
M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

Transport Sweeps Using an Improved Slice Balance Approach with LDFE and GPU Acceleration

Richard M. Vega, Marvin L. Adams

Texas A&M University, Department of Nuclear Engineering
richard_vega@tamu.edu, mladams@tamu.edu

Abstract - This paper presents an improvement to the traditional Slice Balance Approach (SBA) that is more
accurate and allows for a new method of parallelization of discrete ordinates transport sweeps. The accuracy
of the new approach is compared to the traditional cell balance and slice balance methods for both the
diamond difference (DD) and linear discontinuous finite element (LDFE) spatial discretization schemes. The
results show that the alterations made to the traditional SBA reduce numerical diffusion of the solution in the
vicinity of discontinuities for both DD and LDFE. A manufactured solution is used to confirm that the second
order convergence rate of the LDFE spatial discretization scheme is retained for a smooth solution when the
improved SBA is applied. The new method of parallelization exhibits no processor idle time and allows for
an arbitrary domain decomposition scheme, with no restriction on the smoothness of the inter-node domain
boundaries. These advantages are gained at the cost of higher communication and memory demand. The
added communication is coalesced into a small number of messages, and the added memory requirement is
that the entire mesh (not the entire solution) be duplicated on each node. This added memory requirement is
roughly 320 bytes per spatial cell in the mesh. A weak scaling study is performed to characterize the parallel
efficiency of the proposed method. Furthermore, through the use of graphics processing units (GPUs) the
time required to compute geometric quantities on a per-slice basis, which cannot be pre-computed and stored
due to excessive memory requirements, can be significantly reduced, and perhaps even hidden altogether by
pipe-lining the geometric setup and transport sweep routines on the GPU and CPU respectively.

I. INTRODUCTION

The SBA was introduced by Grove [1] as a multiple bal-
ance method, as defined by Morel and Larsen [2], for solving
the discrete ordinates (SN) equations on arbitrary unstructured
meshes. It is an inherently face-based method whereby each
cell of the spatial mesh is decomposed into slices, each of
which intersects a single inlet and single outlet face (or edge in
2-D) for a given ordinate. The streaming-plus-collision opera-
tor is inverted independently on each slice for each direction,
so the slices can be viewed as a mesh that is finer than the
cell-wise mesh.

Besides the accuracy gained by the increased spatial reso-
lution, SBA gains accuracy by a more consistent representation
of particle streaming in a way reminiscent of the Method of
Characteristics (MOC). Consider the 2-D example of a sliced
quadrilateral cell shown in Figure 1. In a cell balance method,
the flux in the cell interior and the fluxes exiting on the right
and top edges would all be influenced by the fluxes entering
on the left and bottom edges. However, the flux entering on
the left edge should not influence the flux exiting on the right
edge. With the SBA, this non-physical causality is avoided.

The SBA solves for the interior and exiting fluxes of
each slice using a prescribed balance method such as a finite
element method, and uses these slice-wise fluxes to construct
the interior and exiting cell-wise fluxes. In the example shown
in Figure 1, the cell interior flux would be constructed from
the interior fluxes of the three slices, the flux exiting the cell
on the top face would be constructed from the exiting fluxes
of Slices 1 and 2, and the flux exiting the cell on the right face
would be the exiting flux of Slice 3.

Fig. 1. Example of a sliced quadrilateral cell.

On a per-cell basis, the non-physical causality noted above
is avoided by the SBA. However, on a per-face basis it is not.
To see why, consider an identical cell to that in Figure 1 placed
on top of the depicted cell, composed of Slices 1’, 2’, and 3’
as shown in Figure 2, ignoring the dotted line for the moment.
In this new cell, the flux entering on the bottom face is given
by the flux exiting the top face of the original cell, which was
constructed from Slices 1 and 2. In the SBA, this flux would
be used as the incoming fluxes for Slices 2’ and 3’. Physically
however, the flux leaving Slice 1 should not influence the flux
entering Slice 3’.

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

Fig. 2. Example of two adjacent cells illustrating the concept
of a sub-slice.

It is this smearing of the facial fluxes that we attempt to
reduce in the proposed method by exploiting the concept of a
sub-slice. Where a slice is defined as the cell region bounded
by a single inlet-outlet face pair, a sub-slice is defined as the
portion of a slice that is downstream of a single slice in the
upstream cell, as shown in Figure 2. While the balance method
is still applied to each slice, and the cell interior flux is still
constructed from the slice values, the cell facial fluxes are
not. The incoming fluxes are stored on the sub-slices, and
the slice can be treated only after all of its contained sub-
slices have received their incoming flux information from their
upstream slices. At this point the sub-slice incoming fluxes
are appropriately averaged for use in the parent slice.

The careful observer will note that this alteration to the
SBA only serves to propagate discontinuities into the cell im-
mediately downstream, and further non-physical causalities
are indeed still present. For instance, placing a third cell on
top of the cells in Figure 2 composed of Slices 1”, 2”, and
3”, we can see that the flux entering Sub-Slice 2”-2 would
be determined by the flux exiting Slice 2’, which was influ-
enced by the exiting fluxes of Slices 1 and 2. However, the
flux exiting Slice 2 should not influence the incoming flux in
Sub-Slice 2”-2. It should also be noted that propagating dis-
continuities throughout the entire mesh in this fashion would
result in a more computationally cumbersome beast than either
the MOC or SN methods. One goal of this research is to de-
termine what effect this single cell downstream discontinuity
propagation has on the numerical solution with relatively little
added cost to the traditional SBA. This will be examined by
the propagation of a single ray in 2-D in section III.

The alterations made above to the SBA also lead to the
possibility of a new strategy for the parallelization of the SN
transport sweep. Current SN transport sweep parallelization
strategies involve spatial domain decomposition across shared
memory nodes, where the inter-node domain boundaries are
usually kept planar to avoid re-entry of a ray in the discrete
ordinate direction, and each node owns the mesh and solution
on its portion of the spatial domain. A node on the boundary
then performs a sweep within its domain, and communicates
the outgoing fluxes to the domains downstream in the direction
of the given ordinate. At this point the original node is free to
start the sweep for the next ordinate, while the downstream
nodes start the sweep on the previous ordinate. In this way,
communication is minimized, and memory demand is reduced
as much as possible. This comes at the cost of frequent com-
munication, even if the total amount of data communicated
is minimized, and more importantly idle time as nodes in the
interior of the domain wait for data at the start of the problem,
and are idle again at the end of the problem as the sweep
reaches the domain boundary for the final outward-directed
angles.

To illustrate a parallelization strategy that exhibits zero
idle time, and is made possible by the improved SBA discussed
above, consider the cubic domain meshed by arbitrary polyhe-
dra shown in Figure 3. If we were to draw “cut planes” through
the mesh as shown in Figure 4, and further refine the definition
of a slice such that no slice straddles a cut plane, the transport
sweep within each region bounded by consecutive cut planes
is now independent of the sweeps being performed in all other
such regions. These cut planes divide the domain into we will
refer to as pipes. In the example shown in Figure 4, the sweep
in each pipe would be performed by a single node, without
any communication occurring during the sweep. Furthermore,
since the sweep in each angle is independent of the sweep in
any other angle, several angles can be swept simultaneously,
each with its own pipe decomposition. For instance, if there
were 16 nodes, 2 angles could be swept simultaneously, each
with a decomposition consisting of 8 pipes.

Fig. 3. A cubic domain meshed by arbitrary polyhedral cells
viewed from upstream in the discrete ordinate direction.

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

Fig. 4. Pipe decomposition of the domain depicted in Figure 3,
defined by five bounding planes parallel to Ω and perpendicu-
lar to the page.

While no communication is necessary during each sweep,
communication before and after the sweep is necessary. With
an arbitrary domain decomposition where each node is as-
signed a region of the mesh for which to store the solution,
each node must communicate the source moments as well as
the total cross section in each of its local cells to the nodes
whose pipes contain these cells. The nodes containing these
cells in their pipes will have to communicate the contribution
to the solution for these cells back to the node that owns these
cells when the sweep is completed.

In this way, volumetric information is communicated be-
tween nodes instead of boundary information, resulting in
larger messages, but fewer of them. This minimizes the cost
of message passing latency which is typically orders of mag-
nitude higher than the cost of per byte communication. The
benefit of using an arbitrary domain decomposition scheme
to assign cells to nodes for storage of the solution is easy to
see for anyone who has tried decomposing an unstructured
mesh into regions with flat boundaries. Such regions may
not exist naturally in most problems of interest, and such a
restriction can be even more difficult to implement given that
load balancing is important.

One notable drawback to this parallelization strategy is
that the entire mesh geometry must be known by every node
in order to construct the slices and sub-slices within its pipe.
The mesh can be described by the point coordinates, point in-
dices on each face, face indices on each cell, cell centroids and
volumes, and face normal vectors. In the limit where this be-
comes prohibitive, a hybrid method can be used whereby large
portions of a mesh are stored on a subset of nodes, with inter-
face fluxes communicated as needed. This will be addressed
in a future communication.

Another difficulty is presented when applying a finite
element method to each slice, although this difficulty is present
in the traditional SBA as well. Finite element methods require

various volume and area moments of the spatial cell as matrix
coefficients. In a cell balance method, this information is
typically computed before the simulation begins, and stored in
memory for re-use during each sweep. The same information
would be required for each slice in a slice balance method,
however there is now a different, higher resolution mesh for
every angle in the SN quadrature set. Storage of geometric
quantities for every slice resulting from every angle becomes
prohibitive, and hence these quantities must be re-computed
each time the domain is swept. While it seems counterintuitive
to compute the same quantities hundreds or even thousands of
times, if the time to compute these quantities can be reduced
to a small fraction of the overall sweep time, re-computing
them may be preferable.

II. THEORY

While the improved SBA presented here has been applied
to both the diamond difference and LDFE spatial discretization
schemes in 2-D, the origin of this research was the application
of the LDFE scheme with the traditional SBA in 3-D. The
mathematics involved in such an endeavor were presented
by Kennedy, Watson, and Grove[3], however no results were
presented, and to the authors’ knowledge, no such implemen-
tation exists. The alterations made to the SBA mentioned
above were devised during such an implementation. For these
reasons, and due to the fact that diamond difference implemen-
tations are relatively straight-forward, we will focus primarily
on the LDFE scheme with the improved SBA in 3-D. We begin
by writing the energy-independent, steady-state, fixed source
transport equation for angle m and slice s as

Ωm · ∇ψm,s(r) + σt,s ψm,s(r) = qm,s(r) . (1)

We then expand the angular flux ψm,s(r) in the linear discon-
tinuous basis functions {bs

i (r)}i=c,x,y,z

ψm,s(r) =
∑

i=c,x,y,z

bs
i (r)ψi

m,s , (2)

where

bs
c(r) = 1; bs

x(r) =
2 (x − x̄s)

∆xs
;

bs
y(r) =

2 (y − ȳs)
∆ys

; bs
z(r) =

2 (z − z̄s)
∆zs

.

We then multiply equation 1 by a set of weight functions
{ωs

j(r)} j=c,x,y,z, spanning the same linear space as the basis
functions above

ωs
c(r) = 1; ωs

x(r) = 3
2 (x − x̄s)

∆xs
;

ωs
y(r) = 3

2 (y − ȳs)
∆ys

; ωs
z(r) = 3

2 (z − z̄s)
∆zs

.

We then integrate over the volume of the slice to arrive at the
following system of equations for each slice

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

	
∂Vs

ωs
j (r)ψm,s (r) (Ωm · n) d2r +

∑
i=c,x,y,z

$
Vs

(
−Ωm · ∇ω

s
j (r) bs

i (r)ψi
m,s+

σt,s ω
s
j (r) bs

i (r)ψi
m,s

)
d3r =$

Vs

ωs
j (r) qm,s (r) d3r . (3)

Note that Ωm · n = 0 on all slice faces except for the slice
inlet and outlet, and hence the first term reduces to the sum of
integrals over these two faces. The integrals over the inlet face
can be performed while sweeping since we are using upwind
values for the incoming flux variables. At this point, there are
four equations, and eight unknowns; four from the expansion
coefficients ψi

m,s, and four from the outlet integrals of the
angular flux. We close the system by multiplying equation 2
by each weight function ωs

j, and integrating over the outlet
face of the slice"
∂Vs,out

ωs
j(r)ψm,s(r) d2r =

∑
i=c,x,y,z

ψi
m,s

"
∂Vs,out

ωs
j(r) bs

i (r) d2r .

(4)
The next step is to represent the angular flux in the cell

ψm,c(r), given the angular flux in the contained slices. To do
this, the angular flux in the cell is expanded in a basis function
set for the cell {bc

i (r)}i=c,x,y,z

ψm,c(r) =
∑

i=c,x,y,z

bc
i (r)ψi

m,c , (5)

where the basis functions are the same as before with the
centroid coordinates (x̄, ȳ, z̄) and the extents (∆x,∆y,∆z) eval-
uated for the cell instead of for the slice. Weight functions for
the cell {ωc

j(r)} j=c,x,y,z, are defined similarly. To determine the
expansion coefficients for the angular flux in the cell ψi

m,c, we
multiply equation 5 by the cell weight functions and integrate
over the cell volume$

Vc

ωc
j(r)ψm,c(r) d3r =

∑
i=c,x,y,z

ψi
m,c

$
Vc

ωc
j(r) bc

i (r) d3r .

(6)
This results in a system of four equations and four un-

knowns for each cell, and the left hand side of each equation
must be accumulated during the sweep. For the constant
weight function, this is a relatively simple procedure given by$

Vc

ψm,c(r) d3r =
∑

s

$
Vs

ψm,s(r) d3r =
∑

s

Vs ψ
c
m,s , (7)

since volume integrals of the non-constant basis functions are
zero. For the other weight functions, things are only slightly
more complicated. Consider for example the ωc

x case

$
Vc

ωc
x(r)ψm,c(r) d3r =

∑
s

$
Vs

ωc
x(r)ψm,s(r) d3r . (8)

The cell weight function can be expressed in terms of the
slice weight functions as

ωc
x(r) = 3

2 (x − x̄c)
∆xc

= 3
2 (x − x̄s + x̄s − x̄c)

∆xc
∆xs
∆xs

=

∆xs

∆xc

(
ωs

x(r) + 3
2 (x̄s − x̄c)

∆xs

)
, (9)

and thus we can represent the integral as

$
V

ωc
x(r)ψm,c(r) d3r =

∑
s

∆xs

∆xc

$

Vs

ωs
x(r)ψm,s(r) d3r + 3

2 (x̄s − x̄c)
∆xs

Vs ψ
c
m,s

 ,
(10)

which after expansion of ψm,s(r), replaces the last remaining
integral with a sum whose coefficients have already been cal-
culated as coefficients in equation 3.

For steady state solutions, we do not need to store the
angular flux variables, and instead we can use quadrature
integration to write the scalar flux as

φc(r) =
∑

m

wmψm,c(r) (11)

which allows us to use$
Vc

ωc
j(r) φc(r) d3r =

∑
i=c,x,y,z

φi
c

$
Vc

ωc
j(r) bc

i (r) d3r .

(12)
instead of equation 6 to evaluate the scalar flux moments,
where the left hand sides are given by$

Vc

φc(r) d3r =
∑

m

∑
s

Vs wmψ
c
m,s , (13)

and

$
V

ωc
x(r) φc(r) d3r =

∑
m

wm

∑
s

∆xs

∆xc

$

Vs

ωs
x(r)ψm,s(r) d3r +

3
2 (x̄s − x̄c)

∆xs
Vs ψ

c
m,s

 , (14)

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

for the ωc
c and ωc

x cases respectively. These summations are
accumulated throughout the sweep, and the system of four
equations is inverted for each cell after each inner iteration. If
anisotropic scattering is present, equations for moments can
be accumulated much the same way.

To determine the weighted integral of the incoming flux
on the downstream sub-slice, labeled s∗, the coefficients of the
linear expansion of the angular flux in the slice are passed to
the sub-slice, at which point we can compute the integrals"

∂Vs∗,in

ωs∗
j (r)ψm,s(r) d2r , (15)

where ωs∗
j is similar to ωs

j with the centroid coordinates and ex-
tents evaluated for the sub-slice instead of for the slice. These
sub-slice inlet integrals are then combined to give the slice
inlet integrals in a similar manner as slice volume integrals
were combined to give cell volume integrals.

Implementation of the parallelization method described
in the previous section proceeds as a loop over sets of angles.
A “set” is the collection of angles chosen to sweep simulta-
neously, which must be evenly divisible into the number of
nodes available to the simulation for perfect load-balancing.
Several data structures are also needed, and are assembled and
stored prior to sweeping. These include the following:

• A data structure that returns a unique node index for each
angle-pipe index pair, copied on each node.

• A data structure that returns a list of pipe indices that a
given cell contributes to, given the local cell-angle index
pair, unique to each node.

• A data structure that returns the angle-pipe index pair that
this node is responsible for, for a given angle set index,
unique to each node.

• A data structure that returns a list of nodes that each node
must send data to for a given angle set index, unique to
each node.

• A data structure that returns a list of nodes that each node
must receive data from for a given angle set index, unique
to each node.

• A data structure that returns the node index and local cell
index given a global cell index, copied to each node.

A single inner iteration composed of a sweep for each
angle in the quadrature set is described by Algorithm 1. The
outer loop over angle sets begins with each node computing
the source moments due to both scattering and inhomogeneous
sources for each angle in the angle set and for each of its local
cells on which it stores the solution. These values are then
packaged into a struct along with the global cell index and
the cell set index (used here to assign material properties to
all cells in a given cell set), and then sends these structs for
each cell-angle pair to the node that owns the pipe that this
cell belongs to for the given angle.

Algorithm 1 Inner iteration.
e = energy group index
for a = 0 to N angle sets − 1 do

for i = 0 to N local cells − 1 do
for j = 0 to N angles per angle set − 1 do

m = a × N angles per angle set + j
qa, qx, qy, qz = ComputeSource(i,m)
g = GlobalCellIndex(i)
s = CellSetIndex(i)
Source[i][j] = struct(qa, qx, qy, qz, g, s)

end for
end for
for i = 0 to N local cells − 1 do

for j = 0 to N angles per angle set − 1 do
m = a × N angles per angle set + j
for k = 0 to N pipes per cell[i][m] − 1 do

p = PipeIndices[i][m][k]
n = NodeIndices[m][p]
SendSource[n].push_back(Source[i][j])

end for
end for

end for
Send arrays of Source structs.
Receive structs into array mySources[].
for i = 0 to N received sources − 1 do

for j = 0 to (P + 1)2 − 1 do
g = mySources.g
Ym

l,index = j
φa

sum = φx
sum = φ

y
sum = φz

sum = 0
Solutions.push_back(
struct(g,Ym

l,index, φ
a
sum, φ

x
sum, φ

y
sum, φ

z
sum))

end for
end for
Build the slices and sub-slices and perform the sweep,
accumulating the contributions to the sums in equa-
tions 13 and 14 into the φa

sum, φ
x
sum, φ

y
sum, and φz

sum com-
ponents of the Solutions structs.
for i = 0 to Solutions.size() − 1 do

g = Solutions[i].g
n = GlobToLocNodeInd[g]
SendSolutions[n].push_back(Solutions[i])

end for
Send arrays of Solutions structs.
Receive structs into an array mySolutions[].
for i = 0 to mySolutions.size() − 1 do

g = mySolutions[i].g
l = GlobToLocLocalInd[g]
Ym

l,index = mySolutions[i].Ym
l,index

φa
sum[l][Ym

l,index][e] += mySolutions.φa
sum

φx
sum[l][Ym

l,index][e] += mySolutions.φx
sum

φ
y
sum[l][Ym

l,index][e] += mySolutions.φy
sum

φz
sum[l][Ym

l,index][e] += mySolutions.φz
sum

end for
end for

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

Once each node has received an array of these structs, it
knows which cells from the global mesh are in its pipe, as well
as the volumetric source strength and total cross section (using
the cell set index) within each one. The node then builds
another array of structs on which to store the contribution to
the sums in equations 13 and 14, which it will send back to
the node that it received the cell from after it has performed a
sweep through its pipe. Before performing this sweep however,
it must construct the slices and sub-slices that are contained in
its pipe. This is performed in the following seven stages.

1. Count slices: counts the number of slices in the pipe and
builds a list of inlet and outlet face pairs that define each
slice.

2. Build slice bases: assigns to each slice its global cell
index, inlet and outlet face indices, source moments, and
total cross section.

3. Slice integration: calculates the centroid, extents, vol-
ume integrals, and outlet face integrals which appear in
equations 3 and 4 for each slice.

4. Count sub-slices: counts the number of sub-slices in the
pipe, and builds a list of outlet faces for the downstream
cell that form a sub-slice with the slice’s outlet face.

5. Build sub-slice bases: assigns to each sub-slice its cell,
inlet face, outlet face, and upstream slice indices.

6. Sub-slice integration: calculates the centroid, extents,
and inlet face integrals for each sub-slice.

7. Assign downstream and contained: assigns to each slice
its downstream sub-slice indices as well as the indices of
all sub-slices contained within each slice.

The sweep algorithm proceeds in an outer loop over
stages, with a maximum stage count limit set sufficiently high
to complete the boundary-to-boundary sweep. On the first
stage, a loop over the slices in the pipe picks out the slices
whose inlet faces are on the boundary with Ωm · n < 0. These
slices are assigned inlet flux values from the boundary condi-
tions, their indices are pushed in a queue containing all the
slices in the current stage that are ready to be solved, and
their boolean member to indicate that they have already been
solved is set to true. Next, a loop over the ready queue solves
equations 3 for each slice in the queue and updates the sum-
mations in equations 13 and 14. A second loop over the ready
queue then picks out each slice, and loops over the sub-slices
downstream of it. For each sub-slice, the number of sub-slices
pending solution in the slice containing the sub-slice is incre-
mented, and the expansion coefficients for the upstream slice
are used to calculate the incoming flux moments on the sub-
slice. The ready queue is then zeroed out. A final loop over
the slices checks to see if the number of sub-slices contained
within each slice pending solution is equal to the number of
sub-slices contained within the slice and that the slice has not
yet been solved. If these conditions are satisfied, the slice is
placed in the ready queue, its boolean member indicating that
it has been solved is set to true, and its incoming flux moments

are calculated by appropriately transforming the incoming flux
moments of its contained sub-slices. Finally, if the number of
slices in the ready queue is zero, this indicates that the sweep
has completed, and the outer stage loop is exited.

Algorithm 2 SN transport sweep.
m = angle index
for k = 1 to MAX_STAGE_COUNT do

if k = 1 then
for s = 0 to N slices − 1 do

i = slices[s].inletFace
if isOnIncomingBoundary(i) then

ψc
m,s,in, ψ

x
m,s,in, ψ

y
m,s,in, ψ

z
m,s,in =

BoundaryConditions(i)
Ready.push_back(s)
slices[s].done = true

end if
end for

end if
for l = 0 to N Ready − 1 do

s = Ready[l]
ψc

m,s, ψ
x
m,s, ψ

y
m,s, ψ

z
m,s = Solve(s)

UpdateScalarFluxSums(ψc
m,s, ψ

x
m,s, ψ

y
m,s, ψ

z
m,s)

end for
for l = 0 to N Ready − 1 do

s = Ready[l]
for i = 0 to N sub-slices downstream of slice s − 1 do

s∗ = slices[s].downstream[i]
p = slice index that s∗ is contained in
NumPendingContained[p] += 1
ψc

m,s∗,in, ψ
x
m,s∗,in, ψ

y
m,s∗,in, ψ

z
m,s∗,in =

CalculateInletFluxes(ψc
m,s, ψ

x
m,s, ψ

y
m,s, ψ

z
m,s)

end for
end for
Ready.resize(0)
for s = 0 to N slices − 1 do

if (NumPendingContained[s] = NumContained[s])
and slices[s].done = false) then
ψc

m,s,in, ψ
x
m,s,in, ψ

y
m,s,in, ψ

z
m,s,in = 0

Ready.push_back(s)
slices[s].done = true
for j = 0 to NumContained[s] − 1 do

ψc
m,s,in, ψ

x
m,s,in, ψ

y
m,s,in, ψ

z
m,s,in +=

Transform(ψc
m,s∗,in, ψ

x
m,s∗,in, ψ

y
m,s∗,in, ψ

z
m,s∗,in)

end for
end if

end for
if N Ready = 0 then

Break from the stage loop.
end if

end for

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

III. RESULTS AND ANALYSIS

The research presented here has led to the development
of a discrete ordinates transport code named SliceT. As is
the case with the traditional SBA, an attractive feature of
SliceT is that it is able to handle arbitrary polyhedral spatial
meshes. As the code is still in the early stages of development,
it currently uses source iteration for its inner iteration method
without acceleration, although the authors are currently in the
process of implementing the Modified Interior Penalty Dif-
fusion Synthetic Acceleration (MIP DSA)[4] method. The
code currently uses the standard Gauss-Seidel method for
the multi-group outer iterations, and it currently handles only
Gauss-Chebyshev product quadrature sets in angle. Cross sec-
tions are supplied in the matxs format provided by NJOY[5].
All other input is in OpenFOAM format[6], although the code
is not written using the OpenFOAM libraries. This format is
used primarily to take advantage of the meshing utilities and
post-processing abilities that OpenFOAM provides.

1. Convergence Order

Before presenting results on the accuracy of the improved
SBA compared to the traditional slice balance and cell bal-
ance approaches, it is useful to confirm that the second order
convergence rate of the LDFE spatial discretization scheme is
indeed retained for a smooth solution. This is done via the use
of the manufactured solution

ψm (r) = sin
(
πx
H

)
sin

(
πy
H

)
sin

(
πz
H

)
(16)

on a cubic spatial domain of side length H, with homogeneous
material properties, isotropic scattering, a single energy group,
and a Gauss-Chebyshev quadrature set consisting of 100 total
angles (10 polar and 10 azimuthal). This solution is shown at
the mid-plane of the domain in Figure 5. For this convergence
study, we define the L2 relative error norm as

e =

√√∑N
i=1 Vi (〈φ〉c,i − 〈φ〉e,i)2∑N

i=1 Vi 〈φ〉
2
e,i

, (17)

where N is the number of cells, Vi is the volume of cell i, 〈φ〉c,i
is the calculated cell-averaged scalar flux in cell i, and 〈φ〉e,i is
the exact cell-averaged scalar flux in cell i. This error norm as
a function of cell edge length is shown in Figure 6.

These results show that the second order convergence rate
is indeed attained with the use of the improved SBA, although
admittedly it does not show a comparison to the convergence
rate of the standard LDFE cell balance method. This compari-
son is currently being performed, and it is anticipated that the
proportionality constant will be smaller for the improved SBA
due to the increased spatial resolution on which the streaming
plus collision operator is inverted. As this is a smooth solution,
the more accurate representation of particle streaming is not
anticipated to produce significant gains in accuracy over the
standard LDFE cell balance method.

Fig. 5. Manufactured scalar flux solution at the mid-plane.

Fig. 6. L2 relative error norm as a function of cell edge length.

2. Ray Propagation

To compare the accuracy of the cell balance, slice bal-
ance, and improved slice balance approaches for the diamond
difference and LDFE spatial discretization schemes, consider
the propagation of a single ray in 2-D. This problem was mo-
tivated by Matthews[7] where several finite element, finite
volume, nodal, and characteristic methods were compared for
their ability to reduce numerical diffusion, lateral oscillations,
and correct propagation direction. While this analysis will
not go into nearly as much depth as the cited study, we use
the same geometric parameters given below and compare the
un-normalized solution for each of the six combinations of
balance approach and spatial discretization scheme. The prob-
lem examines the propagation of a single ray initiated from a
single face on the x boundary nearest the origin. The analytic
solution is a decaying exponential ray of width ∆x, and zero
everywhere else, exhibiting a sharp angular discontinuity. Fig-
ure 7 shows numerical solutions for the six combinations of
balance method and discretization scheme.

µ = 0.3500212 η = 0.8688903

∆x = 0.5 ∆y = 0.5

σ = 0.02 σs = 0

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

CB-DD CB-LD

SB-DD SB-LD

ISB-DD ISB-LD

Fig. 7. Cell balance (CB), slice balance (SB), and improved slice balance (ISB) solutions using diamond difference (DD)
and linear discontinuous (LD) finite elements for propagating a single ray in 2-D.

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

Figure 7 reveals several important results. It shows that
the traditional SBA reduces the lateral oscillations present
in the cell balance approach for both discretization schemes.
This is incredibly effective for the diamond difference scheme
due to that method’s known propensity for producing large
lateral oscillations. These oscillations, and the fact that the
cell balance diamond difference scheme produces a ray that
veers slightly off the propagation direction, led Matthews to
recommend that while diamond difference is inexpensive, it
is extremely unphysical, and we should abandon it and all of
its offspring[7]. This analysis shows that the unphysical oscil-
lations can indeed be fixed with very little extra computation
via SBA.

If we further apply the improved SBA to the diamond
difference scheme, the results improve even more, producing
a sharper ray with less numerical diffusion. Both the SBA and
improved SBA also steer the diamond difference ray closer to
the true propagation direction. The same results are true for
linear discontinuous scheme, however in this case the lateral
oscillations in the cell balance approach are much less severe,
so there is less of a problem to correct. Applying the improved
SBA to the linear discontinuous scheme produces the sharpest
ray of all six, traveling in a direction indistinguishable from
the true propagation direction with the given mesh resolution.
If the extra computation cost can be afforded, it is clear that
the improved SBA with the linear discontinuous scheme is the
best choice for problems with shadow-type discontinuities.

3. Weak Scaling

The results of a weak scaling study in which an S4 quadra-
ture set consisting of 32 total angles, one energy group, and
isotropic scattering, are shown in Figure 8. Each node of the
host machine contains 16 cores, and the functions to build
the slices and sub-slices, as well as the sweep within each
pipe are threaded on these cores using OpenMP. The problem
being solved is a spherical volumetric source of unit strength
in the center of a cubic domain. The domain is decomposed
into cubic sub-domains, each containing 125,000 spatial cells
(50 cells in each dimension). To keep the overall domain cu-
bic, and the total number of nodes even, the data points were
obtained at 1, 23, 43, and 63 nodes (core counts from 16 to
3,456). The results show clearly that as the number of angles
per angle set increases, so does the parallel efficiency. This is
advantageous for problems with large angular quadrature sets.
The reason for this is that as the number of angles per angle set
decreases, the number of pipes per angle increases, further re-
fining the mesh and leading to more work and making it more
difficult to perfectly load-balance the work among pipes by
strategically placing the pipe boundaries, which is done prior
to the simulation using a method proposed by Ghaddar[8].

4. GPU Acceleration

A serial implementation of the improved SBA shows that
the slice and sub-slice setup functions (all functions aside
from the sweep) take up roughly 90% of the computation
time. Implementing the counting and integration functions for
both the slices and sub-slices on an NVIDIA GTX-870m GPU

shows that this fraction can be significantly reduced, and if
pipe-lined to where the GPU is computing the slices for its
pipe in the next angle set, while the CPU is performing the
sweep in the previously sliced pipe, the slice and sub-slice
setup time could potentially be hidden altogether. The run
times of these functions can be seen in Figure 9.

Fig. 8. Weak scaling results.

Fig. 9. Run time comparison between CPU and GPU.

5. Arbitrary Polyhedral Unstructured Meshes

Finally, it is often the case that methods that are able to
handle arbitrary polyhedral unstructured meshes are demon-
strated on structured or unstructured Cartesian meshes, as has
been done here up to this point. For this reason, and admittedly
for fun, we now consider a volumetric, isotropic, unit strength
radiation source in the shape of the author’s dog, Jethro. The
simulation uses an S4 quadrature set, consisting of 32 total
angles, and isotropic scattering. Jethro is depicted in Figure 10,
the geometric model used in the simulation is shown in Fig-
ure 11, and the scalar flux solution at one mid-plane of the
cubic bounding domain is shown in Figure 12. There is no
analytic solution to verify solution accuracy in this case, but
the results appear reasonable.

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

Fig. 10. Jethro. Fig. 11. Jethro-shaped source in cubic bounding domain.

Fig. 12. Scalar flux solution at the mid-plane for the Jethro-shaped source.

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

IV. CONCLUSION

The improvement to the SBA presented here retains all
of the benefits of the traditional SBA, including the ability
to easily handle arbitrary unstructured meshes, while improv-
ing accuracy in the vicinity of solution discontinuities, with
relatively little added cost. This is done via a more consis-
tent representation of particle streaming through the addition
of the “sub-slice.” This improvement in accuracy has been
demonstrated by propagating a single ray in 2-D. For smooth
problems, the second order spatial convergence for the LDFE
spatial discretization scheme is retained. This was demon-
strated using a manufactured solution.

Through the addition of the sub-slice, a new paralleliza-
tion strategy is made possible. This strategy exhibits zero idle
time at the expense of added communication and memory re-
quirements. The added memory requirement is simply that the
entire mesh description must be stored on each shared memory
node. This added memory requirement amounts to roughly
320 bytes per spatial cell, which is thought to be acceptable
due to the trend in high performance computing, where super-
computer architectures are becoming more heterogeneous with
larger amounts of memory per node. For instance, the Summit
and Sierra super-computers currently under procurement by
the United States Department of Energy will have 512 GB
of memory per node, shared between an IBM CPU and an
NVIDIA GPU[9].

A weak scaling study shows that the parallel efficiency
of the new strategy improves upon inclusion of more angles
per angle set, where all angles in an “angle set” are swept si-
multaneously. While investigation into the new parallelization
strategy is not complete, a compelling benefit of the strategy is
that it allows for an arbitrary domain decomposition on which
to store the solution. It is the storage of the solution, and
not the mesh itself, that leads to most transport problems be-
coming memory bound. This arbitrary domain decomposition
removes a common restriction that inter-node domain bound-
aries be planar in order to avoid ray re-entry. The benefit is
realized in the mesh generation process, where domain decom-
position methods common in the field of computational fluid
dynamics such as the scotch algorithm[10], can be used freely.
The benefit of using such an arbitrary domain decomposition
strategy was demonstrated by the Jethro source problem, con-
taining over 1.5 million cells with no natural planar divisions
in the problem geometry.

Finally, it is the case that finite element implementations
into both the traditional and improved SBA would suffer from
the need to repeatedly calculate matrices for each slice occur-
ring in the slice-refined mesh for each angle in the quadrature
set. As the number of angles necessary for 3-D problems can
be large, the memory demand to store these volume and area
integrals for each slice cannot be accommodated, even on the
next-generation of super-computers mentioned above. For the
diamond difference spatial discretization scheme, this is not an
issue, but for finite element methods it is, and this may explain
why reports of such implementations could not be found prior
to beginning this research. As shown by the timing results of
Figure 9, the repeated calculation of finite element matrices
may be practical through the use of the GPU. This is because

the GPU is designed to handle just this type of task, which
is computationally expensive but embarrassingly parallel. In
addition, the results shown in Figure 9 were obtained using a
gaming laptop GPU that is over two years old, has fewer dou-
ble precision compute cores per each single precision compute
core, and has fewer compute cores overall by a factor more
than 2, than the Tesla series GPUs found in Summit and Sierra.
It is anticipated that these GPUs will reduce the percentage
of time spent computing matrices even further. A strategy in
which a single core of the CPU on each node can be devoted
to communicating and directing the GPU in order to pipeline
the setup and sweep functions may be able to hide the slice
and sub-slice setup time altogether.

V. ACKNOWLEDGMENTS

This material is based upon work supported by the United
States Department of Energy National Nuclear Security Ad-
ministration Stewardship Science Graduate Fellowship. We
thank Jethro for the use of his likeness.

REFERENCES

1. R. E. GROVE, A Characteristic-based Multiple Balance
Approach for Solving the SN Equations on Arbitrary Polyg-
onal Meshes, Ph.D. thesis, University of Michigan (1996).

2. J. E. MOREL and E. W. LARSEN, “A Multiple Balance
Approach for Differencing the SN Equations,” Nuclear
Science and Engineering, 105, 1, 1–15 (1990).

3. R. A. KENNEDY, A. M. WATSON, and R. E. GROVE,
“Linear Discontinuous (LD) Coefficients In The Slice
Balance Approach (SBA) Mathematical Framework For
The Discrete Ordinates Code Jaguar,” in “Proceedings of
PHYSOR 2010,” American Nuclear Society, LaGrange
Park, IL (2010).

4. Y. WANG and J. C. RAGUSA, “Diffusion Synthetic Ac-
celeration for High-Order Discontinuous Finite Element
SN Transport Schemes and Application to Locally Refined
Unstructured Meshes,” Nuclear Science and Engineering,
166, 2, 145–166 (2010).

5. A. KAHLER, R. MACFARLANE, D. MUIR, and
R. BOICOURT, “The NJOY Nuclear Data Processing
System, Version 2012,” Los Alamos National Laboratory
(Dec. 2012) (2012).

6. OPENCFD, “OpenFOAM user guide,” OpenFOAM Foun-
dation, 2, 1 (2011).

7. K. A. MATHEWS, “On the propagation of rays in discrete
ordinates,” Nuclear science and engineering, 132, 2, 155–
180 (1999).

8. T. GHADDAR, Load Balancing Unstructured Meshes
for Massively Parallel Transport Sweeps, Master’s thesis,
Texas A&M University (2016).

9. NVIDIA CORPORATION, “Summit and Sierra Super-
computers: An Inside Look at the U.S. Department of En-
ergy’s New Pre-Exascale Systems,” Whitepaper (2014).

10. F. PELLEGRINI and J. ROMAN, Scotch: A software
package for static mapping by dual recursive bipartition-
ing of process and architecture graphs, Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 493–498 (1996).

