
M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

A Deterministic Transport Method for Calculating the Moments of the Fission Number Distribution

Erin J. Davis-Fichtl,∗ Anil K. Prinja†

∗Computational Physics and Methods Group, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM
†Nuclear Engineering Department, University of New Mexico, Albuquerque, NM

efichtl@lanl.gov, prinja@unm.edu

Abstract - Fissile systems behave stochastically when the neutron source is weak (e.g. spontaneous fission)
because there are not enough neutrons in the system to ensure predictable average behavior. In this case,
neutron behavior cannot be fully characterized by an average therefore it is desirable to know the full
probability distribution function (PDF) for quantities such as instantaneous neutron number and total fission
count. Point (’0-D’) and full phase space models that describe the probability distributions of the neutron
number have been explored previously, but here we derive a full phase space equation for the moments of
the fission number PDF, which is more closely related to radiation dose, and implement these equations in
the PARTISN (deterministic transport) code. Numerical results indicate that the neutron and fission number
distributions are well-approximated by analytic expressions for the PDF derived using the point model when
PARTISN is used to compute the necessary parameters for bare fissile metal spheres.

I. INTRODUCTION

For many fissile systems, the behavior of the neutron
distribution is essentially deterministic, i.e., it is well charac-
terized by its mean, and is therefore predictable. The fission
process itself is fundamentally stochastic, however, and de-
terministic behavior is a fortuitous consequence of individual
fission chains overlapping to the extent that they become indis-
tinguishable. In the deterministic limit, it is the mean neutron
behavior that drives the evolution of the neutron population.
When the source is weak or the neutron population is very
small, however, this overlapping cannot occur and stochastic
effects become important. It is therefore necessary to treat the
inherent stochasticity of the fission process when modeling
such systems, which include criticality accident scenarios, pas-
sive detection of spontaneous fission sources, reactor startup,
criticality excursions in spent fuel etc.

The stochastic neutronics equations that describe the be-
havior of such systems were first formulated by Bell [1] and
Pal [2]. Their equation for the probability generating func-
tion of the neutron population distribution is a starting point
from which to derive equations for the probability of extinc-
tion (Pextinction) and its converse, the probability of survival
(Psurvival), the probability of initiation (Pinitiation), which is the
probability that a neutron chain will persist for infinite time,
as well as the moments of the neutron population. Another
quantity of interest that cannot be directly quantified using this
system of equations is the probability of dose, which is related
to the number of fissions. Here, we derive a second generating
function equation that can be used to generate the moments of
the fission number.

Once the moments are known, an additional step is nec-
essary to reconstruct the PDF so that we can, for instance,
calculate the probability of exceeding a given dose. In Bell’s
early work, he was also able to analytically derive a PDF for
the neutron number by using a 0-D (‘point’) model and mak-
ing a number of simplifying assumptions [3]. In an extension
to this work, the authors looked at the joint neutron and fis-
sion number distributions for the point model and were able

to derive a second analytic PDF for the fission number [4].
Although these PDFs were derived using a low order model,
the shape is essentially correct. Here, we explore the use of
the full phase-space moments to compute the parameters for
the analytic PDF as a more direct way to recover the PDF than
attempting to preserve the moments as in [5].

MCATK, the Monte Carlo Application Toolkit, was re-
cently modified to tally final neutron and total fission numbers
that result from individual source emission events over the
length of the simulation as well as to source spontaneous fis-
sion neutrons or events [6]. The SNneutral particle transport
code PARTISN has the capability to compute the probabil-
ity of initiation/survival (POI/POS) [7] and moments of the
neutron number [5] and was recently modified to compute
moments of the fission number as well. Here, we discuss
the aforementioned 0-D transport analysis that allows us to
approximate the PDF using information taken from full phase
space transport solutions, the derivation and implementation
of the stochastic transport equations for the moments of the
cumulative fission number in PARTISN [8] and compare of
the resulting PDFs with those generated with analog Monte
Carlo using MCATK [9].

II. TRANSPORT MODELS

1. 0-D or ‘Point’ Model

The parameters utilized in a 0-D transport model or ‘point-
model’ are the time-absorption eigenvalue

α =
ν̄Ḟα − L̇α

Nα
, (1a)

the related quantity kα (not to be confused with ke f f )

kα =
ν̄Ḟα

L̇α
(1b)

and the neutron lifetime

τα =
Nα

L̇α
=

kα − 1
α

(1c)
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where ν̄ is the mean number of neutrons emitted in fission, Ḟα

and L̇α are the fission and loss (i.e., leakage and absorption)
rates, respectively, and Nα is the total number of neutrons in
the system. The lifetime as defined in (1c) is the mean time
between loss events, α is indicative of the rate at which the
neutron population grows and kα is the ratio of neutrons in
successive generations. Note that all of these parameters have
been defined in terms of the α-eigenmode, as denoted by the
subscript α.

The relation ∂N
∂t = αN + Ṡ , where Ṡ is the source rate and

N is the neutron number density, forms the basis for the point
model, but its range of validity is limited. The α-eigenvalue
and corresponding eigenmode are time-asymptotic solutions to
a source-less problem; they describe how the neutrons in the
system would behave if they were allowed to equilibrate in the
absence of a neutron source. If the neutron population has not
equilibrated to the α-eigenmode or if the source contributes
appreciably to ∂N

∂t in relation to αN and is not distributed in
the same way as the α-eigenmode, then the equation is not
exact and may actually give significantly inaccurate estimates
of the time behavior of the system.

Despite its limitations, however, the point-model allows
for analytic solutions where they would not otherwise exist.
For instance, reducing the stochastic transport equations to
0-D by integrating over space, angle and energy, and assuming,
among other things, that the system is static in time yields an
analytic expression for the probability density function (PDF)
of the neutron number, n, which is asymptotically correct for
large neutron numbers and the quadratic approximation [3]:

Pn(n) =

(n
n

)η−1 ηη

nΓ(η)
e−η

n
n (2a)

η =
2Ṡ
χ′2

=
2Ṡ τν
kαχ2

=
Ṡ · POI1

α
(2b)

where n is the mean of n, ν̄ is the mean number of neutrons
emitted in fission, χ2 = ν(ν − 1) is twice the mean number
of doublets emitted in fission and POI1 is the static single
neutron probability of initiation, given in this model as POI1 =
2ατν
kαχ2

. This PDF is a gamma distribution with shape and rate
parameters η and is therefore referred to in this document
as the ‘gamma’ PDF (not to be confused with the gamma
function). The higher-order moments of this distribution also
have analytic representations:

σn =
n
√
η

, S n =
2
√
η

, κn =
6
η
. (3)

whereσn is the standard deviation, S n is the skewness and κn is
the excess kurtosis. Note that if the moments of the distribution
are known and it is assumed that the gamma PDF has the
correct shape, then the moments can be used to calculate η.
Furthermore, the probability of exceeding a certain number of
neutrons in the system is simply unity minus the CDF of the
distribution:

P(n′ > n) =
1

Γ(η)
Γ

(
η, η

n′

n

)
(4)

where Γ
(
η, η n

n

)
is the upper incomplete gamma function.

It was also shown in [4] that for the point-model at ‘late’
times where αt � 1, the neutron and fission numbers are
perfectly correlated (i.e., there is a linear relationship between
the total fission ( f ) and instantaneous neutron numbers) such
that f = an+b, where a = σ f /σn and b = f −an are dependent
on the first and second moments of each distribution:

P f ( f ) ≈
σn

σ f

σn

σ f

( f − f )
n

+ 1
η−1

ηη

nΓ(η)
e
−η σn

σ f

(
( f− f )

n +1
)

=
1
a

(
f − b
an

)η−1
ηη

nΓ(η)
e−η

( f−b)
an (5)

where f is the mean of f and σn and σ f are the standard
deviations of n and f , respectively. This distribution preserves
f and V f exactly, but the skewness and excess kurtosis are the
same as those for n, i.e., S f = S n = 2

√
η

and κ f = κn = 6
η
. The

probability of exceeding a certain number of fissions in the
system is, again, a function of the upper incomplete gamma
function:

P( f ′ > f ) =
1

Γ(η)
Γ

(
η, η

f ′ − b
an

)
. (6)

2. Full Phase-Space Fission Moment Equations

The equations for the moments of the fission number
are derived using the same procedure as that for the neutron
number [1]. We are interested in P f (V, t f |r, 3, t), the probability
that a neutron introduced at (r, 3, t) (neutron location, velocity
and time) will lead to f fissions in the volume V in the time
interval [t, t f ] where the probability of event x occurring per
unit time on some small time interval ∆t is related to Σx, the
macroscopic cross section, by 3Σx(r, 3)∆t. In the following
equations, Σt, Σc, Σs and Σ f are the total, capture, scattering
and fission macroscopic cross sections and pν is the probability
that ν neutrons are emitted in a fission event. All possible
events that may occur in [t, t + ∆t] and lead to the desired
outcome are then considered.

1. No interaction: Neutron was introduced at (r + 3∆t, 3, t +
dt)→ Leads to f fissions on [t + ∆t, t f ]

(1 − 3Σt(r + 3)∆t) P f (V, t f |r + 3∆t, 3, t + ∆t) (7a)

2. Capture: No fissions occur

3Σc(r, 3)∆tδ f ,0 (7b)

3. Scatter into 3′: Scattered neutron emerges at
(r+3∆t,3′,t+∆t) and leads to f fissions on [t + ∆t, t f ]

∆t
∫

d3′3Σs(r, 3→ 3′) · P f (V, t f |r + 3∆t, 3′, t + ∆t) (7c)

4. Fission producing zero neutrons: No further fissions oc-
cur

p0 · 3Σ f (r, 3)∆t · δ f ,1 (7d)
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5. Fission producing one neutron: Neutron emerges at (r +
3∆t, 3′1, t + ∆t) and leads to ( f − 1) fissions on [t + ∆t, t f ]

p1 · 3Σ f (r, 3)∆t·∫
d3′1χ(3→ 3′1) · P f−1(V, t f |r + 3∆t, 3′1, t + ∆t) (7e)

where χ(3→ 3′1) is the probability that a fission induced
by a neutron with velocity 3 releases a neutron with ve-
locity 3′1

6. Fission producing two neutrons: Neutrons emerge at
(r + 3∆t, 3′1, t + ∆t) and (r + 3∆t, 3′2, t + ∆t) and, together,
lead to ( f − 1) fissions on [t + ∆t, t f ]

p2 · 3Σ f (r, 3)∆t·∑
f1

∑
f2

f1+ f2=( f−1)

∫
d3′1

∫
d3′2χ(3→ 3′1)χ(3→ 3′2)

· P f1 (V, t f |r + 3∆t, 3′1, t + ∆t)
· P f2 (V, t f |r + 3∆t, 3′2, t + ∆t) (7f)

where it is assumed that there is no correlation between
the velocities of the released neutrons

7. Fission producing ν neutrons up to νmax: Neutrons
emerge at (r + 3∆t, 3′1, t + ∆t), (r + 3∆t, 3′2, t + ∆t)...(r +
3∆t, 3′ν, t + ∆t) and, together, lead to ( f − 1) fissions on
[t + ∆t, t f ]

pν · 3Σ f (r, 3)∆t·∑
f1

∑
f2

. . .
∑

fν
f1+ f2+...+ fν=( f−1)

ν∏
i=1

∫
d3′iχ(3→ 3′i)·P fi (V, t f |r+3∆t, 3′i , t+∆t)

(7g)

Accumulating terms and taking the limit as ∆t → 0 yields
and equation for P f (V, t f |r, 3, t):

−
∂P f

∂t
− 3 · ∇P f + 3ΣtP f = 3Σcδ f ,0

+ 3Σs

∫
d3′ f (3→ 3′)P f (V, t f |r, 3′, t) + 3Σ f p0δ f ,1

+ 3Σ f

νmax∑
ν=1

pν


∑

f1

∑
f2

. . .
∑

fν
f1+ f2+...+ fν=( f−1)

ν∏
i=1

∫
d3′iχ(3→ 3′i)

∑
f
f

· P fi (V, t f |r + 3∆t, 3′i , t + ∆t)

 . (8a)

The final and boundary conditions reflect the observation that
neutrons introduced at the final time or exiting the problem
domain cannot lead to fission:

P f (V, t f |r, 3, t f ) = δ f ,0 (8b)
P f (V, t f |rB, 3, t) = δ f ,0, Ω̂ · nB > 0 (8c)

An equation for the modified probability generating function,
G(V, t f |r, 3, t; z) = 1−

∑∞
f =0 P f (V, t f |r, 3, t)z f , can be generated

by multiplying Eq. (8) by z f and summing over all f :

−
1
3

∂G

∂t
− Ω̂ · ∇G + Σt(r, 3)G =∫

d3′Σs(r, 3→ 3′)G(V, t f |r, 3′, t)

+ zΣ f (r, 3)
νmax∑
ν=0

pν

[∫
d3′χ(3→ 3′)G(V, t f |r, 3′, t)

]ν
(9a)

G(V, t f |r, 3, t f ; z) = 0 (9b)
G(V, t f |rB, 3, t; z) = 0, Ω̂ · nB > 0 (9c)

Taking derivatives of this equation with respect to the gen-
erating function parameter z and setting z = 1 yields equations
for the moments of the distribution. The equation for each
moment is identical in form to the other moments of the fission
number as well as the moments of the neutron number: They
are standard linear adjoint transport equations with a source
term, S k, that depends on only the lower-order moments, there-
fore they are linear and coupled to the other moment equations
unidirectionally and can therefore be solved sequentially.

(
−

1
v
∂

∂t
− Ω̂ · ∇ + Σt(r, 3, t)

)
f k(r, 3, t) =∫

d3′ Σs(r, 3→ 3′, t) f k(r, 3′, t)

+ ν̄Σ f (r, 3, t)
∫

d3′ χ(3→ 3′) f k(r, 3′, t)

+ S k

(
r, 3, t; f · · · f k−1

)
(10a)

f k(r, 3, t f ) = 0 (10b)

f k(rB, 3, t) = 0, Ω̂ · nB ≥ 0 (10c)

where f k is the kth moment of the fission number PDF for a
single neutron emitted at (r, 3, t); t f and nB are the final time
and unit normal to the system boundary. The sources, S k, are
given in Table I.

To get the moments of the fission distribution for a source,
a second generating function equation is necessary:

GS (z) = exp
(
−

∫
dr

∫
d3

∫ t f

0
dt · S (r, 3, t)G(z; r, 3, t)

)
(11)

Once again, taking derivatives and setting z = 1 yields aux-
iliary equations for the mean, variance, skewness and excess
kurtosis:

F = E(F) =

∫
dr

∫
d3

∫ t f

0
dt S (r, 3, t) f (r, 3, t) (12a)

VF = E
(
(F − F)2

)
=

∫
dr

∫
d3

∫ t f

0
dt S (r, 3, t) f 2(r, 3, t)

(12b)
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k S k(r, 3, t)

1 Λ0

2 Λ0 + 2
〈

f
〉 (

Λ1 + Λ2

〈
f
〉)

3 Λ0 +
(
3Λ1 + 6Λ2

〈
f
〉) (〈

f
〉

+
〈

f 2
〉)

+ 6Λ3

〈
f
〉3

Λ0 + Λ1

(
4
〈

f 3
〉

+ 6
〈

f 2
〉

+ 4
〈

f
〉)

+ Λ2

(
4
〈

f
〉 (

2
〈

f 3
〉

+ 6
〈

f 2
〉

+ 3
〈

f
〉)

+ 6
〈

f 2
〉2)

4
+12 Λ3

〈
f
〉2 (

3
〈

f 2
〉

+ 2
〈

f
〉)

+ 24 Λ4

〈
f
〉4

TABLE I. The inhomogeneous source, Sk, for (10a) for k = 1, 2, 3 & 4, where Λi(r, 3, t) =
Σ f (r,3,t)

i!
∑I

j=i
j!

( j−i)! p j(r, 3, t), p j is

the probability that j neutrons are emitted in a fission event and
〈

f k
〉

=
∫

d3′ χ(3→ 3′) f k(3′).

sF =
E

(
(F − F)3

)
[
E

(
(F − F)2

)]3/2 =

∫
dr

∫
d3

∫ t f

0 dt S (r, 3, t) f 3(r, 3, t)

V3/2
F

(12c)

κF =
E

(
(F − F)4

)
[
E

(
(F − F)2

)]2−3 =

∫
dr

∫
d3

∫ t f

0 dt S (r, 3, t) f 4(r, 3, t)

V2
F

.

(12d)
Here, only the first four moments are considered, but it is

possible to obtain as many moments as may be useful. As can
be seen, these equations are auxiliary equations—the source is
not represented explicitly in the transport-like equations, but
is instead incorporated into the solution after the fact. The
relationship between the single neutron and source moments
are the same as those for the neutron number given in [5].

III. RESULTS AND ANALYSIS

Previously, the gamma PDF for n and the mapping of
that PDF to the fission number f were found to agree well
with PDFs generated using 0-D Monte Carlo [4]. Here, the
gamma PDF for n and corresponding mapping to the PDF
for f are compared against full phase-space transport codes.
To make code comparisons straightforward, the first test case
is a static bare Plutonium sphere with a fast neutron spectra
(“Jezebel”). The results of many MCATK analog Monte Carlo
‘experiments’ are tallied to generate PDFs and cumulative
density functions (CDFs), which can then be compared against
(2a) and (5). MCATK and PARTISN are both used to compute
the moments of the neutron and fission numbers. The second is
a bare Uranium sphere with time-varying isotopic abundances
of U-235 and U-238 and demonstrates the applicability of our
method to dynamic systems.

1. Plutonium Sphere

This test problem is a 6.5 cm sphere of enriched Plu-
tonium with the same isotopic concentrations as Jezebel
(95.5w/o Pu-239, 4.5w/o Pu-240). The total spontaneous fis-
sion rate is Ṡ =0.847254/µs. In MCATK, only the dominant
Pu-240 spontaneous fission source is used, so the source rate
is slightly (≈ 0.03%) lower: Ṡ =0.846996/µs. In Table II, re-
sults are shown for PARTISN for various numbers of energy
groups, G. Results are given for α, single neutron POI (POI1)
and k. Also shown is the parameter η computed using the

POI and α as computed in the 0-D analysis and the first two
moments of the distribution taken from the full phase space
model. As can be seen, they differ with the latter being always
smaller. For MCATK, only the eigenvalues are computed. The
simulation was run for 0.5 µs, at the end of which the instanta-
neous average neutron number, n, and the average number of
fission events , f , are reported. For all MCATK simulations,
the source is time-biased (and appropriately weighted) such
that equal numbers of neutrons are emitted for each of 4 time
intervals: [0.0, 0.03, 0.1, 0.2, 0.5] µs.

As can be seen in Table II, PARTISN α and n appear to
be approaching the MCATK results from below up to G =
30. At G = 133, however, these quantities jump up above
the MCATK value and then approach them from above as
the number of energy groups in increased. For this problem,
ν̄ = 3.002549, and it can be seen that ν̄ f for MCATK is
approximately equal to f prod as reported by PARTISN.

Table III shows the first four central moments of n as well
as the probability that there will be more than n neutrons in
the system at the final time—i.e., P(n′ > n) =

∫ ∞
n dn′ Pn(n′).

The ‘converged’ 133 group PARTISN calculation overesti-
mates the mean and probability of n′ > n for large n, but
the rest of the results are close to the MCATK results. The
‘unconverged’ 12 group calculation tends to underestimate all
quantities, but the 21 group calculation is an excellent (and
indeed the best) match to MCATK. Once again, the gamma
PDFs generated using the MCATK values of η do not exactly
reproduce the skewness and kurtosis, indicating that the PDF
is not exactly a gamma distribution, but they do reproduce
P(n′ > n) reasonably well.

Table IV shows the mapping parameters and moments
and P( f ′ > f ) for MCATK. As can be seen, and as expected,
the first two moments match exactly between the PDF and the
tally and the PDF matches the tally quite well on P( f ′ > f )
for large f . There are larger differences in the skewness and
kurtosis as well as the P( f ′ > f ) for small f .

Figures 1 and 2 show the PDFs and complements of the
CDFs of n and f for the MCATK tally and the gamma distri-
bution generated using the MCATK and PARTISN moments.
The gamma PDFs agree and, additionally, match the MCATK
results well for n and large f , although a more rigorous com-
parison is available in Tables III and IV. The mapping breaks
down for small f , however. This is expected because neutron
chains that die prior to the final time are not represented in



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

code G α (µs−1) POI1 η =
Ṡ ·POI1

α
η = n2

Vn
k n f

618 7.79317 1.3541E-2 1.4721E-3 1.4195E-3 1.02207 6.05114 63.0430
250 7.79475 1.3549E-2 1.4727E-3 1.4195E-3 1.02208 6.05410 63.0516

PARTISN 133 7.79563 1.3565E-2 1.4743E-3 1.3967E-3 1.02211 6.05525 63.0084
30 7.71853 1.3687E-2 1.5024E-3 1.3955E-3 1.02230 5.86632 60.6259
21 7.71843 1.3687E-2 1.5024E-3 1.3951E-3 1.02230 5.86611 60.6247
12 7.40690 1.3381E-2 1.5306E-3 1.4498E-3 1.02177 5.19236 54.5328

MCATK – 7.72534 1.3641E-3 1.02182 5.86592 61.4381

TABLE II. Pu Sphere: Static parameters and means at t f = 0.5 µs. PARTISN parameters: 0.25 mm mesh (I = 260), S-256
quadrature & P-4 scattering. 20.48 million time-biased MCATK source neutrons (singlet emitting). ENDF-VII.1 cross section
data.

MCATK PARTISN
tally PDF G = 133 G = 21 G = 12

η – 1.36411E-3 1.39669E-3 1.41948E-3 1.44981E-3
n 5.86592E0 5.86592E0 6.05525E0 5.86611E0 5.19236E0
σn 1.58931E2 1.58931E2 1.62025E2 1.55699E2 1.36367E2
S n 5.59415E1 5.41509E1 5.48005E1 5.44097E1 5.37917E1
κn 4.78018E3 4.39848E3 4.56881E3 4.50578E3 4.40186E3

P(n′ >1E2) 4.47437E-3 4.36682E-3 4.48202E-3 4.48887E-3 4.38330E-3
P(n′ >1E3) 1.49215E-3 1.50210E-3 1.54701E-3 1.51861E-3 1.39124E-3
P(n′ >5E3) 2.24050E-4 2.29647E-4 2.38725E-4 2.21729E-4 1.69809E-4
P(n′ >1E4) 4.29246E-5 4.29475E-5 4.51026E-5 3.94188E-5 2.47497E-5

TABLE III. Pu Sphere: Moments of n and probability that there are more than n neutrons (P(n′ > n)) at t f = 0.5 µs. Results are
given for MCATK using the tally (“tally”) and for MCATK and PARTISN using (2a) where η = n2

Vn
. 20.48 million MCATK

source neutrons

the neutron number PDF on which the fission number PDF
is based. These chains have produced fissions, however, and
therefore contribute to the fission number PDF, predominantly
in the low fission number range as can be seen. This dis-
crepancy is therefore unavoidable without incorporating infor-
mation about the neutron number at earlier times. If we are
interested in the probability of getting large numbers of fission
and therefore dose, then this limitation is acceptable.

2. Uranium Sphere with Varying Isotopic Abundance

The second test problem is a modification of a test prob-
lem from [7] and is a mockup of a criticality accident scenario.
The system is a 17.25 cm sphere with a time-varying mix-
ture of U235 and U238 where ρ235 = 14 − 6Cmod g/cm3 and
ρ238 = 1 + 6Cmod g/cm3, where Cmod varies linearly between
the time points shown in Table V. The system was model-
ing using the MENDF71x data library with NDI’s 133 group
set, 120 spatial cells, S20 and P3 and there is a uniformly dis-
tributed volume source in group 7 (14-14.25 MeV) emitting a
total of 0.1 n/µs.

Figure 3 shows the gamma PDF η parameter computed
using the moments and the various definitions from Eq. (3).
There are only slight differences between the three definitions,
which assume a gamma distribution, so this result indicates
that the PDF is very nearly a gamma distribution. It also
becomes fixed at a constant value before the system becomes
supercritical indicating that, while the neutron population may
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Fig. 1. Pu Sphere: Comparison of neutron number distribu-
tions where η = n2

Vn
are computed using the moments.

fluctuate, the shape of the distribution is fixed. η was also
computed using the POI and α from static snapshots. As can
be seen, it varies with time, which incorrectly indicates that
the shape of the distribution is changing over the course of the
excursion.
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MCATK PARTISN
tally PDF G = 133 G = 21 G = 12

a – 1.01582E1 1.01082E1 1.03410E1 1.01666E1
b – 1.85088E0 1.80076E0 1.76354E0 1.74410E0
f 6.14381E1 6.14381E1 6.30084E1 6.06247E1 5.45328E1
σ f 1.61335E3 1.61335E3 1.63778E3 1.56230E3 1.38639E3
S f 5.60809E1 5.41509E1 5.50093E1 5.46317E1 5.40205E1
κ f 4.81119E3 4.39848E3 4.60910E3 4.54827E3 4.44557E3

P( f ′ >1E2) 1.15902E-2 7.50749E-3 7.68992E-3 7.77905E-3 7.71456E-3
P( f ′ >1E3) 4.66869E-3 4.39011E-3 4.49909E-3 4.53758E-3 4.40895E-3
P( f ′ >1E4) 1.50379E-3 1.51928E-3 1.55914E-3 1.55628E-3 1.40957E-3
P( f ′ >5E4) 2.30942E-4 2.38600E-4 2.43519E-4 2.36244E-4 1.75829E-4
P( f ′ >1E5) 4.53086E-5 4.59624E-5 4.66239E-5 4.38380E-5 2.62571E-5

TABLE IV. Pu Sphere: Moments of f for t ∈ (0, 0.5). Results are given for MCATK for the mapped gamma (i.e., the mapped
distribution given in (5) and η = n2

Vn
: “PDF”) and using the tally (“tally”).
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Fig. 2. Pu Sphere: Comparison of fission number distributions
where η = n2

Vn
, a = σ f /σn and b = f − an are computed using

the moments.

Figure 4 shows the means of n and f as computed using
the forward and moment equations. Since PARTISN outputs
fission production rate, not fission rate, the forward fission
result is divided by 2.5, which is roughly equivalent to ν for
Uranium. The two calculation methods agree well, as would
be expected.

Table VI shows the moments and PDF parameters for two
time points: Second critical (3.5 µs) and once the number of
fissions has stopped increasing (5.0 µs). Note that S n ≈ S f
and κn ≈ κ f , which is also true of the analytic representations
of Pn and P f . These parameters are then used to plot the
PDFs and the complements of the CDFs (i.e., the probability
of exceeding n neutrons or f fissions) in Figure 5. MCATK
results were not available at submission time, but will be
presented at the conference. Once again, P f is reasonable
in the tail, but is clearly incorrect for small fission numbers
where the mapping breaks down. As previously stated, we are
generally interested in the probability of getting large numbers

time(µs) Cmod

0.0 1.5
1.0 1.25
2.0 0.625
2.5 0.625
3.5 1.25

>4.5 1.5

TABLE V. Cmod Parameter for Uranium Sphere
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Fig. 3. U Sphere: Gamma PDF parameter η computed using
the various moments of n (see Eq. (3)) and the point model.

of neutrons and fissions, so this is an acceptable limitation.

IV. CONCLUSIONS

When moments of the neutron number distribution are
computed using PARTISN and MCATK and used to estimate
the shape parameter, η, of the analytic gamma PDF, the PDF
compares well with the MCATK tally. When the mapped
analytic gamma PDF for fission number is generated in the
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Fig. 4. U Sphere: Comparison of n and f for the forward and
moment equations.

simulation time (µs)
3.5 5.0

η 2.39632E-5 2.39735E-5
n 3.13589E9 1.33739E7
σn 6.40603E11 2.73145E9
S n 3.98380E2 3.98345E2
κn 2.36486E5 2.36547E5
a 6.81167 4.00332E3
b 5.52567E6 -2.67668E5
f 2.13662E10 5.35400E10
σ f 4.36358E12 1.09349E13
S f 3.98428E2 3.98296E2
κ f 2.36585E5 2.36477E5

TABLE VI. U Sphere: Moments and PDF parameters.

same way, it is also found to compare well with the MCATK
tally in the tail of the distribution where the mapping is valid.
Overall, though, for this class of problems (slightly super-
critical bare metal spheres), the generated PDFs were good
representations of the actual distributions.
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