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Abstract - This paper describes the modifications to the implicit Monte Carlo algorithm for thermal radiative
transfer required to implement the Levermore-Pomraning algorithm and a local realization preserving algo-
rithm for transport in participating binary stochastic media. We also describe the approach for incorporating
the Su-Pomraning modified closure into both stochastic medium transport algorithms. We assess the accuracy
of the various stochastic medium transport algorithms using a thermal radiative transfer binary stochastic
medium benchmark suite. The local realization preserving algorithm with the Su-Pomraning modified closure
is the most accurate model overall for this benchmark suite.

I. INTRODUCTION

In a stochastic medium, the material properties at a given
spatial location are known only statistically [1]. The most
common approach to solving particle transport problems in-
volving binary stochastic media is to use the atomic mix (AM)
approximation [1] in which the transport problem is solved
using ensemble-averaged (homogenized) material properties.
The AM approximation is conceptually simple and computa-
tionally efficient but may not be accurate enough for a given
application depending on the details of the stochastic material
properties. Particle transport through binary stochastic mix-
tures has received significant research attention in the previous
three decades [1, 2]. Much of the research has focused on
the development and analysis of approximate deterministic
models for the solution of such particle transport problems.

A common approximate model developed initially for
solving linear particle transport problems in non-participating
binary stochastic media is the Levermore-Pomraning (LP)
model [1, 2]. The LP model consists of a coupled system of
transport equations for the two materials in the problem. The
LP model is exact for purely absorbing non-participating me-
dia. The accuracy of the LP model for problems with scattering
has previously been studied numerically with deterministic
solution approaches by Adams, Larsen, and Pomraning [3] us-
ing a suite of benchmark problems involving a non-stochastic
isotropic angular flux incident on one boundary of a one-
dimensional planar geometry binary stochastic medium. These
benchmark comparisons demonstrated that the LP model pro-
duces qualitatively correct and semi-quantitatively correct re-
sults for the reflection and transmission values.

Zimmerman and Adams [4] first proposed a Monte Carlo
algorithm that is numerically equivalent to the LP approxima-
tion and another Monte Carlo algorithm that should possess
increased accuracy as a result of improved local material real-
ization preservation. Zimmerman and Adams [4] numerically
demonstrated that the base Monte Carlo LP algorithm solves
the Levermore-Pomraning equations and that the improved
local realization preserving (LRP) algorithm is generally more
accurate by comparing the results of these algorithms to the
standard suite of planar geometry incident angular flux binary
stochastic mixture benchmark transport solutions [3]. Brant-
ley [5] extended the benchmark comparisons of Zimmerman

and Adams to include the material scalar flux distributions as
well as to interior source problems.

Thermal radiative transfer problems are characterized by
a radiation field tightly coupled to a participating material
energy field. Radiative transfer through a stochastic medium
can occur, for example, in inertial confinement fusion targets
in which hydrodynamic instabilities at material interfaces can
produce a turbulent (stochastic) medium. These types of ap-
plications were the original motivation for the seminal work
by Levermore et al. [2], although much of the subsequent
research has addressed linear particle transport problems in
a non-participating medium. Miller [6] and Miller et al. [7]
first investigated the solution of binary stochastic medium ra-
diative transfer problems with a participating medium. They
generated benchmark ensemble-averaged results for a par-
ticular binary stochastic medium radiative transfer problem
and compared the accuracy of the atomic mix approximation,
an adaptation of the standard deterministic LP model to ra-
diative transfer with participating media, and an adaptation
of a deterministic model due to Su and Pomraning [8] that
attempts to incorporate the effects of scattering in the statis-
tical coupling terms arising in the LP model. For the binary
stochastic medium benchmark problem examined, the AM
approximation generally under-predicts transmission of radi-
ation whereas the LP approximation generally over-predicts
transmission. The Su-Pomraning extension of the LP model
(which we refer to as LP-SP) exhibits accuracy improvements
over the LP model for the problems examined by Miller et
al. [7].

The implicit Monte Carlo (IMC) algorithm [9] is the stan-
dard Monte Carlo algorithm for modeling time-dependent ther-
mal radiative transfer problems with a participating medium.
Brantley, Gentile, and Zimmerman [10] previously described
the extensions to the IMC algorithm required to incorporate
the Monte Carlo LP algorithm (LP). In this work, we describe
the further extensions to the IMC algorithm required to in-
corporate the improved local realization preserving algorithm
(LRP) originally proposed by Zimmerman and Adams [4]
for the solution of linear particle transport problems in binary
stochastic media. We also present IMC solutions incorporating
the Su-Pomraning modified closure into the LP (LP-SP) and
LRP (LRP-SP) IMC algorithms. We compare the accuracy of
the atomic mix, LP, LP-SP, LRP, and LRP-SP approximations
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for thermal radiative transfer problems using the benchmark
suite of Miller et al. [7].

The remainder of this paper is organized as follows. We
describe the radiative transfer problem under investigation and
the modifications to the standard implicit Monte Carlo algo-
rithm required to incorporate algorithms for binary stochastic
media in Section II. We then present numerical results from
benchmark problems to assess the accuracy of the proposed
algorithms in Section III. We conclude with a discussion and
suggestions for future work in Section IV.

II. IMC ALGORITHMS FOR BINARY STOCHASTIC
MEDIA

We consider thermal photon transport in a binary stochas-
tic medium described by temporally-stationary and spatially-
homogeneous isotropic Markovian statistics. In the absence
of physical scattering and external sources, the grey radiative
transfer equations for material i, with i = 0, 1 and i , j, are
given by [1, 7]
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Here Ω is the direction of photon travel, t is the time, c is
the speed of light, σa,i is the absorption opacity for material
i, and Λi is the mean chord length (mean slab width in one-
dimensional planar geometry) in material i. Ii

(
r,Ω, t

)
is the

intensity of radiation at position r traveling in direction Ω at
time t conditioned on material i being present at position r and
time t. ur,i = aT 4

i is the equilibrium radiation energy density
in material i, where a is the radiation energy density constant
and Ti is the temperature in material i, and um,i is the material
energy density in material i. The last two terms on the right
side of Eq. (1a) arise from the Levermore-Pomraning closure
for stochastic medium transport and couple materials i and j.
The term 1

Λi
Ii can be interpreted as the rate per unit volume

at which photons at position r and moving in direction Ω exit
material i and enter material j; 1

Λi
can then be interpreted as

a probability per unit path length that a photon in material i
enters material j. The other coupling term has an analogous
interpretation and represents a source of photons entering
material i from material j. The parameter Θ in Eq. (1a) is a
general multiplier on the Markovian transition functions that
can be used to implement modified closure models. Setting the
multiplier Θ = 1 in Eq. (1a) produces the standard LP model.
Eq. (1b) is a material energy balance equation for material i.

The implicit Monte Carlo equations [9] for material i of a
binary stochastic medium including the Levermore-Pomraning
closure for the coupling of the materials [2, 7, 10] are given
by:
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Here a superscript n denotes a quantity evaluated at the begin-
ning of the time step. The quantity

f n
i =

1
1 + βn

i cσn
a,i∆tn , (3)

is the “Fleck factor” in material i that serves to model a portion
of the absorption and subsequent reemission of photons within
a time step ∆tn as effective isotropic scattering, where

βi =
∂ur,i

∂um,i
. (4)

Setting the multiplier Θn = 1 in Eq. (2a) produces the standard
LP model.

1. Su-Pomraning (SP) Closure

The correlation length, Λc, for a binary stochastic medium
with material indices 0 and 1 is given by [1]

1
Λc

=
1

Λ0
+

1
Λ1

. (5)

A small correlation length therefore implies that the mean
slab width for one or both materials is small. Su and Pom-
raning [8] derived a closure multiplier ΘS P by considering
the small correlation length limit and requiring the LP model
with the modified closure to give the correct exponential decay
for a source-free halfline albedo linear transport problem in
rod geometry. Miller et al. [7] applied the modified closure
of Su and Pomraning to the deterministic solution of time-
dependent thermal radiative transfer problems in participating
binary stochastic media and found consistent improvement in
accuracy over the LP model. Brantley [11] described how to
incorporate the Su-Pomraning closure multiplier into linear
Monte Carlo particle transport algorithms for binary stochas-
tic media. Brantley [12] subsequently demonstrated that the
Levermore-Pomraning model with the Su-Pomraning closure
asymptotically limits to the correct diffusion equation with
atomically-mixed material properties for linear transport prob-
lems in a certain asymptotic limit.

Defining an “effective scattering” opacity as

σn
s,e f f ,i = σn

a,i
(
1 − f n

i
)
, (6)

an “effective absorption” opacity as

σn
a,e f f ,i = f n

i σ
n
a,i , (7)

and the total opacity as
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we can rewrite Eq. (2a) as
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For the IMC equations as written in Eq. (9), we can compute
the Su-Pomraning closure multiplier as
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where the ensemble-averaged opacity values are computed
using the material probabilities pi = Λi/(Λ0 + Λ1) as

〈
σn

x
〉

=
p0σ

n
x,0 + p1σ

n
x,1. Setting Θn = Θn

S P in Eq. (9) produces the
LP-SP model.

2. Implicit Monte Carlo Algorithm Modifications

Much of the standard implicit Monte Carlo algorithm
using the atomic mix approximation is unaltered by the in-
troduction of algorithms to model radiative transfer through
a stochastic medium. A Monte Carlo photon must maintain
an additional identifier describing the material in which the
photon is currently located. This material identifier must be ap-
propriately sampled (in proportion to the material probability)
when a photon is created from a source or enters the problem
via an external boundary. The IMC equations are solved us-
ing a spatial mesh with Monte Carlo photons advanced over
time steps. In addition to the standard distance to collision,
distance to zone boundary, and distance to census values that
must be sampled or computed [9], a new event, the distance to
material interface, dinter f ace, is sampled from the appropriate
distribution characterizing the chord lengths in the material.
Assuming Markovian statistics and accounting for the closure
multiplier, a distance to material interface in material i, λi, is
sampled from the exponential distribution

fi (λi) =
Θn

Λi
exp

(
−

Θn

Λi
λi

)
, (11)

resulting in

dinter f ace = −
Λi

Θn ln(ξ) , (12)

where ξ is a random number. The sampling of a distance to
material interface value essentially treats the Θn

Λi
Ii on the right

side of Eq. (9). For the specific case of one-dimensional planar
geometry, a distance to material interface is obtained by sam-
pling a material slab width from the exponential distribution
given by Eq. (11) and dividing by the magnitude of the photon
direction cosine, |µ|, to account for the direction of photon
motion, i.e.,

dinter f ace = −
Λi

|µ|Θn ln(ξ) , (13)

where ξ is a random number.
If the distance to material interface event is selected, the

Monte Carlo photon is moved to the material interface location
and the material identifier changed to the opposite material.
An important aspect of the algorithm in a stochastic medium
is to keep the Monte Carlo photon in the same material when
a zone boundary is crossed to preserve the sampled local
material realization. (This portion of the algorithm must be

modified to account for spatially inhomogeneous material
statistics if present.) In addition, photons retrieved from census
at the beginning of the time step should remain in the same
material in which they were placed into census at the end of
the previous time step to avoid a dependence of the results on
the time step. (This portion of the algorithm must be modified
to account for temporally non-stationary material statistics if
present.) Finally, a material energy balance equation for each
material is required.

The LP and LRP implicit Monte Carlo algorithms differ
in how they treat the distance to material interface values. The
IMC LP algorithm resamples a new distance to material in-
terface in the direction of photon travel, dinter f ace, after every
event – census, effective scattering, material interface crossing,
and zone boundary crossing. As a result, a photon encounters
a different material realization following an effective scatter
which is nonphysical. We therefore expect the IMC LP algo-
rithm to be least accurate in materials with significant effective
scattering ( fi → 0 implying strongly absorbing materials) and
optically-thick mean chord lengths.

In contrast, the IMC LRP algorithm samples distance
to material interface values in the forward and backward di-
rections of photon travel, d+

inter f ace and d−inter f ace, respectively.
When a photon is moved, these distance to material interface
values are evolved appropriately. In one-dimensional planar
geometry, the distance to material interface values in the for-
ward and backward directions are adjusted to account for the
change in direction of flight of the photon after a sampled
effective scattering. The forward and backward distance to
material interface values are switched if the photon is backscat-
tered (i.e., the value of the direction cosine µ changes sign
in one-dimensional planar geometry or using a probabilistic
model in multiple dimensions). If d+

inter f ace is the minimum
distance, the photon is moved to the material interface, the
material identifier is switched, a new d+

inter f ace value is sam-

pled, and d−inter f ace is set to zero. In the IMC LRP algorithm, a
photon can move, undergo effective scatters, and cross zone
boundaries within one material and encounter the same local
material realization, which is physically more realistic than
the LP algorithm. As a result, we expect the IMC LRP algo-
rithm to be more accurate than the LP algorithm. The IMC
LRP algorithm remains approximate if a photon reenters the
same material at the same location within one history, as the
sampled material realization will be different upon reentry.

III. NUMERICAL RESULTS

We implemented the IMC LP, LRP, LP-SP, and LRP-
SP algorithms in an experimental version of the LLNL Kull
IMC package [13]. This IMC package already possessed mul-
tiple material infrastructure that significantly facilitated the
implementation of the modifications required to enable the
stochastic medium algorithms. The implementation of the
stochastic medium transport algorithms is general (multiple
spatial dimensions, multigroup opacities, parallelism via do-
main decomposition and replication), although testing of the
capability to this point has been limited to one-dimensional
planar geometry grey radiative transfer problems.
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1. Linear Transport Benchmark Suite

We simulated the binary stochastic medium linear par-
ticle transport benchmark suite of Adams et al. [3] as an
initial test of the implemented IMC capabilities. This time-
independent one-dimensional planar geometry incident angu-
lar flux benchmark suite includes three material mean chord
length combinations and three material scattering ratio combi-
nations (nine total material cases). The material parameters for
the benchmark transport problems are given in Table II in the
Appendix, where the scattering ratio for material i is defined
as ci = σs,i/σt,i and σs,i and σt,i are the scattering and total
cross sections for material i, respectively. The different case
numbers (i.e., 1, 2, and 3) represent permutations of materials
with mean material slab widths of optical depth 0.1, 1.0, and
10.0. The different case letters (i.e., a, b, and c) represent vary-
ing amounts of scattering for each material. For each set of
material parameters (cases 1, 2, and 3), three sets of scattering
ratio combinations (cases a, b, and c) are considered. We focus
here on a spatial domain size of 10 cm. To solve these linear
transport problems with the IMC implementation, we used a
large specific heat capacity to decouple the transport from the
material. We performed the IMC simulations with 105 Monte
Carlo photons per time step, one hundred uniformly-spaced
zones, and 100 time steps of 5 × 10−9 s.

The cumulative ensemble-averaged reflection and trans-
mission values from our IMC simulations are shown in Ta-
bles III and IV, respectively, in the Appendix. For the cases
simulated, the reflection and transmission values from our
IMC simulations agree with previous independent Monte
Carlo LP and LRP results [5] and Monte Carlo LP-SP re-
sults [11] and unpublished LRP-SP results to typically three
to four digits (significantly better than 1%). These Monte
Carlo results agree with the deterministic S16 LP results in [3]
and the deterministic LP-SP results in [8] to typically two to
three digits. Improved agreement between the Monte Carlo
and deterministic results may be obtained if the determinis-
tic results were generated using higher angular quadrature
orders. These numerical results demonstrate that the basic
Monte Carlo LP, LRP, LP-SP, and LRP-SP implementations
in the IMC package are correct in the linear transport limit.

2. Radiative Transfer Benchmark Suite

We investigate the accuracy of the various IMC algo-
rithms using the binary stochastic medium radiative transfer
benchmark suite of Miller [6] and Miller et al. [7]. This one-
dimensional planar geometry benchmark suite consists of a
strongly absorbing material 0 (σa,0 = 1000 cm−1) with smaller
mean chord length mixed with a more weakly absorbing ma-
terial 1 (σa,1 = 5 cm−1) with larger mean chord length. The
problem spatial domain is given by 0 ≤ z ≤ L = 0.15 cm.
The materials are distributed according to Markovian statistics
(exponentially) with the mean chord lengths given in Table I.
(We note that the mean chord length values are listed incor-
rectly in Ref. [7]; the correct values given in Ref. [6] are
one order of magnitude smaller.) Problem A represents the
most spatial heterogeneity, with the heterogeneity decreasing
in the subsequent problems until the atomic mix limit is ap-
proached in Problem D. For the specified mean chord lengths,

the probability of material i being present, pi = Λi/(Λ0 + Λ1),
is constant for all mean chord length cases. As a result, the
atomic mix approximation result is the same for all cases.
The initial temperature of the materials is Tinit = 30 eV, and a
cosine-distributed source of radiation at 300 eV is present at
z = 0. A special form of the specific heat capacity is assumed,
Cv,i = 4a

ρi
T 3

i , where ρi is the mass density of material i, which
results in a linearization of the material energy balance equa-
tion. We simulated this problem using the IMC package with
the various stochastic medium models using 5 × 106 Monte
Carlo photons per time step, one thousand uniformly-spaced
zones, and an initial time step of 10−15 s with a maximum time
step of 10−12 s.

TABLE I. Radiative Transfer Benchmark Suite Material Pa-
rameters

Problem Λ0 σt,0Λ0 Λ1 σt,1Λ1 Λc

[cm] [-] [cm] [-] [cm]
A 5.0e-3 5.0e+0 5.0e-1 2.5e+0 4.95e-3
B 5.0e-4 5.0e-1 5.0e-2 2.5e-1 4.95e-4
C 5.0e-5 5.0e-2 5.0e-3 2.5e-2 4.95e-5
D 5.0e-6 5.0e-3 5.0e-4 2.5e-3 4.95e-6

For each of Problems A-D in the benchmark suite and
each of the stochastic medium transport algorithms, we plot
the ensemble-averaged temperature energy density at the out-
going edge (z = L) of the spatial domain scaled by the initial
temperature. The ensemble-averaged temperature energy den-
sity is computed from the material temperatures using [7]〈

aT 4
〉

= p0aT 4
0 + p1aT 4

1 , (14)

where pi is the probability of material i being present, as
described above. The material temperature in the simulation
code is zone-centered, so we plot the temperature in the zone
closest to the boundary to represent the value at z = L. We also
plot the ensemble-averaged transmission at the outgoing edge
(z = L) of the spatial domain scaled by the initial temperature,
where the transmission is given by

〈Trans〉 =

〈∫ 1

0
µI (L, µ, t) dµ

〉
. (15)

The ensemble-averaged transmission is numerically computed
by tallying the energy weight of Monte Carlo photons escaping
the domain at z = L. Although not plotted, the LP IMC
results for the exiting ensemble-averaged temperature and
transmission agree with deterministic LP results [6, 7].

We plot in Figs. 1(a) and 1(b) the ensemble-averaged
temperature energy density and transmission at the outgoing
edge (z = L) of the spatial domain for each of the stochastic
medium transport algorithms for Problem A. For this prob-
lem, the atomic mix approximation significantly underpredicts
(~30%) the ensemble-averaged material temperature and trans-
mission. The LP approximation is significantly more accurate
than the atomic mix approximation, somewhat overpredict-
ing (~10%) the temperature and transmission. The improved
material realization preservation of the LRP algorithm results
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in improved accuracy (~6-7%) over the LP algorithm. The
LP-SP algorithm incorporating the SP closure multiplier is
slightly more accurate (~4-6%) than the LRP algorithm. The
LRP-SP algorithm that utilizes both improved local material
realization preservation and the SP closure modifier is the most
accurate (~1%). We observe that the SP closure improves the
accuracy for both the LP and LRP algorithms.
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Fig. 1. Problem A ensemble-averaged quantities at z = L
versus time (×10−12 s)

We plot in Figs. 2(a) and 2(b) the ensemble-averaged tem-
perature energy density and transmission at the outgoing edge
(z = L) of the spatial domain for each of the stochastic medium
transport algorithms for Problem B. The AM approximation
is more accurate for Problem B but underpredicts the tempera-
ture and transmission by ~8-9%. The LP steady state solution
is slightly less accurate than AM, overpredicting the tempera-
ture and transmission by ~11-13%. The LRP algorithm is of
comparable accuracy to the AM approximation with errors of

~8-10%. The SP closure improves the accuracy of both the
LP and LRP algorithms to better than the AM approximation.
The LP-SP algorithm overpredicts the temperature and trans-
mission by ~4-6%, while the LRP-SP algorithm overpredicts
these quantities by ~2-4%. The IMC algorithms using the
SP closure are more accurate than the AM approximation for
Problem B.
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Fig. 2. Problem B ensemble-averaged quantities at z = L
versus time (×10−12 s)

We plot in Figs. 3(a) and 3(b) the ensemble-averaged tem-
perature energy density and transmission at the outgoing edge
(z = L) of the spatial domain for each of the stochastic medium
transport algorithms for Problem C. The AM approximation
is generally accurate (to within ~1%) for Problem C except
for larger errors in the transient phase. The LP and LRP algo-
rithms are more accurate than AM in the transient phase and
slightly less accurate (errors of ~1-3%) in the steady state. The
LP-SP and LRP-SP algorithms using the SP closure are more
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accurate (to within ~1%) than the LP and LRP algorithms that
do not use the SP closure.
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Fig. 3. Problem C ensemble-averaged quantities at z = L
versus time (×10−12 s)

Finally, we plot in Figs. 4(a) and 4(b) the ensemble-
averaged temperature energy density and transmission at the
outgoing edge (z = L) of the spatial domain for each of the
stochastic medium transport algorithms for Problem D. The
LP, LRP, LP-SP, and LRP-SP algorithms are all accurate to
within ~1% for this small mean chord length case. The AM so-
lution limits to the benchmark solution only in the steady state.
The discrepancy in the transient temperature and transmission
profiles between the AM approximation and the benchmark
and other stochastic medium transport algorithm results was
previously observed in [6] and [7]. This discrepancy was sub-
sequently investigated using asymptotic analysis in [14] and
shown to be related to the absence of material transition terms
in the material energy balance equation. We observe that all of

the explicit stochastic medium transport algorithms (LP, LRP,
LP-SP, and LRP-SP) limit to the benchmark result in both the
transient and steady state phases as the atomic mix limit is
approached.
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Fig. 4. Problem D ensemble-averaged quantities at z = L
versus time (×10−12 s)

IV. CONCLUSIONS

We described the modifications to the standard implicit
Monte Carlo algorithm for thermal radiative transfer necessary
to implement multiple approaches for incorporating the effects
of binary stochastic media. We have developed both an LP-
equivalent algorithm and an improved algorithm that locally
preserves the material realization. We have also incorporated
the Su-Pomraning modified closure into both the LP and LRP
algorithms. The IMC LP and LRP algorithms can be more
accurate than the AM algorithm, though not for all test cases
examined. The IMC LRP algorithm is generally more accurate
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than the LP algorithm. The Su-Pomraning closure improves
the accuracy of both the LP and LRP algorithms, with the
LRP-SP algorithm being the most accurate algorithm overall.

In future work, we would like to investigate modifica-
tions of the stochastic medium algorithms to account for non-
homogeneous and non-stationary material statistics. In addi-
tion, we would like to extend the benchmark comparisons to
include multi-dimensional geometry and multiple frequency
groups.
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APPENDIX: LINEAR TRANSPORT BENCHMARK
SUITE MATERIAL PARAMETERS AND NUMERI-
CAL RESULTS

TABLE II. Linear Transport Benchmark Suite Material Parameters

Case σt,0 Λ0 σt,1 Λ1 Case c0 c1

1 10/99 99/100 100/11 11/100 a 0.0 1.0
2 10/99 99/10 100/11 11/10 b 1.0 0.0
3 2/101 101/20 200/101 101/20 c 0.9 0.9

TABLE III. Linear Transport Benchmark Suite Reflection Results

MC IMC
Case Case LP [5] LRP [5] LP-SP [11] LRP-SP LP LRP LP-SP LRP-SP

a 0.3782 0.4009 0.4489 0.4558 0.3780 0.4009 0.4487 0.4556
1 b 0.0586 0.0776 0.0588 0.0778 0.0586 0.0775 0.0587 0.0777

c 0.3695 0.4069 0.4014 0.4218 0.3695 0.4067 0.4012 0.4216
a 0.1805 0.2224 0.2784 0.3194 0.1803 0.2224 0.2782 0.3192

2 b 0.2183 0.2854 0.2187 0.2858 0.2181 0.2852 0.2185 0.2856
c 0.2896 0.4009 0.2890 0.3996 0.2893 0.4006 0.2888 0.3994
a 0.6076 0.6542 0.7242 0.7414 0.6073 0.6537 0.7239 0.7408

3 b 0.0240 0.0360 0.0240 0.0360 0.0239 0.0359 0.0239 0.0359
c 0.3261 0.3990 0.3488 0.4097 0.3259 0.3988 0.3486 0.4094

TABLE IV. Linear Transport Benchmark Suite Transmission Results

MC IMC
Case Case LP [5] LRP [5] LP-SP [11] LRP-SP LP LRP LP-SP LRP-SP

a 0.0264 0.0220 0.0107 0.0101 0.0264 0.0220 0.0107 0.0101
1 b 0.0015 0.0016 0.0016 0.0017 0.0015 0.0016 0.0016 0.0017

c 0.0238 0.0209 0.0140 0.0126 0.0238 0.0209 0.0140 0.0126
a 0.1284 0.1060 0.0670 0.0521 0.1283 0.1058 0.0669 0.0520

2 b 0.1794 0.1953 0.1800 0.1959 0.1791 0.1949 0.1797 0.1956
c 0.1950 0.1956 0.1330 0.1297 0.1948 0.1952 0.1329 0.1295
a 0.2404 0.1980 0.1241 0.1098 0.2398 0.1975 0.1237 0.1096

3 b 0.0757 0.0765 0.0757 0.0765 0.0756 0.0763 0.0756 0.0763
c 0.1197 0.1180 0.0658 0.0633 0.1195 0.1177 0.0657 0.0633


