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Abstract - The Monte-Carlo criticality simulation of decoupled systems, as for instance large reactor cores,
has been a challenging issue for long. In particular, due to limited computer time resources, the number of
neutrons simulated for each generation is still many order of magnitudes below realistic number of neutrons,
even during start-up phases of reactors. This limited number of neutron triggers a strong clustering effect of
the neutron population that affects Monte-Carlo tallies. Below a certain threshold, not only the variance is
affected but also the estimate of eigen-vectors. In this paper we will build a time dependent diffusion equation
that takes into account both clustering and population control (fixed number of neutron along generations). We
will show that its solution obeys a soliton wave dynamic, and we will discuss the mechanism that explains this
biasing of local tallies whenever leakage boundary conditions are applied to the system.

I. INTRODUCTION

Monte-Carlo neutron transport codes [1, 2] are often used
as reference tool by the nuclear industry, as the approxima-
tions on which they rely to solve the Boltzmann equation
in fissile media (the so-called critical Boltzmann equation
[3]) are extremely sparse. Their growing use in the past few
decades is strongly correlated to the increase of computer re-
sources and now ranges from nuclear fuel cycle studies to
criticality safety assessment and reactor physics simulations.
However, in this last application - and especially in the case
of large reactor cores or loosely coupled systems [4, 5]- a
strong under-sampling effect biases the estimates of the vari-
ance of flux-based quantities [6, 7, 8, 9, 10]. Worse, in a
work inspired by recent developments in population ecology
[11, 12, 13, 14], Dumonteil, Mazzolo and Zoia have shown
that non-Poisson spatial fluctuations were caused by a neutron
clustering phenomenon [15, 16, 17, 18]: even for intermediate
or high numbers of simulated neutrons, those fluctuations can
make it hard to estimate flux-based standard deviations. In
the present paper, we will show that space-dependent biases
finding their origin in these spatial correlations also affect
the estimates of flux-based quantities themselves, when leak-
age boundary conditions are employed. The first section will
discuss the phenomenology of these biases on a commercial
reactor benchmark, and on a simplified model grasping its
main characteristics (the mass-preserved 1D binary branch-
ing Brownian motion on a segment with Dirichlet boundary
conditions). In the second section we will build a functional
equation modelling the simplified case, based on a generalized
Fisher equation with time-dependent coefficients that allow for
population control and that incorporates spatial correlations.
In a third section, we will rely on an asymptotic analysis to
establish a deep connection between traveling waves proper to
quadratic terms in the neutronic field equation and clustering.
In particular we will show that the neutron clusters have a soli-
ton wave dynamic. Some numerical solutions of this equation
retrieved under simplifying hypotheses will be compared to
the numerical findings of the first section. Conclusions will be
drawn in a last section.

II. BIASES ASSOCIATED TO THE MONTE-CARLO
SIMULATION OF LARGE REACTOR CORES

1. Commercial Reactor Critical Benchmark

The Expert Group on Advanced Monte-Carlo Techniques
belongs to the Working Party on Nuclear Criticality Safety of
the OECD Nuclear Energy Agency. Its aim is, amongst other,
to guide Monte-Carlo criticality practitioners through finding
their ways in defining the most appropriate simulation param-
eters, so as to minimize biases in the Monte-Carlo estimate of
different quantities or in the estimate of their variances. This
group, as well as recent work, has pointed out strong bias in
both the estimate of the flux and its variance, that depends on
the spatial position of the tally volume [19, 20, 21]. This bias
is prone to develop in particular for loosely coupled systems.
Thus, a benchmark named R1 is currently under study, which
proposes to tally the flux in different radial zones of a critical
commercial reactor [22]. This reactor has been simulated with
the MORET 5.B.2 Monte Carlo code [23], exploiting a quarter
symmetry. Axially averaged fluxes are presented on the left
part of Figure 1 and the associated "apparent" 1-σ error bars
are provided by the left plot of Figure 2 (these error bars are
calculated by the Monte Carlo code using the central limit
theorem). As expected, the highest incertitudes are located in
low flux regions, where neutrons leak out of the core. Surpris-
ingly enough, though, the "true" error bars given by the right
plot of Figure 2 exhibit a spatial patterns: these errors seem
to be big near the leaking boundaries of the reactor core but
also close to the reflecting boundaries and at the center of the
core. Such a non trivial spatial patterns is even more striking
on the right plot of Figure 1, where the under-sampling bias is
estimated and is shown to be bigger at the center of the core,
and close to the leaking boundaries. In particular, the flux is
over-estimated near the leaking edges and is under-estimated
at the center. In the following parts of this paper, we will try
to model this very last phenomenon, also reported by many
authors and papers.
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Fig. 1. MORET 5.B.2 simulation of the R1 OECD/NEA
benchmark: axially averaged fluxes with 104 active cycles of
104 neutrons (left plot). Ratio of the axially averaged fluxes
between a simulation with 106 active cycles of 102 neutrons
and a simulation with 102 active cycles of 106 neutrons (right
plot).

Fig. 2. MORET 5.B.2 simulation of the R1 benchmark with
104 active cycles of 104 neutrons: 1-σ error bars ("apparent
errors") on the axially averaged fluxes (left plot) and 1-σ
error bars ("true errors" estimated by independent simulations)
on the axially averaged fluxes with 104 active cycles of 104

neutrons (right plot).

2. Mass preserving Branching Brownian Motion on a 1D
confined medium with Dirichlet boundary conditions

In order to explain these observations, different capabili-
ties of the MORET 5.B.2 Monte Carlo code were successively
disabled (simplified geometry, one group cross-sections, ...)
so as to grasp the phenomenology discussed in the present
paper with the simplest model. In this respect it appeared
that a mass-preserving binary branching Brownian motion
[24, 25, 26] on a segment (of half length L arbitrarily set to
20) with Dirichlet (leakage) boundary conditions allowed to
observe precisely an under-estimation of the flux in the central
region while reproducing an over-estimation of the flux close
to the boundaries. The mass preserving mechanism is fully de-
scribed Ref [27, 28, 18]. It is based on a combination between
splitting and Russian roulette techniques: each time a particle
is captured by a physics process, another is picked randomly
and splitted, while each time a fission occurs, a randomly-
picked particle is Russian rouletted. The diffusion coefficient
D was set to 1, while the binary process was such that the
capture cross-section γ was equal to the 2-daughter particles
fission cross-section β, and both were set to 0.1.Typical real-
ization of such a process are provided Figure 3. As expected,
this top plot of this figure highlights a strong particle clus-

tering mechanism [16], and reveals that, after a short time,
only one cluster remains [17]. Interestingly enough, though,
looking at this process on a large time window (bottom plot),
a qualitative view of the problem under consideration emerges:
when only one cluster of particles strike one of the boundaries
while wandering around, the constraint on the overall mass
N of our mass-preserving process refrain the particle cluster
from leaking out of the system, the splitting rate increases
dramatically until the cluster is "reflected" to the other side
of the system. Therefore the Dirichlet boundary conditions
cannot be properly taken into account. When the system is
not prone to trigger a clustering effect (i.e. for coupled con-
figurations, with dominant ratio sensitively less than 1), the
splitting mechanism that compensates leakages picks particles
according to a converged eigen-vector, and the bias disappear.
Figure 4 sums up these discussions: the typical cosine-shape a
one-group Boltzmann critical equation for a slab geometry is
progressively distorted following a flat distribution at the cen-
ter with a strong decay near the extremities, when the number
of simulated particles gets smaller.

Fig. 3. x positions of the particles versus time t for 2 realisa-
tions of a mass-preserved binary branching Brownian motion
on a segment (between -20 and 20) with Dirichlet boundary
conditions and with N = 50 particles. Top plot: first realiza-
tion observed between t = 0 and t = 300, bottom plot: second
realization observed between t = 0 and t = 7250.

III. THE GENERALIZED FISHER EQUATION WITH
POPULATION CONTROL

In this section we will build a stochastic model for our
process (mass-preserved binary branching Brownian motion
on a segment with Dirichlet boundary conditions) and discuss
some of its analytical solutions, obtained under simplifying
hypotheses.
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Fig. 4. Normalized particle density averaged over t=1000
(a.u.) for a mass-preserved binary branching Brownian motion
on a segment (between -20 and 20) with Dirichlet boundary
conditions and with N particles. Black curve: N = 1000, blue
curve: N = 100, red curve: N = 10, green curve: N = 5.

1. Generalized Fisher equation

The key ingredient used as a starting point of our model-
ing is an adaptation of the Fisher equation [29, 30]. This equa-
tion is also known in population biology as the spatial logistic
equation, or in theoretical physics as the KPP (Kolmogorov-
Petrovsky-Piscounov) equation, and can be written

∂tφ = D∇2φ + (β − γ) φ + λ φ2, (1)

where φ1 is a density, D is the diffusion coefficient, β is a
reproduction rate, γ is a disappearance rate and λ is a saturation
rate. Depending on the sign of λ this saturation rate can
be either a maximal threshold (for negative λ) or a minimal
threshold (for positive λ). For example, in population ecology
β and γ represent respectively the birth and death rates while
λ might be interpreted as a saturation due to the competition
for resources between individuals. Indeed this competition
results from a local combinatorial interaction between the
individuals, explaining that, at a given position, the death
probability is adjusted by a saturation term. This term is
proportional to the number of pair of individuals

(
N(x)

2

)
in

x ± dx (where N(x) = φ(x)dx is the number of individuals in
x ± dx), hence being quadratic in the φ-field.

When the competition term depends on the density of
individuals, the clustering effect described Section I cannot be
neglected anymore as it affects the density itself. Therefore
the Poisson spatial distribution of individuals used to build
Eq. (1) is no longer true and one have to resort to a generalized
Fisher equation (see the pioneer work of Birch et al [31] for
the full development). The generalized Fisher equation

∂tφ = D∇2φ + (β − γ) φ + λ

∫
dy ν(|x − y|) G(x, y, t) (2)

makes use of the pair correlation function G(x,y,t) which is
defined such as G(x, y, t)dxdy is the expected number of pair
of individuals with one individual in x and the other in y, and

1In the following we will adopt a convention where the functions variables
are implicit in order to lighten the equations. In this case, φ = φ(x, t).

of the competition kernel ν(r) that defines the spatial scale
over which the competition occurs.

2. Time-dependent coefficients and population control

This generalized Fisher equation will now be adapted to
reactor physics, so as to take into account different kind of
feed-back effects that impose the overall number of neutrons
to be constant such as:

• spatial and temporal control rod adjustments of the power
which aim for instance at preventing local power excur-
sion during the start-up phase of a reactor.

• the so-called "weight-watching" mechanism (Russian
roulette and splitting) which are used at the end of each
cycle (or each time step) of Monte-Carlo criticality (or
dynamic) simulations to adjust the number of simulated
neutrons to prevent any divergence or disappearance of
the population. This mechanism is also referred to as the
"renormalization" method in this context.

In neutron transport, the βφ and γφ reaction rates now repre-
sent fission and capture events, and λ

∫
dy ν(|x − y|) G(x, y, t)

describes in our case the rate at which local adjustment of
the neutron density occurs in the general case where spatial
correlations affect the population dynamics. In the following,
and without loss of generality, we will keep in mind the Monte-
Carlo criticality simulation of a 1-D branching Brownian with
ke f f < 1: at each cycle (or similarly for any time), the number
of neutrons produced by fission is smaller than the number of
neutrons at the beginning of the cycle and the λ coefficient is
therefore positive. It represents the splitting mechanism which
produces neutron to compensate for leakages and absorptions.
In this case, also, the competition kernel ν(r) can be simplified
as the spatial range on which the population control is applied
does not depend on the distance between neutrons: it is a
global constraint on the overall population and will therefore
be set to 1 in the following. Unfortunately, and as mentioned at
the beginning of this sub-section, the local adjustments depend
on time/generation: might it be for reactor core operation or
for Monte-Carlo criticality simulation, the population number
is constantly re-adjusted. In pretty much the same manner as
in a work of Newman et al [32] we can therefore adjust the
population by using a time dependant adjustment coefficient
λ(t). The population control criteria can be made explicit by
integrating Eq. (2) over the positions between −L and L which
gives

λ(t) =
−β + γ − D

∫ L
−L dx ∇2φ(x, t)∫ L

−L dx
∫ L
−L dy G(x, y, t)

, (3)

where we have used the following normalisation relation∫ L

−L
dx φ(x, t) = 1. (4)

In our example with ke f f < 1, this positive coefficient is in-
terpreted as the splitting rate that compensates the neutron
loss at each generation. It is consequently proportional to
the number of captures (γ) and to the number of leakages
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(−D
∫ L
−L dx ∇2φ(x, t)) and is smaller when productions by fis-

sion (β) are important. Finally, it is more convenient to use
the normalized and centered pair correlation function g(x, y, t)
defined as

g(x, y, t) =
G(x, y, t) − φ(x, t)φ(y, t)

φ(x, t)φ(y, t)
. (5)

Upon injection in Eq. (2) we get our equation for the dynamic
of a branching Brownian motion in a confined medium with
population control

∂tφ = D∇2φ + (β − γ) φ

+λ(t)
(
1 +

∫ L

−L
dy g(x, y, t)φ(y, t)

)
φ(x, t),

(6)

with λ(t) given by Eq. (3) and where we recall that g(x, y, t) is
the normalized and centered pair correlation function of our
system.

IV. CLUSTERING AND TRAVELING WAVES IN
BOUNDED DOMAINS

The rather intricate form of this generalized Fisher equa-
tion with population control does not allow for a direct solving
all the more so, as the pair correlation function has not been
made explicit. However, surprisingly enough, it is provided
in a recent work of De Mulatier et al [18], where the authors
were able to provide an amenable form of the correlation func-
tion for branching Brownian motion with population control
on bounded domains. In this section we will therefore use
an asymptotic analysis of Eq. (6), and we will show that its
solution, in the case where the neutron population is small and
whenever leakage boundary conditions are used, differs from
the "deterministic" one, allowing to understand the cause and
the structure of the bias observed section II.

1. Large population size

Whenever the neutron population N is very large, we
have g(x, y, t)→ 0 as the spatial correlations arising from the
branching process vanish (see for instance [31, 18]. Hence,
the pair correlation function G becomes separable in x and y
and we have G(x, y, t)→ φ(x, t)φ(y, t) so that

∫
dy G(x, y, t)→

φ(x, t) and
∫

dx
∫

dy G(x, y, t) → 1. The stationary limit of
Eq. (6) takes in this case the very simple form

∇
2φ −

(∫ L

−L
dx ∇2φ(x)

)
φ = 0. (7)

Noticing that
∫ L
−L dx ∇2φ(x) = ∂xφ(x)

∣∣∣
x=±L, this equation sim-

plifies to

∇
2φ − ∂xφ(x)

∣∣∣
x=±L φ = 0. (8)

In the case of reflecting boundary conditions at each side
of the domain, we have to use Neumann boundary conditions
∂xφ

∣∣∣∣
x=±L

= 0. The equation Eq. (8) is therefore trivially veri-
fied, ensuring that the Monte-Carlo criticality renormalization
in this case is unbiased.

In the case of absorbing boundary conditions at each side
of the domain, we have to use Dirichlet boundary conditions
given by φ(x, t)

∣∣∣∣
x=±L

= 0. Surprisingly enough, this boundary
condition applied on a positive and symmetric function ensures
that the coefficient in front of the term linear in φ is strictly
positive. To go further, as a guess function it is possible to
test the cosine solution of the diffusion approximation of the
stationary Boltzmann critical equation with leakages. If we
inject the test function φ(x) = A cos( π2

x
L ) (where A is an

arbitrary constant) in Eq. (8), we have

∇
2φ +

π2

2L2 φ = 0. (9)

The solution of this equation is indeed a cosine ensuring also
that the Monte-Carlo criticality renormalization in this case is
unbiased. Noticeable is the fact that none of the coefficients of
this equation depend on the values of β, γ or D, and that there
is always a solution to this problem, unlike for the critical
diffusion equation where a criticality condition linking the
geometry and the compositions has to be met. However this
can be understood if we keep in mind that this is precisely the
purpose of the renormalization: whatever the parameters char-
acterizing the system, the simulation converges to an unbiased
estimate of φ(x).

2. Small population size

If the neutron population N is too small, clusters of neu-
trons appear (see Refs. [16, 17, 18] for a precise criterium on
N values that trigger the clustering phenomenon). For large
time t → ∞, only one cluster is still alive, with a constant num-
ber of neutrons N. This cluster wander around randomly, with
a spatial extension determined by a normalized and centered
correlation function that we call g∞N (x, y) and which analytical
form is given Ref. [18]. Since we are interested in configu-
rations triggering a strong clustering, it is safe to assume that
g∞N (x, y) � 1. This assumptions being valid whenever the
renewal time N/(β + γ + λ) is smaller than the mixing time
2L/D, we can also conclude that the system size 2L has to be
big, so that the dynamic of clusters far from the boundaries
is the same whether we use Dirichlet or Neumann boundary
conditions (leakages or reflections). We will therefore use
the same correlation function for both conditions. Finally, for
large time (one cluster) and systems having an important spa-
tial extension, we can also assume that the correlation function
only depends on |x − y| so that g∞N (x, y) = g∞N (|x − y|). Having
all these assumptions in mind, the pair correlation function
can be written

G(x, y, t) = g∞N (|x − y|) φ(x, t)φ(y, t), (10)

and its y-integral over the positions reads∫ +L

−L
dy G(x, y, t) = φ(x, t)

∫ +L

−L
dy g∞N (|x − y|)φ(y, t), (11)

Resorting to a similar development as exposed Ref. [31], this
last expression takes the form∫ +L

−L
dy G(x, y, t) = φ(x, t)

∫ +L

−L
g∞N (|r|)dr φ(x, t), (12)
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which transforms into∫ +L

−L
dy G(x, y, t) = g∞N φ(x, t)2, (13)

where we have defined g∞N =
∫ +L
−L g∞N (|r|)dr. This allows to

rewrite∫ +L

−L
dx

∫ +L

−L
dy G(x, y, t) = g∞N

∫ +L

−L
dx φ(x, t)2, (14)

so that Eq. (6) becomes
∂tφ = D∇2φ + (β − γ) φ

+

−β + γ − D ∂xφ(x, t)
∣∣∣
x=±L∫ +L

−L dx
∫ +L
−L dx φ(x, t)2

 φ(x, t)2.
(15)

When the cluster is far from the boundaries, the time-
dependent coefficient in front of the φ2 term becomes time-
independent. Indeed, the leakages term can in this case be
neglected and the normalization of the φ2 term itself does not
depend on time when t is big enough (the shape of the cluster is
unchanged, as revealed by a careful analysis of the normalized
pair correlation function [18]). In those conditions, preserving
the normalization of the flux imposes

∫
dx G(x, t) = 1. We

can therefore conclude that λ(t) = λ = −(β − γ) so that our
final equation is given by

∂tφ = D∇2φ + (β − γ) φ − (β − γ)φ2, (16)

This traveling wave equation has been discussed Section
III, and is even simpler in our case since both the linear and
the quadratic terms in φ can be factorized

∂tφ = D∇2φ + (β − γ) φ(1 − φ). (17)

It provides the full soliton dynamic of the neutron cluster.
Written this way its meaning is straightforward: as soon as
the flux exceeds a threshold (φ > 1 =

∫
dx φ), the population

control counteracts by russian roulette to maintain the fixed
size of the population. When the flux gets too small, the
splitting of neutrons induces an artificial fission process in
the same aim. Since the spatial correlation function of the
cluster is unchanged, the neutron cluster behaves like a soliton
wave, just like observed Figure 3. By integration over time,
the density profile of the flux can also be retrieved and presents
a flat structure.

Indeed, a numerical time-integration of this equation to-
gether with its limit condition φ(±L) = 0, is given Figure 5. In
particular, its stationary shape is very close to the one simu-
lated Figure 4 with very few number of neutrons.

It is also important to notice that this mean field equa-
tion has a different form than the cosine shape solution of
the one-group criticality diffusion equation, explaining thus
qualitatively the biases observed Figure 4. This can nicely be
interpreted as follows: far from the boundaries, the soliton
wave of our cluster averages so as to produce a flat density
profile. Near the boundaries, the leakages are big and are
therefore compensated by a very strong splitting of neutrons
required to keep the overall mass constant. This produces
a reflection of the whole wave on the boundary, explaining
thus that the lower the number of neutrons, the flatter the
distribution (even near the edges of our system).

Fig. 5. Normalized particle density as a function of the position
x given by a numerical integration of Eq. (17) (D = 1, γ = 1,
β = 0 and initial Dirac delta function source) up to different
observation time (from the blue curve to the red curve as time
goes by). As time goes by, the neutron population explores the
available space until it reaches the boundaries of the domain
and stabilizes.

V. CONCLUSIONS

By resorting to a generalized Fisher-like equation with
time-dependent coefficients that allows for population control,
we have successfully built a stochastic modeling able to re-
produce under-sampling biases observed in the Monte Carlo
criticality simulation of loosely coupled systems and large
reactor cores. An asymptotic analysis of this equation made it
possible to study the dynamics of clustered population of neu-
tron, and we have shown that it obeys a soliton wave equation,
while the flux profile is governed by a traveling wave equation.
We have also shown in particular that the biases arising in
Monte-Carlo criticality simulation of decoupled systems can
be understood as arising from spatial correlations and neutron
clustering combined with leakage boundary conditions. In a
future work we will present a variance reduction scheme that
allows to deal with this clustering effect, in order to get rid of
the under-sampling bias.
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