ2 is the variance of process Z. Scattering and total
macroscopic cross sections Σu(x, ω), u = {s, t} are represented
in terms of this discontinuous random process:

Σu(x, ω) = Σu,Z(x,ω). (7)

1. Nataf Transformation

The Nataf transformation [12, 13, 19] is used to map the
random medium to a Gaussian random process g with a covari-
ance that is related nonlinearly to the original covariance by
equating marginal distributions for the original and Gaussian
fields and solving for the value of g(x, ω) corresponding to the
probability of Material 0:∫ g∗

−∞

1
2π

exp
[
−
ξ2

x

]
dξ = p0 (8a)

⇒g∗ =
√

2 erf−1(2p0 − 1). (8b)

The mean and variance of process Z are shown to be:

µ = 1 − p0 (9a)
σ2 = p0(1 − p0) (9b)

The random material index written more explicitly is

Z(x, ω) = c (g(x, ω)) =

0 if g(x, ω) ≤ g∗

1 if g(x, ω) > g∗,
(10)

where c(g) is shorthand for the function mapping g(x, ω) to
Z(x, ω). The relationship between the covariance functions of
the original random medium and the Gaussian field follows
from the mapping and two-point averaging:

CZ(x, x′) =
E

[
(Z(x) − µ)(Z(x′) − µ)

]
σ2

=

∫ ∞

−∞

∫ ∞

−∞

(c(x) − µ)(c(x′) − µ)
σ2 pg(x, x′,Cg(r))dxdx′,

(11a)

where r represents the absolute distance between x and x′, r =
|x − x′|, and pg is the standard bivariate Gaussian distribution,

pg(x, x′,Cg(r)) =
1

2π
√

1 −C2
g(r)

exp
− x2 + x′2 − 2Cg(r)xx′

2(1 −C2
g(r))

 .
(11b)
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2. Numerical Solution of Gaussian Process Covariance

Equation (11) relates the known covariance of the discon-
tinuous process CZ to the yet unknown covariance of the Gaus-
sian field Cg, but Cg must still be solved from this transcen-
dental relationship. In previous work, including in Ref. [18],
we solved values of Cg using a method very similar to that in
Refs. [12, 13], in which the bivariate Gaussian is expanded in
terms of Hermite polynomials and reduced to an expansion of
single integrals. In this work we choose to solve Cg through
direct numerical evaluation of the double integral in Eq. (11)
as described below and as performed in Ref. [19]. We have
investigated a third method in which we perform a change of
variables to map to integrals from zero to infinity, multiply
Eq. (11a) by ey−y+y′−y′ where y and y′ are the new integration
variables, absorb the ey and ey′ terms in the Eq. (11) exponen-
tial, and use the remaining e−y and e−y′ terms to form the basis
for global Gauss-Laguerre integration.

Whereas all three methods for solving Cg were effective
for values of CZ (and thus Cg) much less than 1.0, all three
methods break down due to numerical issues as covariance val-
ues approach 1.0. Ref. [12] made note of this phenomenon by
saying that “there were numerical problems when RZZ ≈ 1”.
Using SciPy integrators (“integrate.quad()” in the Hermite
expansion case and “integrate.nquad()” in the direct integra-
tion case) and SciPy-generated Gauss-Laguerre nodes and
weights [23], we found the Hermite-expansion-based method
to be the most limited due to numerical difficulties near 1.0,
the Gauss-Laguerre method to be the second most limited,
and the direct integration method to be the least limited. We
acknowledge, as observed in Ref. [13], that the Hermite ex-
pansion method is more computationally efficient than di-
rect integration; perhaps a smart approach which prefers the
Hermite expansion method but switches to the direct integra-
tion method when covariance values approach 1.0 would be
most appropriate. Additionally, we hypothesize that if using a
higher quadrature order than the 100 points provided by cur-
rent SciPy packages, the Gauss-Laguerre method may be able
to solve covariance values closer to 1.0, and may be able to do
it more efficiently, than the direct integration method. Nonethe-
less in this work we have used the direct integration method
described below since we found it to resolve covariance values
closer to 1.0 than the other methods.

We begin numerical integration of Eq. (11) by recognizing
that the term (Z(x) − µ)(Z(x′) − µ)/σ2 is equal to one of three
values based on the domain of integration:

(Z(x) − µ)(Z(x′) − µ)
σ2 =

1−p0
p0

if x ∈ (−∞, g∗], x′ ∈ (−∞, g∗]
−1 if x ∈ (−∞, g∗], x′ ∈ (g∗,∞)
−1 if x ∈ (g∗,∞), x′ ∈ (−∞, g∗]

p0
1−p0

if x ∈ (g∗,∞), x′ ∈ (g∗,−∞)

(12)

Substituting Eq. (12) into Eq. (11a) and reorganizing yields

CZ(r) = − 1
∫ ∞

−∞

∫ ∞

−∞

pg(x, x′,Cg(r))dxdx′

+
1
p0

∫ g∗

−∞

∫ g∗

−∞

pg(x, x′,Cg(r))dxdx′

+
1

1 − p0

∫ ∞

g∗

∫ ∞

g∗
pg(x, x′,Cg(r))dxdx′.

(13)

Recognizing that pg is normalized to 1 when integrated over
the whole domain, Eq. (13) further reduces to

CZ(r) = −1 +
1
p0

∫ g∗

−∞

∫ g∗

−∞

pg(x, x′,Cg(r))dxdx′

+
1

1 − p0

∫ ∞

g∗

∫ ∞

g∗
pg(x, x′,Cg(r))dxdx′.

(14)

At values of r, a root-finding algorithm may be used over Cg(r)
to find the value which minimizes the residual τ in

τ =
∣∣∣∣ −CZ(r) +

(
− 1

+
1
p0

∫ g∗

−∞

∫ g∗

−∞

pg(x, x′,Cg(r))dxdx′

+
1

1 − p0

∫ ∞

g∗

∫ ∞

g∗
pg(x, x′,Cg(r))dxdx′

)∣∣∣∣;
(15)

we use SciPy’s "optimize.brentq()" root finder and integrate
using SciPy’s "integrate.nquad()" routine to solve for Cg(r) at
uniformly spaced values of r.

While we have found this approach to directly solve val-
ues of Cg(r) considerably closer to 1.0 than the other methods,
the algorithm still fails to solve values very close to 1.0. In
Ref. [12] these values were "interpolated linearly in those
situations". We test this approach, and that of using global
polynomial fits based on the Cg(r = 0) = 1 point and all val-
ues of Cg(r) which have been successfully solved, accepting
the interpolation which minimizes the L2 norm comparing the
original values of CZ and those yielded by a forward solve of
Eq. (11). This approach is described in more detail in Ref. [18].
Highly correlated media, such as in some cases examined later
in this paper, do not yield to direct solution of Cg(r) for any
values of r which exist in the domain of the problem, vis., for
r ∈ [0, L]. In these cases, we continue attempting to solve
for larger values of r until interpolation can be made. This
approach enable solution of Cg(r) for all problems examined
in Refs. [9, 10].

3. Karhunen-Loève Expansion

Once the covariance of the Gaussian field has been com-
puted, realizations of the field are generated using a Karhunen-
Loève (KL) representation [16], the optimal, mean-squared,
and error-minimizing expansion of a second-order random
process:

g(x, ω) =

∞∑
k=0

√
γkuk(x)ξk(ω), (16)

where γk, uk(x), and ξk(ω) are the eigenvalue, eigenfunction,
and random variable of the k-th term of the KL expansion
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in which terms are ordered such that eigenvalues γk decrease
monotonically. Eigenfunctions uk(x) here characterize vari-
ation over one-dimensional physical space (x ∈ [0, L]). In
practice, the KL expansion must be truncated at some finite
order K, such that random variables ξk(ω) characterize varia-
tion over K-dimensional stochastic space (ξk ∈ N(0, 1)∀k, k ∈
{1, . . . ,K}). Eigenvalue decay is more rapid for more highly
correlated systems such that less terms K are required to ac-
curately represent the process. The KL expansion is therefore
more efficient for more highly correlated systems. Eigenval-
ues and eigenfunctions (or eigenvectors) are obtained from
solution of the Fredholm equation:∫ L

0
Cg(x, x′)u(x′)dx′ = γu(x), (17)

where Cg(x, x′) is the two-point autocovariance of the KL pro-
cess. The random variables are independent since we map
to Gaussian random variables, KL random variables are un-
correlated, and uncorrelated Gaussian random variables are
independent.

4. Numerical Solution of Eigenvalues and Eigenvectors

Eigenvalues and eigenfunctions must be solved using the
numerical covariance function Cg(x, x′) as the kernel for the
Fredholm equation (Eq. (17)). We solve using the Nyström
method [24, 25] and choose a uniform discretization scheme
of order NNy such that covariance values solved in the Nataf
transformation align with nodes of the Nyström discretization:

NNy∑
j=1

w jCg(xi, x j)uk(x j) = γkuk(xi), k = 1, . . . ,NNy. (18)

This equation is written in matrix notation as

CWuk = γkuk, (19)

where matrix C is a symmetric positive semi-definite matrix
with elements Ci j = Cg(xi, x j), matrix W is a diagonal matrix
with values w j, and vector uk spans the physical domain for
each eigenvalue k. Eq. (19) is re-written as

Bu∗k = γku∗k, (20a)

B = W
1
2 CW

1
2 ; u∗k = W

1
2 uk, (20b)

where W− 1
2 is the diagonal matrix with values √w j. The

eigenvector is then solved as

uk = W− 1
2 u∗k. (21)

We linearly interpolate between nodes of uk when x exists
between Nyström nodes, x ∈ (x1, xNNy ), and otherwise defer
to a more expensive mapping method given in the Nyström
theory:

uk(x) =
1
γk

NNy∑
j=1

√
w ju∗k, jCg(x, x j). (22)

Assuming uniform sampling of the KL expansion throughout
the domain, the expectation of the cost of one discontinu-
ous Karhunen-Loève (DKL) evaluation is roughly equal to
CK

[
1 + 2 NNy−1

NNy

]
, where K is the number of KL terms kept

in truncation and C is the cost of sampling from an eigen-
vector. By precomputing values of uk(x = 0) and uk(x = L)
using Eq. (22) and linearly interpolating throughout the whole
domain thereafter the cost can be reduced to 2CK. A fur-
ther reduction in cost could be achieved by solving values of
g(x, ω) at each of the NNy nodal locations in x for each realiza-
tion ω; the cost of subsequent sampling of DKL would then
be roughly 2C.

5. Material Modeling Results

Figures 2 and 3 show the exponential material index co-
variance function CZ , the computed covariance of the Gaussian
process Cg, and the material process covariance observed C∗Z
by sampling 105 times for each plotted value of r from 105

realizations for each of two cases described in Section IV. In
the L=10.0 case, 4 of the 250 values of Cg(r) were not solved
directly but were interpolated, and in the L=1.0 case, 39 of the
250 values were interpolated. Figure 4 shows two realizations
generated using the Nataf transformation with the same input
parameters as Fig. 1. Figure 5 shows the input and observed
process mean and standard deviation in which observed val-
ues were computed at each location x by sampling from 106

realizations. These plots were generated using a KL trunca-
tion of K = 5 and the input parameters for Case 3a (defined
in Section IV.) with either L=1.0 or L=10.0. The observed
covariance function, mean, and standard deviation converge
towards the input values with larger values of K and more
random samples.

III. STOCHASTIC SOLUTION METHODS

While the truncated Karhunen-Loève expansion charac-
terizes the stochastic variability in terms of a finite number of
random variables, a solution method method must still be used
to resolve the effects of stochastic variation. The expectation
of moment m of transport result ϕ is solved as

E
[
ϕm]

=

∫
ξN

dξN · · ·

∫
ξ1

dξ1 ϕ
m(x, ξ)

N∏
n=1

p(ξn), (23)

where ξ is a multi-index of ξn values (ξ B {ξ1, . . . , ξN}) and
p(ξn) is the probability density for ξn.

We solve the integral in Eq. (23) in one of two ways.
The first is random sampling (RS), often called Monte Carlo
sampling, in stochastic space:

E
[
ϕm]
≈

1
R

R∑
i=1

ϕm(x, ξ(i)
1 , . . . , ξ

(i)
K ), (24)

where R is the number of samples and ξ(i)
k is the randomly

chosen node of the i-th sample. The error of the expectation
of moments converges as R−

1
2 regardless of the number of

stochastic dimensions.
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Fig. 2. Input and observed covariance functions, L=10.0
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Fig. 3. Input and observed covariance functions, L=1.0
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Fig. 4. Example DKL-generated realizations, L=10.0
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Fig. 5. Input and observed mean and deviation, L=10.0

We secondly solve Eq. (23) using a form of deterministic
sampling, stochastic collocation (SC):

E
[
ϕm]
≈

QK∑
qK

· · ·

Q1∑
q1

w(q1)
1 · · ·w(qK )

K ϕm(x, ξ(q1)
1 , . . . , ξ

(qK )
K ),

(25)
in which w(qk)

k , ξ(qk)
k , and Qk are collocation weights, nodes, and

quadrature orders for dimension k. The error of the expectation
of moments converges exponentially for sufficiently smooth
response surfaces, though the convergence rate diminishes
with a lack of regularity and with larger numbers of stochastic
dimensions. If the KL expansion is truncated to few enough
dimensions K and the response is sufficiently smooth, SC
is considerably more efficient than RS, especially with well-
chosen quadrature orders Q B {Q1, . . . ,QK}.

IV. NUMERICAL RESULTS

The transport results in this paper compare the perfor-
mance of the discontinuous Karhunen-Loève (DKL) method
to that of the benchmark method of brute force computation

from randomly sampled realizations, the atomix mix (AM)
approximation, and the Levermore-Pomraning (LP) closure
for 24 of the 27 cases that have become a classic set for trans-
port in binary stochastic media with Markovian mixing [9, 10].
Transmittance and reflectance values are first compared for
all 24 cases using relatively cheap DKL parameters to demon-
strate the applicability of the method to the problem set. More
converged and expensive parameters are then used for two
cases to demonstrate the ability to further resolve error. In-
ternal flux profiles and leakage probability density functions
(pdfs) are then compared to those given by the other methods
to further demonstrate the accuracy of the method.

The cases solved in this paper are designated in terms
of a case number, a case letter, and a slab thickness. In the
literature they are typically defined by average material chord
lengths Λi, total cross section values Σt,i, and scattering ratios
ci = Σs,i/Σt,i, though we utilize the probability of Material 0
p0 and the correlation length λc (note Eqs. (3) and (4)) instead
of the average material chord lengths to uniquely describe the
cases. The cases are defined in Table I. We solve 24 of the 27
cases, omitting the three which have the weakest correlation
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TABLE I. Benchmark Set Parameters
Case Num. Σt,0 Σt,1 p0 λc

1 10/99 100/11 0.9 0.099
2 10/99 99/10 0.9 0.99
3 2/101 200/101 0.5 2.525

Case Let. c0 c1 Slab Thickness
a 0.0 1.0 L = 0.1
b 1.0 0.0 L = 1.0
c 0.9 0.9 L = 10.0

relative to the size of the material slab and thus require many
KL terms for accurate representation.

Benchmark results are computed by effecting transport
with analog Monte Carlo using N = 105 particle histories on
each of R = 105 realizations generated by sampling succes-
sive material chord lengths using Eq. (2). Atomic mix and
Levermore-Pomraning results are generated using N = 107

particle histories. For results generated with the new discon-
tinuous KL method, transport is effected on each realization
using Woodcock Monte Carlo [26] with N = 105 particle
histories. When using stochastic collocation an anisotropic
set of quadrature orders, Q = {5, 4, 4, 3, 3}, is chosen yield-
ing R = 720 realizations whereas R = 105 realizations are
employed for random sampling. In all stochastic collocation
cases and two of the four random sampling cases K = 5 KL
terms are kept in truncation; in the remaining two random
sampling cases K = 15. In all cases a Nataf and Nyström grid
of size NNy = 250 has been chosen.

Woodcock Monte Carlo is utilized so that material bound-
ary locations need not be solved to effect transport. This is not
a difficult task for our one-dimensional problems, but not need-
ing to explicitly solve material boundary locations is expected
to be a useful attribute in multi-dimensional problems.

The values of K, NNy, N, Q, and R used to compute the
results in this paper are likely not the optimal choices, but
have been selected to show a cross section of results. For
many cases it would be preferable to choose parameters which
converge the solution more and are best chosen from the re-
sults of a convergence study [18] or the results of an adaptive
algorithm such as that presented in Ref. [17].

We estimate the error in the mean leakage values due to
Monte Carlo transport and either random sampling or stochas-
tic collocation in the benchmark solutions and DKL solutions
to range from about 0.6% for small mean values, e.g., 0.0005,
to about 0.03% for large mean values, e.g., 0.95. Similarly, we
estimate the Monte Carlo error in AM and LP mean leakage
values to range from about 0.03% to about 0.002%.

Tables II and III contain transmittance and reflectance
means (〈T 〉 and 〈R〉), standard deviations (σT and σR), and
their errors relative to the computed benchmark solutions (εrel)
for each of the 24 cases. Relative errors are computed for
quantity-of-interest ϕ as

εrel =
ϕBench. − ϕapprox.

ϕBench.
. (26)

With the relatively crude parameters chosen to make the DKL
computations, the method produces mean values that are more
accurate than AM in nearly all cases and that are more accurate

than LP in some cases while being much cheaper than the
benchmark method. We also note that the DKL method is
the only method other than the benchmark which provides
second-order information for quantities-of-interest, and that
the error in these quantities is not excessive.

We examine the effectiveness of stochastic collocation
and demonstrate the ability to reduce the error with an in-
creased number of KL terms for two cases: Case 2a, L=10.0,
in which the error in the initial results are relatively high, and
Case 3a, L=10.0, in which the error in the initial results is
already less than that given by LP. These cases are solved
a second time using random sampling (R = 105) instead of
stochastic collocation (R = 720) with the same number of KL
terms, K = 5. For the four mean values yielded and three of
the four standard deviation values the error was greater for
the large RS ensemble than when using the cheap instantia-
tion of stochastic collocation; this demonstrates how effective
anisotropic SC can be. These cases are further solved using
RS by increasing the number of KL terms to K = 15, and
for all results the yielded error is much less than that given
by the other approximate solution methods; this demonstrates
the ability to reduce the error yielded by the method through
additional computational cost. Reduction of error through
keeping more KL terms is applicable to each case such that
the error yielded can be reduced to less than that given by the
approximate methods. Error can be reduced by increasing K,
N, R or Q, and NNy, though we do not believe the error due to
the value of NNy to be significant compared to the other error
sources for these problems and parameter sets. The only truly
irreducible error in the DKL method is the bias introduced in
the KL limitation of describing only second-order statistics,
while other numerical error sources include the accuracy of
the solution method used for acquiring the Gaussian process
covariance and the limitations of machine precision.

Transport results are further examined for Cases 2a and 3a
with L=10.0 in Figures 6 through 13. Flux mean and relative
standard deviation values, computed by tallying in 100 evenly
spaced cells, and leakage pdfs are plotted.

For Case 3a, L=10.0 the DKL mean flux values are much
better than AM and LP values with K = 5, and nearly indis-
tinguishable to the eye from benchmark values when using
K = 15. Flux relative standard deviation values show the
crudeness of the SC parameters chosen, though the values are
still close to the benchmark values, solutions are improved
using RS, and solutions are further improved by keeping more
KL terms. The K = 5 versions of both cases capture the
behaviors of the leakage pdfs and the K = 15 results show
convergence towards the benchmark distributions.

As expected from the accuracy of the leakage results,
Case 2a, L=10.0 results show similar behaviors as the Case
3a results, but are less accurate. The K = 5 version of the
mean flux profile almost exactly matches the LP profile and the
K = 15 mean flux profile is more accurate, nearly matching
the benchmark results. The K = 5 RS and SC relative standard
deviation flux values show a similar level of accuracy as one
another though the RS results fluctuate less. The K = 15
results show an improvement in accuracy. Leakage pdfs again
show considerable agreement and convergence towards the
benchmark solution as more KL terms are kept.
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TABLE II. Transmittance Values and Errors
Selected Cases Solved with K=5, Q={5,5,4,4,3}, N=100,000

Case L Transmittance Mean, 〈T 〉 Relative Error, εrel σT εrel

Desig. Bench. AM LP DKL AM LP DKL Bench. DKL DKL
1 a 0.1 0.93375 0.90689 0.93465 0.91543 0.029 -0.001 0.020 0.11203 0.11898 -0.062

1.0 0.59598 0.48104 0.62734 0.65981 0.193 -0.053 -0.107 0.21517 0.21929 -0.019
b 0.1 0.90131 0.83908 0.90086 0.86407 0.069 0.000 0.041 0.21070 0.23009 -0.092

1.0 0.48524 0.23081 0.48433 0.60463 0.524 0.002 -0.246 0.36411 0.38736 -0.064
c 0.1 0.93401 0.90603 0.93477 0.91277 0.030 -0.001 0.023 0.13345 0.14027 -0.051

1.0 0.60089 0.47485 0.62739 0.68055 0.210 -0.044 -0.133 0.28402 0.28915 -0.018
2 a 0.1 0.93946 0.90689 0.93932 0.88863 0.035 0.000 0.054 0.12002 0.16664 -0.388

1.0 0.72655 0.48104 0.74069 0.68196 0.338 -0.019 0.061 0.23000 0.26736 -0.162
10.0 0.09848 0.00476 0.12834 0.14020 0.952 -0.303 -0.424 0.08921 0.09420 -0.056

b 0.1 0.91481 0.83908 0.91422 0.82104 0.083 0.001 0.102 0.22067 0.30706 -0.392
1.0 0.75941 0.23081 0.75904 0.69841 0.696 0.000 0.080 0.33317 0.38590 -0.158

10.0 0.19601 0.00001 0.17934 0.33084 1.000 0.085 -0.688 0.25552 0.27005 -0.057
c 0.1 0.94010 0.90603 0.93988 0.87903 0.036 0.000 0.065 0.14414 0.20014 -0.389

1.0 0.76843 0.47485 0.77421 0.70647 0.382 -0.008 0.081 0.30066 0.35607 -0.184
10.0 0.18715 0.00387 0.19478 0.28515 0.979 -0.041 -0.524 0.21406 0.22900 -0.070

3 a 0.1 0.92296 0.91478 0.92319 0.91905 0.009 -0.000 0.004 0.07237 0.05101 0.295
1.0 0.65994 0.54455 0.66598 0.60953 0.175 -0.009 0.076 0.26829 0.20621 0.231

10.0 0.16340 0.06681 0.24032 0.17415 0.591 -0.471 -0.066 0.17597 0.19461 -0.106
b 0.1 0.85155 0.83335 0.85181 0.84294 0.021 -0.000 0.010 0.14499 0.10232 0.294

1.0 0.48187 0.22070 0.48306 0.36466 0.542 -0.002 0.243 0.43605 0.34816 0.202
10.0 0.07639 0.00001 0.07565 0.09643 1.000 0.010 -0.262 0.22537 0.25820 -0.146

c 0.1 0.91440 0.90603 0.91468 0.91045 0.009 -0.000 0.004 0.08261 0.05819 0.296
1.0 0.60415 0.47485 0.60919 0.54671 0.214 -0.008 0.095 0.33426 0.25515 0.237

10.0 0.10412 0.00387 0.11971 0.11644 0.963 -0.150 -0.118 0.23034 0.25723 -0.117
Selected Cases Solved with K=5, R=100,000, N=100,000

2 a 10.0 0.09848 0.00476 0.12834 0.14351 0.952 -0.303 -0.457 0.08921 0.09354 -0.049
3 a 10.0 0.16340 0.06681 0.24032 0.17643 0.591 -0.471 -0.080 0.17597 0.19644 -0.116

Selected Cases Solved with K=15, R=100,000, N=100,000
2 a 10.0 0.09848 0.00476 0.12834 0.09812 0.952 -0.303 0.004 0.08921 0.09160 -0.027
3 a 10.0 0.16340 0.06681 0.24032 0.16456 0.591 -0.471 -0.007 0.17597 0.17845 -0.014

The widths of some pdf features, such as the right-most
peak in Fig. 13, are largely an artifact of the number of particle
histories used–a computation using only N = 104 particle
histories not shown in this paper yielded a much wider peak.
This peak corresponds to realizations containing only the more
optically thin material and the true peak for this problem is
a delta function with a probability equal to the likelihood of
sampling a realization of only that material.

V. CONCLUSIONS

We described use of the Nataf transformation coupled
with the Karhunen-Loève expansion to represent and recon-
struct binary random mixtures in 1D planar geometry, includ-
ing brief discussion of two methods and a detailed description
of a third method used here for solving the necessary Gaussian
process covariance in the Nataf transformation. We com-
pared the performance of the new method solved using Wood-
cock sampling with benchmark, atomic mix, and Levermore-

Pomraning transport results on a popular suite of benchmark
problems demonstrating the accuracy of the method on the
problem suite. For a cheap set of solution parameters using
anisotropic stochastic collocation, the new method performed
respectably compared to other approximate methods. The
new method was shown to be more accurate than other ap-
proximate methods when using costlier problem parameters,
demonstrating the reducibility of solution error with increased
computational cost. Problem-dependent convergence studies
could be used to choose the most appropriate solution param-
eters which would, in many cases, produce solutions more
accurate than approximate methods while being more efficient
than benchmark solutions. Convergence studies could also be
used to produce error estimates, a trait particularly useful in
problems with no known method for generating benchmark
solutions. The method is believed to be applicable to materials
which obey statistical mixing that is not Markovian, including
material mixing types for which there is no known benchmark,
and to be applicable in multi-dimensional problems. Investiga-
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TABLE III. Reflectance Values and Errors
Selected Cases Solved with K=5, Q={5,5,4,4,3}, N=100,000

Case L Reflectance Mean, 〈R〉 Relative Error, εrel σR εrel

Desig. Bench. AM LP DKL AM LP DKL Bench. DKL DKL
1 a 0.1 0.04854 0.07524 0.04761 0.06744 -0.550 0.019 -0.389 0.11697 0.12367 -0.057

1.0 0.25070 0.36009 0.21879 0.18304 -0.436 0.127 0.270 0.23574 0.23803 -0.010
b 0.1 0.00859 0.00651 0.00847 0.00809 0.242 0.013 0.057 0.00294 0.00325 -0.108

1.0 0.05416 0.01878 0.04556 0.06560 0.653 0.159 -0.211 0.03011 0.02866 0.048
c 0.1 0.04794 0.07436 0.04699 0.06397 -0.551 0.020 -0.335 0.09303 0.10073 -0.083

1.0 0.25411 0.35255 0.21683 0.20553 -0.387 0.147 0.191 0.15495 0.16371 -0.056
2 a 0.1 0.04284 0.07524 0.04298 0.09608 -0.756 -0.003 -1.243 0.12578 0.17457 -0.388

1.0 0.12105 0.36009 0.10694 0.17014 -1.975 0.117 -0.405 0.27074 0.30723 -0.135
10.0 0.23651 0.49523 0.18048 0.14728 -1.094 0.237 0.377 0.28587 0.25918 0.093

b 0.1 0.00882 0.00651 0.00879 0.00758 0.262 0.004 0.141 0.00295 0.00407 -0.378
1.0 0.07329 0.01878 0.07056 0.06960 0.744 0.037 0.050 0.02734 0.02948 -0.078
10.0 0.28779 0.01962 0.21827 0.35822 0.932 0.242 -0.245 0.16317 0.14308 0.123

c 0.1 0.04227 0.07436 0.04234 0.08382 -0.759 -0.002 -0.983 0.09800 0.13620 -0.390
1.0 0.14246 0.35255 0.12422 0.16986 -1.475 0.128 -0.192 0.14494 0.16915 -0.167
10.0 0.43290 0.47776 0.28961 0.40359 -0.104 0.331 0.068 0.05730 0.06081 -0.061

3 a 0.1 0.07507 0.08325 0.07483 0.07896 -0.109 0.003 -0.052 0.07432 0.05240 0.295
1.0 0.32121 0.43589 0.31515 0.37137 -0.357 0.019 -0.156 0.28578 0.21864 0.235
10.0 0.69161 0.78600 0.60778 0.67835 -0.136 0.121 0.019 0.26252 0.28233 -0.075

b 0.1 0.00098 0.00070 0.00099 0.00086 0.289 -0.008 0.118 0.00098 0.00071 0.275
1.0 0.00872 0.00195 0.00837 0.00707 0.776 0.040 0.189 0.00903 0.00767 0.150
10.0 0.03633 0.00203 0.02400 0.04284 0.944 0.339 -0.179 0.04946 0.05361 -0.084

c 0.1 0.06622 0.07436 0.06602 0.07013 -0.123 0.003 -0.059 0.06380 0.04502 0.294
1.0 0.24320 0.35255 0.23730 0.29217 -0.450 0.024 -0.201 0.19844 0.15663 0.211
10.0 0.44514 0.47776 0.32618 0.43751 -0.073 0.267 0.017 0.09300 0.10584 -0.138

Selected Cases Solved with K=5, R=100,000, N=100,000
2 a 10.0 0.23651 0.49523 0.18048 0.14222 -1.094 0.237 0.399 0.28587 0.25628 0.103
3 a 10.0 0.69161 0.78600 0.60778 0.67683 -0.136 0.121 0.021 0.26252 0.28453 -0.084

Selected Cases Solved with K=15, R=100,000, N=100,000
2 a 10.0 0.23651 0.49523 0.18048 0.23445 -1.094 0.237 0.009 0.28587 0.28479 0.004
3 a 10.0 0.69161 0.78600 0.60778 0.68896 -0.136 0.121 0.004 0.26252 0.26417 -0.006

tion and demonstration of these properties are topics of future
work.
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