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Abstract - The Method of Characteristics (MOC) is a well-known and common approach for performing
pin-resolved reactor neutronics simulations in 2-D, but has remained computationally impractical to extend
directly to 3-D. 2-D/1-D methods have commonly been used instead to provide less expensive 3-D solutions,
using a collection of 2-D MOC solvers to treat axial slices of the reactor and coupling them with a collection
of 1-D solvers along each pin cell. These methods tend to work well under certain circumstances, but suffer
poor accuracy and stability in others. In this work, a new 2-D/3-D approach was developed, which couples the
2-D MOC planes using a global 3-D SN solver that operates on an orthogonal, pin-homogenized mesh. The SN

solver employs a pair of correction factors that are calculated using the MOC solvers to maintain accuracy
on the coarse mesh. The 2-D/3-D method was applied to the C5G7 and Takeda benchmark problems. For the
C5G7 benchmarks, 2-D/3-D produced results that were similar to or better than existing 2-D/1-D methods. For
the Takeda cases, the 2-D/3-D method produced much better results and was able to converge a case that the
2-D/1-D methods failed to converge.

I. INTRODUCTION

The Method of Characteristics (MOC) has seen much
interest in the reactor analysis community, especially for its
ability to obtain direct, pin-resolved solutions to the Boltzman
transport equation. While MOC extends easily to 3-D from a
theoretical standpoint, the computational expense of doing so
is considerable and not currently feasible for full-core reactor
simulations. Instead, a class of planar synthesis methods have
been developed, generally referred to as 2-D/1-D methods.
These methods take advantage of the prismatic nature of a
reactor core by decomposing the reactor into a number of ax-
ial slabs, each treated with 2-D, pin-resolved MOC. A series
of 1-D, pin-homogenized axial solvers are then used to treat
the axial dimension. This approach has been adopted by nu-
merous reactor analysis codes, such as CRX[1], DeCART[2],
MPACT[3], and nTRACER[4].

2-D/1-D constitutes a class of methods, depending on the
type of axial solver and transverse leakage approximations
used. Most axial solvers employ some form of diffusion or PN
axial treatments. Many of these methods, especially those
based on diffusion, suffer poor accuracy and convergence
behavior in situations involving strong axial discontinuities
or thin axial planes[5]. Furthermore, diffusion and PN axial

1This manuscript has been authored by UT-Battelle, LLC under Con-
tract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The
United States Government retains and the publisher, by accepting the arti-
cle for publication, acknowledges that the United States Government retains
a non-exclusive, paid-up, irrevocable, world-wide license to publish or re-
produce the published form of this manuscript, or allow others to do so, for
United States Government purposes. The Department of Energy will provide
public access to these results of federally sponsored research in accordance
with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-
access-plan).

solvers become ill-conditioned in problems with void or near-
void regions.

To address these issues, a new 2-D/3-D method was de-
veloped, which employs a global 3-D, pin-homogenized SN
sweeper in lieu of the 1-D axial solvers. A corrected dia-
mond difference (CDD) SN formulation is used to maintain
accuracy and conditional equivalence between the SN sweeper
and its underlying 2-D MOC sweepers. In this work, we de-
scribe a number of such methods and apply them to the C5G7
benchmark rodded configurations and the Takeda Model 1
benchmark problems.

II. THEORY

The 2-D/3-D approach is based upon the discrete ordi-
nates, multi-group form of the transport equation solved on
an orthogonal grid. Having applied the discrete ordinates and
multi-group discretizations in angle and energy, the transport
equation has the form

Ω̂n · ∇ψn
g(r) + Σt,g(r)ψn

g(r) =
∑
g′∈G

∑
n′∈N

wnΣn′n
s,g’g(r)ψn

g(r)+

1
k
χg(r)

4π

∑
g′∈G

νΣf,g′ (r)
∑
n∈N

ψn
g′ (r)wn. (1)

Here, n is used to denote the discrete angle index and g is the
energy group index. Going forward, the group index will be
elided for brevity, and the scattering and fission sources are
combined into a total source Qi jk. Integrating Eq. (1) over an
element of an orthogonal mesh bounded by xi−1/2 < x < xi+1/2,
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Fig. 1: MOC ray trace through a pin-homogenized mesh.

y j−1/2 < y < y j+1/2, and zk−1/2 < z < zk+1/2 gives
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Assuming that the angular flux incident upon the mesh ele-
ment are known, Eq. (2) constitutes a single equation with 4
unknowns. Previous work[6, 7] developed the CDD equations
to provide closure to the above equation. These are similar
in form to the classical diamond difference (DD) equations,
but incorporate a pair of correction factors, which enforce
streaming and collision behavior from an underlying fine-mesh
solution:

ψ̄n = βn
i jkα

n
x,i jk

(
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i−1/2, j,k

)
and (3a)
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)
. (3b)

The terms αn
x,i jk and αn

y,i jk are streaming correction factors,
calculated using known streaming behavior from a fine-mesh
MOC sweep as

αn
x,i jk =
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where ψ̄F
i j is the MOC angular flux homogenized onto coarse

mesh element (i, j, k). The terms ψF
i±1/2, j,k and ψF

i, j±1/2,k are the
MOC angular flux averaged over the x- and y-normal coarse
mesh surfaces, respectively, as depicted in Fig. 1.

A collision correction factor,

βn
i jk =

Σ̄n
t

Σt
, (5)

preserves the reaction rates from the fine-mesh MOC sweeper
within the coarse-mesh SN mesh element. In the definition
of βi jk, Σ̄n

t is an angular flux-weighted total cross section,
also determined using the fine-mesh MOC sweeper. These
correction factors (βnαn

x,i jk and βnαn
y,i jk) must be stored for

each angle, energy group and pin cell. While this does carry a
memory burden, as we discuss later this burden is minor under
most realistic circumstances.

For 2-D problems it can be shown that using converged
correction factors in a coarse-mesh SN sweeper will yield
an equivalent solution to the fine-mesh 2-D MOC sweeper
that produced them. Since the correction factors are being
determined using a 2-D sweeper, extension to 3-D problems
requires an un-corrected auxiliary relation to treat the axial
dimension in the SN solver. In this work we consider the con-
ventional diamond difference and step characteristics schemes.

1. Diamond difference axial treatment

The uncorrected diamond difference equation,

ψ̄n =
1
2

(
ψn

i, j,k+1/2 + ψn
i, j,k−1/2

)
, (6)

along with the Eqs. (3) can be used to eliminate the cell-
exiting fluxes from Eq. (2) producing an expression for the
cell-average flux,
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,

η ≷ 0, ε ≷ 0, µ ≷ 0. (7)

Cell-exiting fluxes are then calculated using Eqs. (3) and (6).
The diamond difference scheme is very rudimentary and

computationally inexpensive, but it is not unconditionally pos-
itive; under certain conditions it can lead to negative angular
fluxes. While occasional negative fluxes may be tolerated,
they tend to lead to convergence issues, and may even result
in negative scalar fluxes. To avoid this, it sometimes becomes
necessary to apply a negative flux fix-up, where negative cell-
exiting fluxes are set artificially to zero and the cell-average
flux is recalculated using a modified difference relation. While
running the benchmarks discussed in this work, the negative
flux fix-up approach was necessary to converge some of the
cases discussed below.

2. Step characteristics axial treatment

The well-known step characteristics scheme[8] was also
used to treat the axial dimension. This scheme can be written
as

ψ̄n
k = ρn

kψ
n
k∓1/2 +

(
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(9)

and τn
k is the apparent optical thickness of cell k for angle n,

τn
k =

Σt,k∆zk

|µn|
. (10)
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Using this along with the CDD equations in Eq. (2) produces
the following expression for the cell-average flux:

ψ̄i jk =
Qi jk +
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+
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∆zk(1−ρ) + Σtr,i jk
,

η ≷ 0, ε ≷ 0, µ ≷ 0. (11)

The step characteristic scheme tends to be less accurate than
the diamond difference scheme, but has the beneficial feature
that given positive cross sections and sources, it will always
produce positive fluxes.

3. SN-MOC coupling

In previous work[6, 7], a one-way coupling method was
employed, in which separate eigenvalue solutions were ob-
tained for each axial slab of a reactor using a 2-D MOC solver.
At convergence, correction factors and flux-weighted cross
sections were calculated on a pin-homogenized mesh using
the resulting flux distribution. These were then composed
to form a 3-D mesh representing the global problem, and a
CDD-based SN was used to obtain the global solution. This
method had a number of drawbacks. First, axial streaming
effects were neglected in the calculation of the SN data, af-
fecting the accuracy of the MOC solutions used to determine
the correction factors and cross sections. Second, it presented
difficulty in treating axial regions with little or no fissile ma-
terial, because the resulting 2-D eigenvalue problem would
either be impossible, or wildly unrepresentative of the actual
system being simulated. In such cases, it became necessary to
use less-accurate volume-weighted cross sections and eschew
correction factors entirely in those regions.

In this work, a two-way coupling scheme –very similar to
existing 2-D/1-D methods– is employed, in which transverse
leakage sources determined using the 3-D SN sweeper are used
to inform the 2-D MOC plane sweepers of axial streaming
behavior. Transverse leakage arises from performing an axial
decomposition of the reactor into slabs and integrating Eq. (1)
over the height of each slab, giving(
ηn ∂

∂x
+ εn ∂

∂y

)
ψn

g(x, y) + Σt,gψ
n
g(x, y) + L(x, y)g

n = Qn
g(x, y),

(12)
where L(x, y)n

g is the transverse leakage term,
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Here we have made the flat-in-space, isotropic-in-angle ap-
proximation that is common among 2-D/1-D methods. In
practice, the transverse leakage is usually applied by subtract-
ing it to the left-hand side of Eq. (12) and incorporating it into
the source variable.

Using the above transverse leakage definition, the SN
and MOC sweepers are coupled within a power iteration to

Fig. 2: Meshes used for the MOC (left) and SN (right) sweep-
ers.

converge the system eigenvalue and flux distribution. For each
power iteration, the following steps are performed:

1. An updated global, coarse-mesh flux distribution and
system eigenvalue are obtained using the CMFD acceler-
ation technique[9].

2. Axial currents from the CMFD solution are used to com-
pute transverse leakage sources, which are applied to the
planar MOC sweepers.

3. A number of MOC sweeps are performed on each plane.
Following the last MOC sweep, CDD correction factors
and flux-weighted cross sections are calculated on the SN
mesh.

4. A number of SN sweeps are performed using the correc-
tion factors and cross sections calculated by the MOC
sweepers. During the last SN sweep, cell interface cur-
rents are calculated to be used by the CMFD accelerator.

This process is repeated until converged.
The MOC sweeper operates on a pin-resolved mesh in

the x and y directions, but is usually rather coarse in the axial
dimension. The SN sweeper operates on pin-homogenized
mesh, but with potentially smaller axial regions, as depicted in
Fig. 2. This allows for the SN sweeper to better resolve axial
behavior without requiring an accordingly large number of
MOC planes.

III. RESULTS AND ANALYSIS

The 2-D/3-D methods described above were applied to the
3-D C5G7[10] and Takeda[11] benchmark problems, along
with the old one-way 2-D/3-D method. 2-D/1-D methods
based on the Nodal Expansion Method (NEM) and P3 axial
solvers were also used for comparison. The C5G7 cases were
used to demonstrate accuracy and computational performance
of the methods in a Light Water Reactor (LWR)-like scenario.
The Takeda cases feature a smaller critical system with strong
3-D material discontinuities and a near-void region, both of
which stress common 2-D/1-D methods.

The 2-D/3-D results were obtained using MOCC[12], a
new MOC code developed as a test bed for such methods,
while the 2-D/1-D results were obtained using the MPACT
code. All methods used identical mesh, ray, and angular dis-
cretizations for each problem. The various methods are re-
ferred to using the following abbreviations:
• 2D1D NEM: 2-D/1-D with NEM axial treatment.
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Fig. 3: C5G7 top view.

• 2D1D P3: 2-D/1-D with P3 axial treatment.
• 2W CDD-DDFF: 2-D/3-D with two-way coupling, dia-

mond difference axial treatment and negative flux fix-up.
• 2W CDD-DD: 2-D/3-D with two-way coupling, CDD

correction factors, diamond difference axial treatment, no
negative flux fix-up.

• 2W CDD-SC: 2-D/3-D with two-way coupling, CDD
correction factors, step characteristics axial treatment.

• 1W DD: 3-D SN using diamond difference with flux-
weighted cross sections from standalone 2-D MOC solu-
tions.

• 1W CDD-DD: 3-D SN with CDD correction factors and
flux-weighted cross sections. Uncorrected diamond dif-
ference axial treatment.

1. C5G7 Benchmarks

The C5G7 benchmark is a small, 4-by-4 assembly reactor
typically modeled in 1/8 symmetry. The assemblies in the
active core region are 17-by-17 arrays of fuel pins of various
compositions and control rods/guide tubes. The benchmark is
comprised of three cases with different control rod configura-
tions, depicted in Figs. 3-6. The hashing in Figs. 4-6 indicate
the presence of control rods at in each assembly and axial
level.

Each configuration was simulated using all of the above
methods. For the cylindrical pins, a mesh similar to the one
depicted in Fig. 1 was used with 5 radial rings in the non-
moderator regions, 2 extra rings in the moderator and 8 az-
imuthal subdivisions throughout. Homogeneous regions, such
as in the radial reflector were represented using a rectangular
mesh with 5 equally-spaced subdivisions in the x and y direc-
tions per unit cell. The rays were spaced at a nominal distance
of 0.05 cm, using a Chebychev quadrature with 16 azimuthal
angles and a Gauss quadrature with 4 polar angles per octant,
for a total of 64 angles per octant. All MOC plane heights
were 3.57 cm, yielding a total of 18 MOC planes. For the
2-D/3-D cases, the SN sweeper operated on a 0.714 cm axial
mesh, giving 5 SN mesh regions per MOC plane.

A. Accuracy

Eigenvalue results are presented in Table I. The aggregate
pin power metrics of average error (AVG), mean relative error

1
4
.2

8
 c

m
1
4
.2

8
 c

m
1
4
.2

8
 c

m
2
1
.4

2
 c

m

UO2 MOx

21.42 cm 21.42 cm 21.42 cm

UO2MOx

21.42 cm 21.42 cm 21.42 cm

A B
Fig. 4: C5G7 unrodded configuration side view.

1
4
.2

8
 c

m
1
4
.2

8
 c

m
1
4
.2

8
 c

m
2
1
.4

2
 c

m

UO2 MOx

21.42 cm 21.42 cm 21.42 cm

UO2MOx

21.42 cm 21.42 cm 21.42 cm

A B
Fig. 5: C5G7 rodded configuration A side view.

1
4
.2

8
 c

m
1
4
.2

8
 c

m
1
4
.2

8
 c

m
2
1
.4

2
 c

m

UO2 MOx

21.42 cm 21.42 cm 21.42 cm

UO2MOx

21.42 cm 21.42 cm 21.42 cm

A B
Fig. 6: C5G7 rodded configuration B side view.



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

(MRE) and root mean squared (RMS) error,
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∑
N
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√√∑
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e2
n

N

MRE =

∑
N
|en| · pn

N · pavg
,

are presented in Table II.
The two-way coupling methods show good performance

at predicting system eigenvalue; they are uniformly better than
2-D/1-D NEM, but similar or somewhat worse in accuracy
to the 2-D/1-D P3. On the other hand, the pin power predic-
tions of the CDD 2-D/3-D methods were better than both the
NEM and P3 methods, suggesting that the 2-D/3-D method
produces a more accurate spatial flux distribution. Compar-
ing results between the 2W CDD-DD and 2W CDD-DDFF
methods demonstrates that the negative flux fix-up has little
effect on the unrodded and rodded A cases, but considerable
impact on the accuracy in the rodded B case. The rodded B
case exhibits more drastic axial discontinuities and therefore
produces more negative fluxes. It should be noted that the
unrodded and rodded B cases would not converge with CMFD
acceleration enabled without the negative flux fix-up. The step
characteristic axial treatment tended to produce only slightly
worse results than the diamond difference axial treatment.

B. Spatial variation of correction factors

Comparisons were also made between the CDD correc-
tion factors produced using the one-way and two-way schemes.
Figure 7 shows the axial variation of the correction factors
along a single fuel pin within a MOX assembly from rodded
configuration B. To aid in visualization, an angular integral
of the variation of the correction factors from their trivial
value is presented, rather than the factors themselves. In some
regions, the two-way factors vary appreciably from their one-
way counterparts, especially in the vicinity of control rod tips.
This highlights the importance of incorporating transverse
leakage in the MOC calculations when calculating suitable
correction factors.

C. Computational cost

Since many aspects of the 2-D/3-D and 2-D/1-D methods
are nearly identical, an effective means by which to assess
their relative runtime costs is to compare the fraction of time
spent in the “axial” solver rather than the MOC solver. In
all of these cases, the 2-D/1-D NEM axial solver constituted
about 2% of the solve time, while the 2-D/1-D P3 method
used around 12%. By contrast, the two-way 2-D/3-D methods
spent approximately 25% of the solve time in the SN sweeper.
This indicates that as implemented, the 2-D/3-D methods are
more expensive than most 2-D/1-D methods.

Furthermore, storage of the correction factors requires
extra memory. For the cases presented, a total of about 1.2 GB
was needed to store these factors. In a more realistic full-core
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Fig. 7: Axial variation of CDD correction factors with and
without transverse leakage coupling for a fuel pin in a MOX
assembly from rodded configuration B, group 1.

case, this would closer to the range of 80-90 GB, though it
should be noted that such analyses are typically performed
using thousands of CPU cores, leading to a memory burden of
mere tens of MB per core.

2. Takeda Benchmark

The C5G7 benchmarks tend to be well suited for the
2-D/1-D methods, which behaved well and produced good
results. However, Model 1 from the Takeda benchmarks (de-
picted with 1/8 symmetry in Fig. 8) presents more of a chal-
lenge to 2-D/1-D methods due to the presence of a void region
and stronger axial streaming effects. Model 1 is a two-group
problem consisting of a 15 cm cube of fissile material in a
10 cm blanket of polyethylene moderator. Two control rods
can be inserted through channels on either side of the core
region. In Case 2, these control rods are inserted. In Case 1,
the rods are removed, leaving behind a voided region. The
void region in Case 1 presents a challenge to most 2-D/1-D
methods, since the underlying diffusion- and PN-based axial
solvers become ill-conditioned when the total cross section
becomes small. This makes the Takeda benchmark a good
candidate for 2-D/3-D methods, which are less susceptible to
these issues.

Both cases were simulated using the 2-D/3-D CDD-
DDFF method and the 2-D/1-D NEM and P3 methods. Again,
all methods employed the same discretization; the MOC
sweepers used a relatively fine square mesh where ∆x = ∆y =
1
15 cm and a plane height of 5 cm. The SN sweeper operated on
a 1 cm cube mesh, for 5 axial SN regions per MOC plane. The
2-D/1-D methods were unable to converge the first case with
the void regions, but did manage to produce results for the rod-
ded case. Eigenvalue results are presented in Table III, along
with their variation from the published reference solution. Ta-
ble IV contains the errors in the calculated region-averaged
fluxes compared to the published reference solution.

Figure 9 presents the streaming correction factors for en-
ergy group 1 and the angle indicated by the arrow at the system
mid-plane. Spatial variation of the correction factors exhibit
some interesting behavior. For the indicated angle, the y cor-
rection factors vary considerably more than the x factors from
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TABLE I: Eigenvalues for all three C5G7 cases using various methods.

Unrodded Rodded A Rodded B
Eigenvalue Error Eigenvalue Error Eigenvalue Error

Reference 1.14308 ±6.0 1.12806 ±6.0 1.07777 ±6.0
2D1D NEM 1.14220 -88.16 1.12727 -78.90 1.07635 -141.87
2D1D P3 1.14281 -27.49 1.12791 -15.25 1.07745 -31.68
2W CDD-DDFF 1.14328 20.29 1.12849 43.44 1.07714 -63.34
2W CDD-DD 1.14328 20.13 1.12849 43.46 1.07819 42.34
2W CDD-SC 1.14276 -31.51 1.12764 -41.72 1.07691 -85.97
1W DD 1.14435 126.75 1.12876 70.44 1.07560 -217.07
1W CDD-DD 1.14286 -21.67 1.12831 24.99 1.07814 37.46

TABLE II: C5G7 2-D pin power metrics.

Unrodded
AVG MRE RMS Max Error

2D1D NEM 0.57% 2.79% 0.61% 2.94%
2D1D P3 0.57% 2.78% 0.61% 2.97%
2W CDD-DDFF 0.38% 1.79% 0.44% 2.44%
2W CDD-DD 0.38% 1.79% 0.44% 2.44%
2W CDD-SC 0.40% 1.75% 0.45% 2.24%
1W DD 1.59% 9.56% 2.08% 6.85%
1W CDD-DD 0.38% 1.80% 0.44% 2.56%

Rodded A
AVG MRE RMS Max Error

2D1D NEM 0.57% 3.55% 0.62% 2.66%
2D1D P3 0.57% 3.63% 0.62% 2.68%
2W CDD-DDFF 0.38% 2.40% 0.45% 2.16%
2W CDD-DD 0.38% 2.40% 0.45% 2.16%
2W CDD-SC 0.41% 2.20% 0.48% 2.15%
1W DD 1.49% 10.77% 1.84% 7.64%
1W CDD-DD 0.38% 2.72% 0.45% 2.09%

Rodded B
AVG MRE RMS Max Error

2D1D NEM 0.61% 4.09% 0.72% 3.12%
2D1D P3 0.57% 4.17% 0.64% 2.76%
2W CDD-DDFF 0.43% 3.10% 0.51% 2.43%
2W CDD-DD 0.38% 2.79% 0.47% 2.29%
2W CDD-SC 0.46% 3.19% 0.56% 2.52%
1W DD 1.64% 13.88% 2.04% 9.52%
1W CDD-DD 0.38% 3.04% 0.47% 2.17%

their trivial value of 1
2 , especially near material discontinuities.

This is expected because the presented angle has a very small
y component, which has the effect of stretching the appar-
ent optical thickness of each cell along the y direction. This
lengthening of the cells would lead to a less accurate result in
the SN sweeper if uncorrected diamond difference were used.
Therefore a larger correction is required to maintain confor-
mance with the better-resolved MOC solution. In general, the
correction factors in the interior of the homogeneous regions
are very close to their trivial values.

Comparing the Case 2 results shows that the 2-D/3-D
method greatly out-performed the 2-D/1-D methods in pre-
dicting the system eigenvalue and region fluxes. Furthermore,
the NEM and P3 methods required 28 and 20 iterations to
converge, respectively, while the 2-D/3-D method required
only 8 iterations.

The improved accuracy and convergence behavior of the
2-D/3-D results suggest that the method is especially valuable
for certain types of systems which do not lend themselves well
to existing 2-D/1-D methods.

TABLE III: Eigenvalue results and error for Takeda Model 1.

Case 1

Reference 0.97800 ±0.0006
2-D/1-D NEM -
2-D/1-D P3 -
2-D/3-D CDD-DDFF 0.97728 (-73 pcm)

Case 2

Reference 0.96240 ±0.0006
2-D/1-D NEM 0.95325 (-950 pcm)
2-D/1-D P3 0.95812 (-445 pcm)
2-D/3-D CDD-DDFF 0.96245 (6 pcm)

IV. CONCLUSIONS

With the application of a transverse leakage-based two-
way coupling scheme, the 2-D/3-D method continues to show
promise. Accuracy is shown to be on par with existing and
commonly-used 2-D/1-D methods under typical LWR condi-
tions. Under different circumstances with strong axial stream-
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Fig. 8: Takeda benchmark Model 1 geometry.

TABLE IV: Variation of region-averaged scalar flux from
published reference solution for Takeda Model 1.

2-D/1-D NEM
Case 1 Case 2

Group 1 Group 2 Group 1 Group 2

Core - - -1.547% 0.035%
Reflector - - 4.443% 4.435%
Control Rod - - 0.516% 1.069%

2-D/1-D P3
Case 1 Case 2

Group 1 Group 2 Group 1 Group 2

Core - - -0.845% -0.090%
Reflector - - 1.559% 1.872%
Control Rod - - 0.301% 0.076%

2-D/3-D CDD-DDFF
Case 1 Case 2

Group 1 Group 2 Group 1 Group 2

Core 0.228% 0.215% -0.376% -0.173%
Reflector 0.360% 0.172% -0.066% 0.232%
Control Rod 0.152% -0.112% 0.073% -0.082%
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Fig. 9: Streaming correction factors αx (top) and αy (bottom)
for group 1 and the angle indicated from the core midplane of
Takeda Model 1, Case 2.
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ing effects and void regions, such as the Takeda benchmark, the
2-D/3-D method greatly out-performs typical 2-D/1-D meth-
ods. Runtime and memory costs could still use improvement,
however, and SN optimizations and more efficient methods of
storing the correction factors are important areas for future
work. With the increasing importance of heterogeneous archi-
tectures and on-node parallelism, the SN portion of a 2-D/3-D
solver is a prime candidate for offloading to a GPU or similar
co-processor. Work at ORNL[13] has shown that speedups of
orthogonal-mesh SN sweeps are indeed possible on the GPU.

So far, the 2-D/3-D method has only been applied to rel-
atively simple benchmark problems with small systems and
few energy groups. To gain confidence in the 2-D/3-D method
for real full-core reactor analyses with much larger spatial do-
mains and realistic cross sections, more complicated systems
need to be simulated. Implementation of the 2-D/3-D method
in a production-quality code such as MPACT will allow ac-
cess to such applications, such as the CASL AMA benchmark
problems[14] or the MIT BEAVRS benchmark[15].
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