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Abstract - Reactor noise, caused both by the probabilistic nature of the fission chains and external reactivity
noises, is one of the basic topics in nuclear science and engineering, both in theory and practice. Modeling
reactor noise (and neutron flux fluctuation in general) is traditionally performed by two main approaches:
the stochastic transport equation for the probability generating function and the transfer function response to
random perturbations.
In a recent study, a new modeling approach was introduced, corresponding to an intermediate regime, where
noise is modeled by Brownian motion, describing the dynamics by means of Stochastic Differential Equations
(SDE). In the present study we further develop the SDE approach by considering a model that preserves the
discrete nature of detections, specifically, via the binomial distribution. The new formalism thus results in a
non-normal distribution of the neutron count in a given time interval. We provide an explicit formula for the
distribution of the neutron count, and provide simplified formulas for its high moments. Comparison between
the analytic prediction and experimental results show a very high correspondence, with a bias of less than
0.98% for the first four moments.

I. INTRODUCTION

Reactor noise and neutron flux fluctuation dynamics are
one of the basic topics in nuclear science and engineering,
both in theory and practice. Applications of the theory of
neutron fluctuation may be found both in monitoring and mea-
surements [1], and in non destructive assay of special nuclear
materials [2]. Fluctuations in the neutron population size may
be attributed to two types of statistical noises: internal noises,
governed by the statistical nature of the neutron reactions, and
external noises, reflecting stochasticity of other elements of
the system, such as temperature fluctuations, mechanical in-
stabilities, electronic noise in the monitoring system and more
[3].

Reactor noise and neutron fluctuations are a general terms
used to describe the modeling and sampling of higher moments
of the neutron population in multiplying systems due to both
internal and external factors.

In a recent study by the authors, a new approach for
modeling reactor noise was introduced [4], where noise is
driven by Brownian motion, describing the dynamics by means
of a set of Stochastic Differential Equations (SDE). The model
formulated in [4] couples two dependent stochastic processes:
the size of the neutron population as a function of time, t, and
the number of detections in the interval [0, t], as it varies with
t. The model is formed by a set of 2 SDE. This model is, in
its primal form, non-linear. To obtain explicit formulas for the
moments of the detection count, the equation was linearized,
by approximating the state dependent diffusion coefficient
by a constant coefficient. While it has been proven that this
assumption does not effect the computed values of the first
two moments (since the analytic expressions obtained for the
first and second moments are in complete agreement with the
classical results), the steady state solution of the linear model
has a normal distribution, and hence all information on higher
moments is lost.

In the present study, we introduce a non linear model for
detections which also preserves its discrete nature. In this
model, the conditional distribution of the detection count over
any interval of the form [0,T ], given the population, is given
by a binomial random variable whose parameters depend on
the integral over time of the population, and on the detection ef-
ficiency. As we will demonstrate, the steady state distribution
of this model can be fully analyzed, resulting in explicit formu-
las. Moreover, by simple considerations (based on the law of
total cumulance), formulas for high moments of the detection
count distribution may be derived, under the small detection
probability approximation, that are considerably simpler than
the full explicit formulas.

This paper is organized as follows. In section II. we give
some background on SDE and reactor noise. In section III.
the main SDE proposed in this paper is introduced and fully
analyzed. In section IV. explicit formulas for the moments
are derived using the law of total cumulance. Section V. is
devoted to experimental results and to their comparison with
the analytic expectations. Section VI. provides conclusion
from this work.

II. BACKGROUND

1. General background

Reactor noise originates from two distinct stochasticity
factors. One, often referred to as "internal noise", is due to
the stochastic nature of the neutron life cycle and of fission
chains. The second, referred to as "external noise", corre-
sponds to reactivity fluctuations caused by factors such as
temperature changes, mechanical vibration, fluid instabilities,
etc. [3]. Since the two types of noise have very different na-
ture, they are often modeled using distinct mathematical tools.
Internal noise is often modeled via the Kolmogorov equation
for the Probability Generating Function (PGF) [5], whereas
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external noise is typically modeled using the transfer function
response to a random perturbation.

In a recent study introduced by the authors, a new mod-
eling scheme for rector noise was introduced, based on the
diffusion scale approximation for the reaction rates [4]. The
framework underlying the model is that of a Stochastic Differ-
ential Equations (SDE). The SDE approach is closely related
to the Fokker-Planck equation introduced in [3]. Yet, the use
of SDE (rather than the Fokker-Planck equation) offers a more
flexible setting, allowing more elaborate physical configura-
tions.

An SDE is an equation of the form

dXt = b(t, Xt)dt + σ(t, Xt)dWt, X0 = x, (1)

where the unknown is a stochastic process X, that has con-
tinuous sample paths taking values in Rd, for some posi-
tive integer d; b and σ are given coefficients; and W is
a d-dimensional Brownian Motion (BM). A process X is
regarded a solution of the SDE if it satisfies, for every t,
Xt = x +

∫ t
0 b(Xs)ds +

∫ t
0 σ(Xs)dWs, where the last term in

this integral equation is an Ito integral. The special case where
σ = 0 corresponds to an ordinary differential equation.

The most basic model introduced in [4] describes the
neutron population size at time t, here denoted by Nt, in a
sub-critical system, subjected to an external (non correlated)
source1, through the SDE

dNt = −αNtdt + S dt +
√
σ̃2Nt + S dWt, (2)

where
α = λ − λ f ν, σ̃2 = λ + λ f (ν2 − 2ν), (3)

and λ is the total reaction probability per time unit, λ f is the fis-
sion probability per time unit (both for a single neutron), ν, ν2

are the first and second moments (respectively) of the fission
multiplicity and S is the amplitude of the external source (see
[4] for full details). Full analysis of equation (4) is difficult,
due to the non-linear diffusion coefficient

√
σ̃2Nt + S . Thus,

a further simplification was suggested, where the diffusion
coefficient was replaced by its value under the steady state
mean field solution (which is readily seen to be attained by the
substitution Nt = S/α). This resulted in the equation

dNt = −αNtdt + S dt + σ0dWt, (4)

where σ2
0 = σ̃2S/α + S .

One of the challenges in modeling reactor noise is that
Nt, which is a basic physical entity, is impossible to measure
directly. The only way to experimentally estimate the size
of the neutron population is through detectors, which impose
two constrains. First, the detection is always performed over a
time interval of positive duration. Second, there is randomness
associated with the detection. Therefore, a model for reactor
noise must couple two (highly correlated) variables: the num-
ber of neutrons Nt as it varies within the interval 0 ≤ t ≤ T ,
and the number of detections, DT , in the interval [0,T ].

1A more careful description of the model assumptions is provided in
Section 2.

The coupled model proposed in [4] uses the lineariza-
tion alluded to above as in equation (4), and consists of the
following set of SDE,dNt = −α1Ntdt + σ1dWt − dDt + S dt,

dDt = λdNtdt + σ2dW̃t.
(5)

Here,
α1 = λ f + λ` − νλ f ,

where λd is the probability per time unit of a neutron to be
detected, λ` is the probability per time unit of a neutron to be
lost without being detected, the term

σ2
1 =

S
α

(λ f + λ` + λ f (ν2 − 2ν)) + S

is the variance of the contribution of all the reactions but the
detections, and

σ2
2 =

S
α
λd

is the variance associated with detection. The model (5) was
extensively studied in [4]. It has been shown that the first
two central moments of the detection count can be explicitly
computed, and the analytic expressions were in full agreement
with the classical results. Moreover, it was argued that the
above model predicts that the so called Feynman-Y function
can be sampled using the mean average deviation (MAD) in
place of the variance. This prediction was tested in [4], and
confirmed with very high accuracy.

Yet, the model (5) has some limitations. The solution
process is Gaussian, and thus its steady state, that is also
Gaussian, can be calculated easily. In particular, the central
third moment is zero. However, it has been shown in previous
studies [6, 7] that the third moment is not zero, and thus the
model from (5) is oversimplifying with regard to this aspect.

The goal of the present study is to propose a modification
of the above model by considering non-destructive binomial
detection. As we will demonstrate, this model will give rise
to an explicit formula for the detection distribution, as well
as simple formulas for its high moments. At the same time,
the model is subjected to two restrictions. First, the analysis
is based on the assumption that the detection efficiency is
poor (which, in reactor cores, is often the case). Second, the
analysis will only be accurate for systems close to criticality.

2. Model assumptions and definitions

As in most basic models for reactor noise, we restrict the
analysis to the single group model (the point reactor in a single
energy group). In a sub critical system under the single energy
point model, the neutron population is modeled in terms of
four parameters:

1. The fission probability per time unit, denoted by λ f .

2. The absorption probability per time unit, denoted by λa.

3. The distribution of the number of neutrons emitted in a
fission (or the neutron multiplicity), denoted by {p(ν)}νmax

ν=0 .
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4. The source intensity, here denoted by S . In a stochastic
setting, the source intensity is the probability (per time
unit) for the external source to emit a neutron.

Denote by λ = λ f + λa the reaction probability per time
unit. This parameter can otherwise be characterized as the
reciprocal average die-away time of a neutron. Moreover,
p f = λ f /λ and pa = λa/λ give the fission and absorption
probabilities, respectively.

We shall need the following standard facts about solutions
to SDE of the form

Xt = −AXt + σdWt

where A > 0 and σ > 0 are constants, such as (4). If the
initial condition is normal and independent of the driving
BM W, then the process X is a Gaussian process, known
as an Ornstein-Uhlenbeck process [8]. If, specifically, the
initial condition X0 is distributed asN(S/A, σ2/(2A)) then the
process is stationary, and one has

E(Xt) =
S
A
, E(X(t)2) =

σ2

2A
+

S 2

A2 , Var(Xt) =
σ2

2A
.

(6)
Moreover, its autocorrelation function, defined by φX(τ) =
E(XtXt+τ), is (independent of t and) given by

φX(τ) =
σ2

2A
e−Aτ. (7)

For the model introduced below, it will indeed be assumed that
the initial condition N0 is distributed as N(S/α, σ2/(2α)), in-
dependent of the driving BM, by which the stationary alluded
to above, and formulas (6) and (7), are in force.

III. AN SDE FOR NON-DESTRUCTIVE DETECTION

1. A model for the detection count distribution

In equation (4), the solution Nt describes the number of
neutrons as a function of time, t. The random variable

∫ T
0 Ntdt,

which is measured in units of time, can be interpreted as the
accumulated time spent in the system before reacting, summed
over all neutrons present in the system within the time interval
[0, t]. If we denote by ` the average lifetime of a neutron and
assume that ` � T , then the integral

XT =
1
`

∫ T

0
Ntdt (8)

gives an approximation to the number of neutrons passing
through the system in the interval [0,T ]. Notice that 1/` is
equal to the total reaction rate λ. Since, under the diffusion
approximation {Nt} is a Gaussian process, and XT is a linear
operation on its trajectories, XT has a normal distribution. In
particular, it is uniquely defined by its mean value and standard
deviation. Hence our first task will be to compute these two
parameters for Xt.

For the mean, interchanging the order of expectation and
integration gives

E(XT ) = E
(

1
`

∫ T

0
Ntdt

)
=

1
`

∫ T

0
E(Nt)dt =

1
`
×

S T
α

=
S T

1 − k

For the standard deviation, we first center the population pro-
cess about its mean by denoting Ñt = Nt −

S
α

and write

YT =
1
`

∫ T

0
Ñtdt

Then, we notice that Ñt satisfies the SDE

dÑt = −αÑtdt +

√
S
α
λ f ν(ν − 1) + 2S dWt.

Hence the variance of Xt is given by

Var(Xt) = E
[
Y2

t

]
= E

[
1
`2

∫ T

0
Ñtdt

∫ T

0
Ñsds

]
=

1
`2

∫ T

0

∫ T

0
E

[
ÑtÑs

]
dtds

=
1
`2

∫ T

0

∫ T

0
φÑ(t − s)dtds

=
1
`2 2

∫ T

0

∫ t

0
φÑ(t − s)dtds

where in the last line we used the fact that φÑ(t) = φñ(−t). By
equation (7), φÑ(t) = (2α)−1[ S

α
λ f ν(ν − 1) + 2S ]e−αt, and we

can compute the integral explicitly, resulting in

Var(Xt) =

S t
α
λ f ν(ν − 1) + 2S t

(1 − k)2

[
1 −

1 − e−αt

tα

]
(9)

=
S t(P f ν(ν − 1) + 2(1 − k))

(1 − k)3

[
1 −

1 − e−αt

tα

]
As in the previous section, we denote by Dt the number of
detections in the interval [0, t]. Recall our interpretation of XT
as a count of neutrons within the time interval [0,T ]. Each
of these XT neutrons may or may not create a detection, and
detection follows a fixed probability per neutron. Hence the
conditional law of DT given XT has a binomial distribution
with parameters (XT , Pd). The three elements of the model are
thus described by the set of equations

dNt = −αNtdt + σ1dWt + S dt,

XT = 1
`

∫ T
0 Ntdt,

DT ∼ Bin(XT , Pd).
(10)

By the law of total probability, denoting by [x] the integer
part of x ∈ R,

P(Dt = n) =
∑∞
`=0 P(Dt = n|[Xt] = `)P([Xt] = `) (11)

=
∑∞
`=n

(
`
n

)
Pn

d(1 − Pd)(`−n) 1
√

2πσXt

∫ `+1
`

e
ξ−S/(1−k)

2σ2
Xt dξ

where σXt is the square root of the variance whose formula
appears in equation (9). Equation (11) provides a novel for-
mula for the probability distribution of the neutron detection
count. To the best of out knowledge, it is the first explicit
formula which is not under the assumption that the neutron
count distribution is normal.
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The derivation of equation (11) was carried out under two
assumptions. To test how these assumptions are manifested in
technical conditions for the applicability of equation (11), we
shall compute the first two central moment of DT and compare
with the classical formulas. To this end, apply the laws of total
expectation and total variance, to get

E(Dt) = E(E(Dt |Xt)) = PdE(Xt) = Pd
S t

1 − k
(12)

Var(Dt) = Var(E(Dt |Xt)) + E(Var(Dt |Xt)) (13)
= P2

dVar(Xt) + E(Xt)Pd(1 − Pd)

= P2
d

S t(P f ν(ν − 1) + 2(1 − k))
(1 − k)3

[
1 −

1 − e−αt

tα

]
(14)

+
S t

1 − k
(Pd − P2

d) (15)

Comparing the above formula with the classical formula for
the variance [5] shows that for the approximation to be accu-
rate, two conditions must be met. First, 2(1− k) � P f ν(ν − 1),
so that the first term in the denominator on (14) vanishes, and
P2

d � Pd, so that the term (15) takes the form S tPd/(1 − k).
Thus, we may conclude that there are two necessary conditions
for equation (11) to be applicable: First, the system should be
close to critical, and second, the detection efficiency should
be sufficiently small (which was the original assumption intro-
duced earlier in this section).

In the next section we compute higher moments of the
detection count distribution, and in Section V., verify the for-
mulas by comparison to experimental results.

IV. COMPUTING THE DETECTION COUNT DISTRI-
BUTION MOMENTS

In this section we use the model introduced above to for-
mulate simplified expressions for the third and fourth moments
of the neutron detection count distribution in an interval of
fixed duration T . Computing the higher moments of this distri-
bution was the subject of several studies in recent years. In [7],
the third central moment was computed, aiming at an alterna-
tive sampling of the Feynman-Y curve, and in [6], analytic ex-
pressions for the third and fourth moments were introduced, in
the context of uncertainty analysis of the Feynman-α method.
We restrict our analysis to the third and fourth moments, yet
the exact same considerations may be used for any moment.
The analysis is divided into two sections. The first gives some
background on cumulants and the law of total cumulance, and
the second derives formulas for the third and fourth moments.

1. The moments and cumulants of a random variable

For a random variable X, the cumulant generating func-
tion is given by

KX(u) = log E
(
euX

)
, u ∈ R.

When this function has a convergent Taylor expansion about
the origin, we can write it as

KX(u) =

∞∑
n=0

un kn(X)
n!

.

The coefficient kn(X) is called the n-th cumulant of X.
For a random vector X = (X1, X2, . . . , XN), the joint cu-

mulant generating function is defined as

KX(u1, u2, . . . , uN) = log E
(
e
∑N

j=1 u jX j
)
.

We adopt the following multi-index notation: for 1 ≤

m1,m2, . . . ,mn ≤ N, k(Xm1 , Xm2 , . . . , Xmn ) is the coefficient
of um1 × um2 × · · · × umn in KX(u1, u2, . . . , uN). Notice that
there may be multiple tuples (Xm1 , . . . , Xmn ) that refer to the
same coefficient. For instance k(X1, X1, X2) = k(X1, X2, X1) =
k(X2, X1, X1).

Two facts on cumulants that will be useful for us are
as follows. First, there is a relation between moments and
cumulnats. The n-th cumulant is always a polynomial function
in the first n moments. For instance, if we denote by µn(X) the
n-th centered moment of the random variable X, then

k1(X) = E(X), k2(X) = µ2, k3(X) = µ3(X),
k4(X) = µ4(X) − 3µ2

2(X). (16)

The second useful fact is the so called law of total cumu-
lance, that may be considered a generalization of the law of
total expectation. For a random vector X = (X1, X2, . . . , XN)
and a random vector Y , one has [9]

k(X1, X2, . . . , XN) =
∑
π

k
(
k
(
Xπ1 |Y

)
, k

(
Xπ2 |Y

)
, . . . , k

(
Xπn |Y

))
,

were the sum extends over all partitions π, of the form
(π1, . . . , πn) (with arbitrary n ≤ N) of the set {1, ...,N} of in-
dices, and the expression k(Xπm |Y) gives the cumulant associ-
ated with the conditional distribution of the random variables
whose indices are in the set πm, given Y . The cases that will
be used here are

k3(X) = k(X, X, X) = k(k3(X|Y)) (17)
+ k3(k(X|Y)) + 3k(k(X|Y), k2(X|Y))

k4(X) = k(X, X, X, X) = k1(k4(X|Y))
+ 4k(k3(X|Y), k4(X|Y)) + 3k2(k2(X|Y)) + k4(k1(X|Y))
+ 6k(k2(X|Y), k1(X|Y), k1(X|Y)).

2. Explicit formulas for the third and fourth central mo-
ments

In the present section, we use the law of total cumulance in
the form (17) to compute the third and fourth moments of the
neutron detection count distribution. Since the conditional law
of DT given XT has a binomial distribution, setting X = DT
and Y = XT in (17) provides expressions for the third and
fourth central moments. Assuming P2

d � Pd, it is easy to
show that

k2(DT |XT ) ≈ k3(DT |XT ) ≈ k4(DT |XT ) ≈ E(DT |XT ) =
S × Pd

1 − k

and equations (17) give

k3(DT ) = k1(PdXT ) + k3(PdXT ) + 3k2(PdXT )
k4(DT ) = k1(PdXT ) + 7k2(PdXT ) + 6k3(PdXT ) + k4(PdXT ).
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Since XT has a normal distribution, and the third and
fourth cumulants of a normal distribution are both zero, the
above relations become

k3(DT ) = k1 + 3k2(PdXT ) (18)
k4(DT ) = k1(PdXT ) + 7k2(PdXT ) (19)

By (12) and the second equality in (13), we have

k1(PdXT ) = PdE(XT ) = E(DT )
k2(PdXT ) = P2

dVar(XT ) ≈ Var(DT ) − E(DT )

resulting in the following approximations for the third and
fourth central moments,

µ3(DT ) ≈ 3Var(XT ) − 2E(XT ) (20)
µ4(DT ) ≈ E(DT ) + 7 (Var(DT ) − E(DT )) (21)

+3Var2(DT )

(the last term in (21) is due to equation (16)).
Equations (20) and (21) are somewhat surprising for two

reasons. First, they are extremely simple. The simplicity is
even more surprising when compared to the precise expres-
sions obtained in [7] and [6], which are very lengthy. Thus the
approximation we have obtained, justified by the fact that Pd
is typically several orders of magnitude less then one, is very
useful. The price paid for the simplicity is not expected to be
noticed experimentally, for the reasons just mentioned.

The second surprising aspect of (20) and (21) is crucial.
These equations indicate that from a practical point of view,
once the first and second moments have been sampled, no
significant new information can be obtained by sampling the
third and fourth moments. When sampling the first and second
moment through the Feynman-Y formula, we can measure
the α eigenvalue. Thus in principle higher moments of the
detection count distribution do carry further information about
the system. However, from a practical point of view, equations
(20) and (21) indicate that such information corresponds to
observables that are simply too small to measure.

V. EXPERIMENTAL RESULTS

We now turn to the comparison of equations (20) and
(21) to experimental results (since under the conditions that
|1 − k| � 1 and Pd � 1, equations (12) and (13) coincide
with the classical results, there is no point in validating these
equations).

To validate (20) and (21), we have sampled all first four
central moment of detection signal from the MINERVE re-
actor, in two sub critical states: ρ = −270pcm (Acq16) and
ρ = −120pcm (Acq16) (both with a 10% error bar). In each
experiment two detectors were active, resulting in a total of
four signals. Each measurement was roughly 1.5 hours. The
detection count rate was less that 50,000 CPS and the esti-
mated dead time was 160nanosecond. Thus, dead time losses
are negligible.

Figures 1 and 2 show the detection count distribution in
two of the signals in a time interval of duration T = 10−3.

At a first glance, it may seem that both distributions are
normal. However, one can verify numerically that there is

Fig. 1. Count distribution in measurement Acq16.

a certain "skewness" of the distribution to the right. This
skewness can be quantified by sampling the cubic root of
the central third moment and computing to what degree it is
scalable with the standard deviation. We have followed this
scheme. Table I lists the standard deviation (σ(DT )) and the
cubic root of the third central moment (that we also call the
normalized third central moment, 3

√
|µ3(DT )|) for each of the

signals analyzed.
Examining table I shows that in all four measurements,

3
√
|µ3(DT )| is approximately 50% of the standard deviation.

Thus, all four signals indicate a significant deviation from
the normal distribution. Moreover, in all four signals the third
central moment, µ3, was positive, meaning that the distribution
is skewed to the right, as expected.

Table II shows the sampled values of the first four central
moments, along with the values predicted by formulas (20)
and (21).
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Asq16 det1 Acq16 det2 Acq19 det Acq19 det2

σ 8.769 9.042 6.87 6.517
3
√
|µ3| 4.38 4.490 3.525 3.630

TABLE I. Normalized second and third central moments.

E(DT ) Var(DT ) µ3(DT ) µ4(DT ) Eq. (20) Eq. (21)

Acq16 det1 39.05 ± 0.03 40.7 ± 0.1 44.0 ± 0.9 5042 ± 20 44.28 5045
Acq16 det2 40.28 ± 0.05 42.39 ± 0.2 46.68 ± 0.9 5446 ± 30 46.62 5447
Acq19 det1 73.74 ± 0.1 76.93 ± 0.2 83.37 ± 1.8 17843 ± 100 83.29 17851
Acq19 det2 77.92 ± 0.1 81.76 ± 0.1 89.05 ± 1.6 20173 ± 89 89.44 20161

TABLE II. Sampled values of µ3(DT ) and µ4(DT ), and the values predicted by equations (20) and (21).

Fig. 2. Count distribution in measurement Acq19.

Table II shows excellent agreement between the sampled
values of µ3(DT ) and µ4(DT ), and the values predicted by (20)
and (21). The maximal error is 0.98% (estimating µ3(DT ) in
measurement Acq 16 det2) and the average error is 0.2%.

VI. CONCLUDING REMARKS

In this work we introduced a new modeling scheme for
the neutron detection count distribution in a nuclear reactor
core, based on the SDE approach from [4], and demonstrated
its accuracy and applicability.

It has been established that the model is valid under two
conditions: the detection efficiency is sufficiently small, and
the system is nearly critical. Both conditions are typically met
when reactor noise experiments are held.

Through stochastic analysis of the model, an explicit for-
mula for the detection count distribution was derived, as well
as formulas for its third and fourth central moments. These mo-
ments were compared with experimental results, showing very

good accuracy, with an average error of 0.2% and a maximal
error of 0.98%.

Under the aforementioned conditions, it was shown that
the third and fourth moments of the detection count distri-
bution are functions of the first and second moments. We
conclude from this that sampling the third and fourth central
moments does not add any significant information on the sys-
tem parameters beyond what can be attained from the first and
second moments.

The model introduced here accounts for neutron fluctua-
tions due to the inherent stochastic nature of the fission chain.
In future work it is intended to use this approach to address far
broader noise settings.
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