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Abstract - We establish an asymptotic fractional diffusion equation limit of non-classical transport in the
case of heavy-tail path length distributions. Our analysis uses the Fourier transform. First we introduce the
technique by re-deriving the classic diffusion limit, then we apply it to non-classical transport. We introduce
a general scaling and identify the scaling that is necessary to produce a meaningful diffusion limit for path
length distributions with heavy tails. We conclude with remarks on the diffusion limit of the periodic Lorentz
gas equation, which describes transport in a crystal-like medium, and for which the path-length distribution
can be computed analytically.

I. INTRODUCTION

Anomalous diffusion, described by a fractional diffusion
equation, has gained a lot of interest recently. Among many
applications [1], there have been works on radiation transport
through clouds (cf. the review [2]). Another interesting ap-
plication is light transport through Lévy glasses, for which
experiments and simulations have been performed [3]. In
many other areas, anomalous diffusion has been observed (e.g.
plasma physics [4]).

The motivation for this work is to connect the non-
classical transport transport equation proposed by Larsen [5]
to anomalous transport. Here we summarize and present in a
different language the theoretical mathematical results from
[6].

The non-classical transport equation was originally de-
veloped to describe measurements of photon path-length in
clouds, which could not be explained by classical radiative
transfer, cf. [7] or sections 5.1 and 8.3 in the review [2]. Non-
classical transport theory has since been extended [8] and has
found applications for neutron transport in pebble bed reactors
[9] and even computer graphics [10]. The equation is able to
model particle transport with given path-length distributions
p(s), s being the path-length, and p their probability density
function.

In his original paper [5], Larsen has considered the dif-
fusion limit of the non-classical transport equation. However,
the classical analysis cannot capture the case when the second
moment, i.e. the variance, of the path-length distribution does
not exist. The purpose of this paper is to extend the analy-
sis to cover this case. It will turn out that in the case of an
infinite variance of the path-length distribution, the limiting
equation is a fractional diffusion equation. This paper there-
fore provides a connection between non-classical transport
and anomalous diffusion.

We use a Fourier technique [11] to compute a limit frac-
tional diffusion equation. More specifically, we perform the
computation in Fourier space, i.e. we compute the symbol of
the fractional diffusion operator.

II. CLASSICAL DIFFUSION LIMIT

To gain intuition for the Fourier analysis technique from
from the next section, let us first look at the standard diffu-
sion limit for the scaled equation in an infinite (no boundary
conditions), homogeneous medium

ε2∂tψ + εΩ · ∇xψ = σ(φ − ψ), φ =

∫
S N−1

ψdΩ.

We denote by ψ0 = ψ(t = 0) the initial condition. The un-
known ψ has the usual interpretation as the probability density
to find a particle at position x ∈ RN , moving into direction
Ω ∈ S N−1 (unit vector). For later purposes, we will keep the
space dimension N general. For simplicity, we assume that∫

S N−1
· dΩ = 1,

i.e. we hide the normalization factor in the integration measure.
To derive the diffusion limit, we apply the Laplace-Fourier

transform

ψ̂(ω, k,Ω) =

∫ ∞

0

∫
RN

e−ωte−ik·xψ(t, x,Ω)dtdx.

to the transport equation and obtain

ε2(ωψ̂ − ψ̂0) + εik ·Ωψ̂ = σ(φ̂ − ψ̂).

We rearrange

ψ̂ =
ε2

σ + ε2ω + εik ·Ω
ψ̂0 +

1
σ + ε2ω + εik ·Ω

σφ̂

and integrate over Ω

φ̂ =

∫
S N−1

ε2ψ̂0

σ + ε2ω + εik ·Ω
dΩ

+ σφ̂

∫
S N−1

1
σ + ε2ω + εik ·Ω

dΩ.



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

We insert 1 =
∫

dΩ on the left hand side, gather all the terms
involving φ̂, divide by ε2 and get

0 =

∫
S N−1

ψ̂0

σ + ε2ω + εik ·Ω
dΩ︸                             ︷︷                             ︸

aε

+ σφ̂
1
ε2

∫
S N−1

−ε2ω − iεk ·Ω
σ + ε2ω + εik ·Ω

dΩ︸                                  ︷︷                                  ︸
bε

.

(1)

In the limit ε→ 0, aε obviously converges to 1
σ

∫
ψ̂0dΩ. The

second term is the interesting one. We make the denominator
real-valued

bε = −
1
ε2

∫
S N−1

ε2ω + iεk ·Ω
σ + ε2ω + εik ·Ω

dΩ

= −
1
ε2

∫
S N−1

ε2ω(σ − ε2ω) + ε2(k ·Ω)2 − iεk ·Ω
(σ + ε2ω)2 + ε2(k ·Ω)2 dΩ.

The imaginary part in the numerator vanishes because it is odd
in Ω. We then split the term into two parts

bε = −

∫
S N−1

ω(σ − ε2ω)
(σ + ε2ω)2 + ε2(k ·Ω)2 dΩ

−

∫
S N−1

(k ·Ω)2

(σ + ε2ω)2 + ε2(k ·Ω)2 dΩ.

Now we can pass to the limit ε→ 0. The term becomes

lim
ε→0

bε = −
ω

σ
−

1
N
|k|2

σ2 .

Altogether, (1) becomes in the limit

0 =
1
σ

∫
ψ̂0dΩ −

ω

σ
φ̂ −

1
N
|k|2

σ2 φ̂.

We reverse the Laplace-Fourier transform and arrive at

∂tφ =
1

Nσ
∆φ, φ(t = 0) =

∫
S N−1

ψdΩ.

This is the diffusion limit. Next we turn to the non-classical
case.

III. NON-CLASSICAL DIFFUSION LIMIT

We consider the non-classical transport equation in an
infinite (no boundary conditions), homogeneous medium as in
[5].

1
ε
∂sψ(x,Ω, s) + Ω · ∇xψ(x,Ω, s) +

Σt(s)
ε

ψ(x,Ω, s)

= δ(s)
∫

S N−1

∫ ∞

0
(1 − θ(ε)(1 − c))

Σt(s′)
ε

ψ(x,Ω′, s′)ds′dΩ′

+δ(s)
θ(ε)
ε

Q
4π
. (2)

The unknown ψ is the probability density to find a particle
at position x ∈ RN , moving into direction Ω ∈ S N−1, which

additionally depends on the non-classical variable distance-
to-previous-collision s. The scattering cross section Σt also
depends on this distance. The equation is completed by the
scattering ratio c (when a particle interacts with the back-
ground, the probability that it is absorbed is 1 − c, the prob-
ability that it scatters is c), and the particle source Q. The
Dirac δ on the right hand side models that particles which
scatter have their distance-to-previous-collision reset to zero.
To keep notation simple, we assume isotropic scattering, but
a generalization to anisotropic scattering is straight-forward.
We write the equation with a scaling parameter ε which is a
space scale (mean free path) and a time scale (collision time).

First, as in [5], we have rescaled Σt to Σt/ε and s to εs,
which means a collision-dominated regime. Contrary to the
scaling in [5], we have introduced a general function θ(ε) to
scale some of the terms (he original scaling assumed θ(ε) =
ε2. A comment on this particular choice is in order: If we
rearrange the equation as

1
ε
∂sψ(x,Ω, s) + Ω · ∇xψ(x,Ω, s) +

Σt(s)
ε

ψ(x,Ω, s)

−δ(s)
∫ ∫ ∞

0

Σt(s′)
ε

ψ(x,Ω′, s′)ds′dΩ′

= δ(s)θ(ε)
(

1
ε

Q
4π
− (1 − c)

∫ ∫ ∞

0

Σt(s′)
ε

ψ(x,Ω′, s′)ds′dΩ′
)
,

then it becomes clear that the factor θ(ε) controls the relative
weakness of emission/absorption compared to scattering. It
will turn out later that in most cases this factor can be chosen
as θ(ε) = εα, where 1 < α ≤ 2. While a fractional scaling
might seem unusual at first sight, our analysis will show that
there is a unique scaling which yields a non-trivial diffusion
limit. In fact, one might say that the classical scaling θ(ε) =
ε2 was specifically chosen that way. In lack of an obvious
physical reason for the relative strength of absorption/emission
to scattering, a scaling like θ(ε) = εα might not be considered
strange.

IV. ANALYSIS

The first steps still follow [5]. We transform (2) by

ψ(x,Ω, s) = Ψ(x,Ω, s)
e−

∫ s
0 Σt(s′)ds′

〈s〉
,

where 〈·〉 =
∫ ∞

0 ·p(s)ds denotes a weighted s-integration. Note
that this transformation assumes the existence of the first mo-
ment of the path-length distribution. This somewhat limits
the analysis, but the physically relevant cases satisfy this as-
sumption. We thus obtain the equivalent of equation (6.6) in
[5]

∂sΨ(x,Ω, s) + εΩ · ∇xΨ(x,Ω, s) = 0

with initial condition

Ψ(x,Ω, 0)

= (1 − θ(ε)(1 − c))
∫

S N−1

∫ ∞

0
p(s′)Ψ(x,Ω′, s′)ds′dΩ′

+ θ(ε)〈s〉Q(x).
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We use the technique developed in [12], and modify certain
steps for the situation at hand. First we Fourier-transform in
space only

Ψ̂(k,Ω, s) =

∫
RN

e−ik·xΨ(x,Ω, s)dx,

and obtain

∂sΨ̂(k,Ω, s) + εik ·ΩΨ̂(k,Ω, s) = 0

with initial condition

Ψ̂(k,Ω, 0)

= (1 − θ(ε)(1 − c))
∫

S N−1

∫ ∞

0
p(s′)Ψ̂(k,Ω′, s′)ds′dΩ′

+ θ(ε)〈s〉Q̂(k).

The first equation can be inverted and we get the implicit
solution formula

Ψ̂(k,Ω, s) = e−iεk·Ωs×[
(1 − θ(ε)(1 − c))

∫
S N−1

∫ ∞

0
p(s′)Ψ̂(k,Ω′, s′)ds′dΩ′

+θ(ε)〈s〉Q̂(k)
]
.

We define the scalar flux

ρ̂(k) =

∫
S N−1

∫ ∞

0
Ψ̂(k, s)dsdΩ,

multiply by p(s), integrate over s and Ω, and get

ρ̂(k) =

∫
S N−1

∫ ∞

0
p(s)e−iεk·Ωs(1 − θ(ε)(1 − c))̂ρ(k)dsdΩ

+

∫
S N−1

∫ ∞

0
p(s)e−iεk·Ωsθ(ε)〈s〉Q̂(k)dsdΩ.

We insert a clever 1 =
∫ ∫ ∞

0 p(s)dsdΩ, rearrange terms, divide
by θ(ε) and arrive at

0 =ρ̂(k)
∫

S N−1

∫ ∞

0

e−iεk·Ωs − 1
θ(ε)

p(s)dsdΩ︸                                    ︷︷                                    ︸
cε

+
(
−(1 − c)̂ρ(k) + 〈s〉Q̂

) ∫
S N−1

∫ ∞

0
e−iεk·Ωs p(s)dsdΩ︸                             ︷︷                             ︸

dε

.

(3)
If ε→ 0, then the second term has an obvious limit (dε → 1).
The first term needs more work. First we make it real-valued

cε =

∫
S N−1

∫ ∞

0

e−iεk·Ωs − 1
θ(ε)

p(s)dsdΩ

=

∫
S N−1

∫ ∞

0

cos[εk ·Ωs] − i sin[εk ·Ωs] − 1
θ(ε)

p(s)dsdΩ

=

∫
S N−1

∫ ∞

0

cos[εk ·Ωs] − 1
θ(ε)

p(s)dsdΩ

= −2
∫

S N−1

∫ ∞

0

sin2[εk ·Ωs/2]
θ(ε)

p(s)dsdΩ

(4)
and the imaginary part vanishes because it is odd in Ω. It is
not obvious how the integrand behaves when ε→ 0, because
the term is formally 0

0 , so it requires more detailed analysis.

V. FRACTIONAL DIFFUSION LIMIT

In this section we discuss the singular integral in a way
that aims to provide the key understanding as to why a frac-
tional derivative appears for heavy-tail path-length distribu-
tions and not for fast-decaying path-length distributions.

We make a growth assumption on p, which determines
the tail:

p(s) =
p0

sα+1 for |s| ≥ 1.

For the first moment and the second moment to be finite, we
need α > 2. For the first moment to be finite and the second
moment to be infinite, we need 1 < α ≤ 2. In the following,
the borderline case α = 2 will be treated separately. A suitable
growth assumption on p for |s| ≤ 1 will be made later, but is
essentially irrelevant.

The s-integral is split into
∫ 1

0 ·ds +
∫ ∞

1 ·ds. We interpret
the integral as an RN-integral in spherical coordinates. Let
v = sΩ (which implies dv = sN−1dsdΩ). Then

−2
∫

S N−1

∫ ∞

1

sin2[εk ·Ωs/2]
θ(ε)

p0

sα+1 dsdΩ

= −2
∫
|v|≥1

sin2[εk · v/2]
θ(ε)

p0

|v|α+N dv.

Now we make the substitution

w = ε|k|v, dw = εN |k|Ndv

and get

−2
∫
|w|≥ε|k|

sin2(w1/2)
|w|α+N dw

εα

θ(ε)
p0|k|α,

where w1 = w · k/|k| is a scalar.
From here on, we discuss the convergence (or divergence)

of this integral as ε → 0. In addition, these arguments give
us the necessary scalings. First we observe that the integrand
behaves like |w|−α−N for large |w|. Thus integration of the tail
makes no problem if α > 0. The integral’s behavior is solely
determined by the singularity at w = 0.

1. The case α > 2

If α > 2, then the integrand behaves like

sin2(w1/2)
|w|α+N ∼

1
|w|α+N−2 for |w| small.

The integral therefore depends on ε like∫
|w|≥ε|k|

sin2(w1/2)
|w|α+N dw ∼

∫
|w|≥ε|k|

1
|w|α+N−2 |w|

N−1d|w|

∼

∫
|w|≥ε|k|

1
|w|α−1 d|w| ∼ ε2−α|k|2−α.

This integral is singular for ε → 0. However, together with
the other ε-scale factors, we can balance this singularity. We
get

ε2−α εα

θ(ε)
=

ε2

θ(ε)
.
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Thus, in order to control the singularity, it is sufficient to
choose

θ(ε) = ε2,

or more precisely so that ε2

θ(ε) well-behaved as ε → 0. The
power of k that appears is

|k|2−α|k|α = |k|2,

which is the symbol of the Laplacian.
Combining the results, (3) becomes in the limit

0 = −
1
2
〈s2〉

N
|k|2ρ̂(k) − (1 − c)̂ρ(k) + 〈s〉Q̂(k).

After inverse Fourier transformation, this reads

−
1
2
〈s2〉

N〈s〉
∆xρ +

1 − c
〈s〉

ρ = Q,

which is exactly the diffusion limit in the case of isotropic
scattering (compare Eq. (6.12) in [5]). Let us remark that the
diffusion coefficient is

D =
1

2〈s〉

∫
RN

v2
1

|v|N−1 p(|v|)dv,

where we have used the substitution v = sΩ, and the fact that
k can be aligned arbitrarily so that instead of v · k we can write
the first component v1 of v.

2. The case 1 < α < 2

If α < 2, then by the growth arguments above, the integral∫
|w|≥ε|k|

sin2(w1/2)
|w|α+N dw

actually has a finite limit for ε→ 0 (there is no singularity in
the primitive at w = 0). Thus we are left with a scale factor of

εα

θ(ε)
.

To obtain a non-trivial limit for ε → 0, we therefore choose
θ(ε) so that the scale factor is well-behaved as ε → 0. For
example, we can take

θ(ε) = εα.

We define

D =
p0

〈s〉

∫
R3

2 sin2(w1/2)
|w|α+N dw

(compare this to the classical diffusion coefficient) and obtain
in the limit

0 = −D|k|αρ̂ −
1 − c
〈s〉

ρ̂ + Q̂.

Now −|k|α is the symbol of the fractional Laplacian. We
reverse the Fourier transform and obtain the strong form

−D(∆x)α/2ρ +
1 − c
〈s〉

ρ = Q,

i.e. a fractional/anomalous diffusion equation.

3. The case α = 2

In the borderline case α = 2, the integral∫
|w|≥ε|k|

sin2(w1/2)
|w|α+N dw

has a logarithmic singularity. It behaves like∫
|w|≥ε|k|

sin2(w1/2)
|w|N+1 dw ∼

∫
|w|≥ε|k|

1
|w|

d|w| ∼ − log ε.

Again we demand

−
εα

θ(ε)
log ε = −

ε2

θ(ε)
log ε = 1

to have a non-trivial limit for ε→ 0. This means that θ(ε) has
to go to zero slightly slower than ε2

θ(ε) = −ε2 log ε.

With this scaling, we obtain a classical diffusion equation,
i.e. a Laplacian operator, but with a non-standard diffusion
coefficient. More precisely, we set

D =
p0

6〈s〉

and obtain the limit equation

−D∆xρ +
1 − c
〈s〉

ρ = Q.

VI. THE PERIODIC LORENTZ GAS

The periodic Lorentz gas, as an example of transport in a
correlated background medium, has been studied extensively
in the recent mathematical literature (cf. [13, 14, 15] and refer-
ences therein). Contrary to transport in a random background
medium, the scattering obstacles are located on a regular grid
(cf. Figure 1).

Fig. 1. Transport in a random background medium (left) versus
transport in the crystal-like medium of the periodic Lorentz
gas (right).

This medium is homogenized (coarse graining or
Boltzmann-Grad limit) by simultaneously shrinking the ob-
stacles and increasing their number such that the collision
frequency remains constant, cf. Figure 2.
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Fig. 2. Boltzmann-Grad limit (coarse graining) of the periodic
Lorentz gas.

The path-length distribution of the periodic Lorentz gas
in the Boltzmann-Grad limit has been computed e.g. in [16]
and is given by

p(s) =
Υ(s)∫ ∞

0 Υ(τ)dτ
,

which is a probability density by construction. The function Υ
is given by Υ(s) = 24

π2 for s ≤ 1
2 and

24
π2 (

1
2s

+ 2(1 −
1
2s

)2 ln(1 −
1
2s

) −
1
2

(1 −
1
s

)2 ln(1 −
1
s

))

for s > 1
2 . It is shown in Figure 3. Note that the orientation of

the lattice does not play a role in the limit.

Fig. 3. Classical exponential path-length distribution (solid)
versus slowly-decaying non-classical path-length distribution
of the periodic Lorentz gas (dashed).

For s→ ∞ it is straight-forward to see that this expression
behaves like

Υ(s) ∼
2
π2

1
s3 + O(

1
s4 ).

This means that this function is exactly on the borderline
between classical and anomalous (α = 2). We thus expect a
classical diffusion equation with a non-classical coefficient in
the asymptotic limit.

VII. DISCUSSION

Altogether we have shown that for a path-length distribu-
tion with sufficiently slow-decaying tail, in the limit ε → 0,

the non-classical transport equation becomes a fractional dif-
fusion equation for the scalar flux. As a side result, we could
compute the known classical diffusion limit for sufficiently
decaying path-length distributions by a simple Fourier tech-
nique. We have considered isotropic scattering in an infinite
(no boundaries), homogeneous medium. In [6] we treat the
case of anisotropic scattering.

There are several open topics related to non-classical
transport. Among them are the formulation of correct bound-
ary and interface conditions for heterogeneous media. In a
companion paper [17], we make an attempt at this. In hetero-
geneous media, it is also open how a fractional diffusion limit
might look like. To study these questions, it will probably be
necessary to generalize the classical kinetic theory technique
to derive the diffusion limit, namely Hilbert expansion, to the
fractional case. A first step has been made in [18], although
the decomposition that was used appears to be heavily inspired
by the Fourier analysis.

It would also be interesting to understand if a fractional
scaling has a deeper physical meaning. Finally, similar tech-
niques could be applied to other fields, where anomalous
transport plays a role, especially plasma physics.
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