
M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

Polynomial Characteristics Method for Neutron Transport in 3D extruded geometries

Laurent Graziano, Simone Santandrea, Daniele Sciannandrone, Igor Zmijarevic ∗

∗CEA Saclay
laurent.graziano@cea.fr, simone.santandrea@cea.fr, daniele.sciannandrone@cea.fr, igor.zmijarevic@cea.fr

Abstract - A polynomial expansion in the axial direction has been implemented in the Method Of Characteris-
tics framework, for the solution of the mono-group, steady state neutron transport equation for 3D extruded
geometries. This work has been realized in the context of the APOLLO3 R© project and, in particular, in the
Two & three Dimensional Transport (TDT) module. In this paper we weigh up benefits and disadvantages of
this approach, when comparing to the classical Step Characteristics (SC) approximation, already available in
APOLLO3 R©.

I. INTRODUCTION

The solution of the neutron transport equation for 3D ex-
truded geometries is available inside the TDT module of the
APOLLO3 R© code. A solver based on the Method Of Char-
acteristics (MOC) allowing the treatment of such geometries
has been recently developed. The classic SC approximation is
used in this work. For each region of the domain the source is
approximated as a constant function. The results of this previ-
ous work showed very good agreement with the Monte-Carlo
solution and good computational performances[1][2][3][4].
However, since the SC is adopted, a quite large number of
meshes is need for a good solution convergence. Some results
of the previous work and fluxes profiles of a 3D heterogeneous
assembly of the ASTRID reactor will be shown to enhance this
concept. Moreover, these results show that flux gradients in the
axial direction can be efficiently represented using polynomial
functions. Their shape is, in fact, quite regular. On the other
hand in the radial plane a typical reactor geometry presents,
in our opinion, too strong heterogeneities for a polynomial
representation to be at the same time accurate and efficient.
The idea of a polynomial expansion of the method arises from
these considerations. The seminal ideas of this method are
already given in [3]. They are here developed in a different
form.

II. PURPOSE OF THE METHOD

The SC method has been validated on a heterogeneous three-
dimensional assembly of the innovative Sodium-cooled Fast
Breeder Reactor ASTRID (Advanced Sodium Technological
Reactor for Industrial Demonstration), developed at the CEA
in France. This project of a fast breeder reactor features a
particular axial design in order to try to circumvent the typical
issue of positive void reactivity coefficient of fast sodium
cooled reactors. Fig. 1 shows an axial section of the reactor
core, while Fig. 2 shows a radial and an axial section of the
assembly used for the computation as well as the boundary
condition imposed. It is easy to see how the strong axial
heterogeneity makes of this reactor a perfect candidate to test
the efficiency of a 3D transport solver.
Fig 3 shows the energy spectrum of the flux for a fuel pin
inside the fissile material, while Fig 4 shows an axial profile
of the flux computed using the SC method. This figure shows

that the axial flux gradient are quite strong, both in fast, and
in thermal groups. Moreover it allows to see how many axial
meshes are needed to properly represent the flux shapes, using
the flat source approximation. The idea to develop the source
using a polynomial function arises from these considerations.
In the same framework we cite work realized by MIT re-
searcher [5]. Here a quadratic function is used to represent the
axial behaviour of the sources.

Fig. 1: Axial cut of the ASTRID reactor. The enlightened area
represents the computational domain.

Fig. 2: Radial and axial sketch of the ASTRID fuel assembly
with 2π/12 symmetry. Even if not representative of the real
geometry, a reflective boundary condition is also used for
the lower part of the domain. On the right a 2D section of
the actual computational domain. Different colors indicate
different self-shielding zones.

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

 10-13
 10-11
 10-9
 10-7
 10-5

 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101

F
lu

x
(l

og
 s

ca
le

)

log(E) (Mev)

 0.05

 0.10

 0.15

 0.20

 0.25

 0.30

F
lu

x

Fissile spectrum

Fig. 3: Energy spectrum inside the fissile material resulting
from the 1968 energy groups computation. The upper part of
the graph is in linear scale, while the lower part is in logarith-
mic scale.

III. METHOD DESCRIPTION

The steady state neutron transport equation is the starting point
of our problem.[
~Ω∇ + Σt(~r, E)

]
Ψ(~r, ~Ω, E) = q(~r, ~Ω, E) ~r ∈ D, ~Ω ∈ S 4π

Ψ(~r, ~Ω, E) = Ψin ~r ∈ ∂D, ~Ω ∈ S −2π
(1)

The emission density q accounts for transfer and fission:

q(~r, ~Ω, E) = HΨ(~r, ~Ω, E) +
1

ke f f
FΨ(~r, ~Ω, E)

HΨ(~r, ~Ω, E) =∫ ∞

0
dE′

∮
d~Ω′

4π
Σs(~r, E′ → E, ~Ω · ~Ω′)Ψ(~r, ~Ω′, E′)

FΨ(~r, ~Ω, E) =

χ(E)
∫ ∞

0
dE′ ν(E′)Σ f (~r, E′)

∮
d~Ω
4π

Ψ(~r, ~Ω′, E′)

The energy dependence is treated with a multi-group approxi-
mation and the transfer cross section is expanded as customary
using the real spherical harmonics:

q(~r, ~Ω, E) ' qg(~r, ~Ω) = q(~r, ~Ω)

with the assumption that when the group superscript is not
explicitly written we are treating the generic g group.

HΨ(~r, ~Ω) =

Nm∑
n=1

An(~Ω)
∑

g′
Σ

g′→g
s,n (~r)

∮
d~Ω′

4π
An(~Ω′)Ψg′ (~r, ~Ω′)

FΨ(~r, ~Ω) = χg
∑

g′
νg′Σ

g′

f (~r)
∮

d~Ω′

4π
An(~Ω′)Ψg′ (~r, ~Ω′) (2)

 10-14
 10-12
 10-10
 10-08
 10-06
 10-04

 0 10 45 52.5 92.5 112.5

F
lu

x
(l

og
 s

ca
le

)

Z (cm)

G1 G6 G11 G16 G21 G26 G31

0.005

0.015

0.025

0.035
Fertile Fissile Gas plenum Sodium Protection

F
lu

x

Sub-assembly axial flux profile Step

Fig. 4: Axial flux profile in a fuel pin obtained with a SC
computation using 110 axial planes. The upper part of the
graph is in linear scale, while the lower part is in logarithmic
scale, in order to shows the different flux gradients in the
neutron protection. The multigroup flux has been condensed
on 33 energy group and fluxes on each groups have been
normalized to fit in the same graph.

Where the sum over Nm is the short version of:

Nm∑
n=1

An(~Ω) =

l=K∑
l=0

m=l∑
m=−l

Am
l (~Ω)

where K is the anisotropy order, Am
l are the real spherical

harmonics and Nm = (K + 1) × (K + 1) represents the total
number of angular moments.

Polynomial basis definition

A local polynomial basis can be used to express sources and
flux moments:

~P(z̃r) = {z̃p
r =

(
zr − z̄r

∆zr/2

)p

, 0 ≤ p ≤ Np} (3)

where ∆zr is the height of the given region, zr ∈

[−∆zr/2,∆zr/2] is the local coordinate for the rth region, z̄r is
the value of the axial coordinate at the region center and Np is
the chosen order for the polynomial expansion.

Angular flux expansion

We assume now that the spatial dependence of the angular flux
Ψ(~r, ~Ω) can be expressed as:

Ψ(~r, ~Ω) =

Np∑
p=1

Pp(z̃r) · Ψr,p(~Ω) = ~P(z̃r) · ~Ψr(~Ω) (4)

Where we assume that ~Ψr(~Ω) is a vector constant per region.

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

Replacing this is Eqs.(2) we get:

HΨ(~r, ~Ω) =

Nm∑
n=1

An(~Ω)
Np∑
p=1

Pp(z̃r)
∑

g′
Σ

g′→g
s,n (~r) Φ

n,g′
r,p (5)

FΨ(~r, ~Ω) =

Np∑
p=1

Pp(z̃r) χg
∑

g′
νg′Σ

g′

f (~r) Φ
1,g′
r,p (6)

where the flux moments are defined as:

Φ
n,g′
r,p =

∮
d~Ω′

4π
An(~Ω′) Ψ

g′
r,p(~Ω′) (7)

Source expansion

Following the definition of Eqs. (5) and (6), the source term
can be written in a similar way to the customary real spherical
harmonics expansion:

q(~r, ~Ω) =

Nm∑
n=1

An(~Ω)
Np∑
p=1

Pp(z̃r) · qn
r,p (8)

or in the more compact form:

q(~r, ~Ω) = ~Z(z̃, ~Ω) · ~qr (9)

where:

~Z(z̃, ~Ω) = {A0(~Ω)P0(z̃), A1(~Ω)P0(z̃), ...,

A0(~Ω)P1(z̃), A1(~Ω)P1(z̃), ...} (10)

~q = {qn
p} = { q0

0, q
1
0, q

2
0, ...︸ ︷︷ ︸

p=0

, q0
1, q

1
1, q

2
1, ...︸ ︷︷ ︸

p=1

, q0
2, q

1
2, q

2
2, ...︸ ︷︷ ︸

p=2

, ...}

~Z and ~qr have dimensions Np × Nm and qn
r,p can be directly

retrieved from Eqs. (5) and (6).
Another useful relation used in the next section for the trans-
mission equation later can be obtained recalling Eq. (8) and
inverting the sums order:

q(~r, ~Ω) =

Nm∑
n

An(~Ω)
Np∑
p

Pp(z̃r) · qn
r,p

=

Np∑
p

Pp(z̃r) · qr,p(~Ω) = ~P(z̃r) · ~qr(~Ω) (11)

where:

qr,p(~Ω) =

Nm∑
n

An(~Ω) · qn
r,p

Transmission equation

The standard MOC transmission equation, coming from the
integral form of the transport equation, reads:

Ψ(tout, ~Ω) = Ψ(tin, ~Ω) · e−Σr l +

∫ tout

tin
dt′ q

(
~r(t′), ~Ω

)
e−Σr(tout−t′)

where t denotes the local coordinate along the trajectory, tin

and tout represent the entering and exiting point of the trajec-
tory inside a region and l is the chord length. Fig. 5 gives a
visual interpretation of the classical trajectory-based domain
discretization used in the Method Of Characteristics for a
small 2D domain, as well as the meaning of entering, exiting
fluxes and trajectory t.

Fig. 5: Example of a 2D tracking.

The source term of the transmission equation can be expanded
using Eq.(11), giving a numerical transmission equation for
the polynomial method:

Ψ(tout, ~Ω) = Ψ(tin, ~Ω) · e−Σr l + ~P(z̃in) · ~T (12)

where ~P(z̃in) is the values of the polynomial basis at the enter-
ing point of the trajectory inside a given region and the vector
~T reads:

Tk =

Np∑
p=k

Fp,k

(
~qr(~Ω)

)
p

Σr
(13)

Fp,k = cp,k µ
p−k

(
2

∆zr

)p−k

Ep−k(τ) (14)

Ep−k(τ) =
1

Σ
(p−k)
r

∫ τ(tout)

τ(tin)
dτ′τ

′p−ke(τ′−τ(tout)) (15)

cp,k is the binomial coefficient, µ = cos(θ) (where θ is the polar
component of ~Ω) and τ = Σrl is the optical length.
The escape coefficient Ep−k(τ) of can be computed directly
integrating Eq.(15). However integrating by parts this equa-
tion a useful recursive relation can be obtained, that allows
to compute only the 0th order coefficient and to retrieve the
others:

E0(τ) = 1 − e−τ

Ep(τ) = lp −
p
Σr

Ep−1(τ) 1 ≤ p ≤ Np

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

A. Importance of the Chords Classification method

The Chords Classification method is a particular procedure
that helps in strongly reducing the number of floating point
operations that have to be performed during the transport
sweep. It was introduced in [3], in association with the Hit
Surface Sequence storage technique (HSS). The HSS allows
to avoid the storage of the complete 3D tracking, exploiting
the regularities of 3D extruded geometries. In [6] the authors
propose an alternative strategy that allows an even bigger
memory reduction, always exploiting big regularities typical
of reactors geometries.
The sweep is one of the most computationally demanding part
of the MOC, since it requires to sequentially solve the trans-
mission equation for each chords on a trajectory, in order to
compute the entering and exiting flux (Eq.(12)) and cumulate
the term needed later for the balance equation (Eq.(19)). It is
easy to see that the term ~T of Eq.(12) hide a big computational
effort, as Eqs. from (13) to (15) show. The lowest escape
coefficient can be pre-tabulated once and for all and the other
can be computed from the first one. This operation can be
performed on-the-fly. If this approach is followed the escape
coefficients are computed the during the trajectory sweep for
each chord. Once Ep(τ) is known, Eqs. (13) and (14) are
applied to compute ~T .
This strategy is clearly not efficient, but the Chords Classifica-
tion method is particularly helpful in this situation. The basic
idea of the method is that in a 3D extruded geometry typical
of a nuclear reactor a lot of chords have the same lengths and
belong to the same material. This means that they all share the
same optical length. We will say that all these chords belong
to the same class.
In particular, all 3D chords parallel to a certain angle, sharing
the same 2D projection, intersecting two vertical surfaces
and that belong to the same region will belong to the same
class. The same thing applies to all chords intersecting two
successive horizontal surfaces, belonging to the same region
and parallel to a certain direction. We will call V-classes the
first type and H-classes the second one. We refers to [3] for a
detailed explanation of the method.
However the fundamental part is that thanks to the Chords
Classification method is possible to compute the values of
the ~T vector in Eq.(12) only for the classes, without needing
to compute it for each chord. Each term that composes ~T
depends, in fact, only on the optical length, the source coeffi-
cients, the region height and the trajectory angle. Moreover,
since using the polynomial method big axial meshes are suffi-
cient to approximate the axial behaviour of the flux, a small
amount of classes is able to be representative of a huge part of
the 3D chords present.

This means that the ~T vector can be computed only for a
small percentage of the total number of chords. This is the
reason why Eq.(12) is written in this form: during the transport
sweep the only operation left to perform for each chords is
the product with the value of the polynomial at the trajectory
entering point ~P(z̃in), while ~T is pre-computed with a small
(even if not negligible) computational cost.

Angular balance equation

An angular balance equation can be obtained to compute the
moments of the angular flux defined as follows:

′~Ψr(~Ω) =
1
Vr

∫
r

d~r ~P(z̃)Ψ(~r, ~Ω) (16)

Multiplying by ~P(z̃) and integrating over the volume of each
region the transport equation (1) we get:

1
Vr

∫
r

~dr~P(z̃)
(
~Ω∇Ψ(~r, ~Ω)

)
+

Σr

Vr

∫
r

~dr~P(z̃)Ψ(~r, ~Ω) =

1
Vr

∫
r

~dr~P(z̃) q(~r, ~Ω)

With some adjustments we get a balance equation to compute
the angular flux moments of Eq.(16):

Σr
′~Ψr(~Ω) = ¯̄PP(~Ω) · ~qr(~Ω) − ∆ ~Jr(~Ω) + µ ¯̄C ′~Ψr(~Ω) (17)

Going through the different terms of this equation separately
we have:

¯̄PP(~Ω) =
1
Vr

∫
r

d~r ~P(z̃) ⊗ ~P(z̃) (18)

¯̄PP(~Ω) is a matrix with dimension N2
p and has an analytic and

a numerical version. The analytic one reads:

¯̄PP(~Ω)(p,p′) →
¯̄PPa,pp′ =

1
∆zr

∫ z̄+ ∆z
2

z̄− ∆z
2

dz
(

zr − z̄r

∆zr/2

)p+p′

=

 1
p+p′+1 f or p + p′ even

0 f or p + p′ odd

The numerical counterpart is obtained expressing the axial
coordinate as a function of the local coordinate along the
trajectory, and numerically integrating Eq.(18) coherently with
the trajectory-based spatial discretization.

z̃r =
zin

r − z̄r + µ t
∆zr/2

t ∈ [0, l]

¯̄PP(pp′) =
1
Vr

∫
∂r

d2r⊥

∫ L

0
dt

[
zin

r − z̄ + µ t
∆zr/2

]p

⊗

[
zin

r − z̄ + µ t
∆zr/2

]p′

=

p,p′∑
k,k′=0

cpk · cp′k′ ·
∆t

Vr

∑
t‖~Ω
t∩r

[
zin

r − z̄
∆zr/2

]p+p′−k−k′ (2µ
∆z

)k+k′ l(k+k′+1)

k + k′ + 1

where zin
r is the z coordinate of the entering point of the tra-

jectory in the rth region. The numerical version of ¯̄PP(~Ω) is a
region and angle dependent matrix.
In order to have a conservative system the numerical approach
has to be applied to compute this matrix. In a first realiza-
tion of our method we didn’t realized this [7] and the results
where often affected by big numerical instabilities, especially
when the numerical integration was far from the analytical
one. Later, we found this very important detail explained in
[8]. This lead a radical change in the method performances.

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

The remaining term of the balance equation (17) are:

∆ ~Jr(~Ω) =
∆⊥(~Ω)

Vr

∑
t‖~Ω
t∩r

[
~P(z̃out)Ψr(tout) − ~P(z̃in)Ψr(tin)

]
(19)

¯̄C = diag
[

p
∆z/2

]
·

0 0 0
1 0 0
0 1 0
...

. . .

 =

0 0 0
1

∆z/2 0 0
0 2

∆z/2 0
...

. . .

∆ ~Jr(~Ω) is computed during the transport sweep using the
transmission equation (Eq.(12)) and ∆⊥(~Ω) is the integration
weight, corresponding to the perpendicular area associated to
the trajectory. The ¯̄C is an under-diagonal matrix and thanks
to this profile is possible to solve Eq.(17) as a lower triangular
system.

Angular flux coefficients and flux moments computation

Once the angular flux moments are obtained, we can retrieve
the corresponding coefficient of the expansion, combining
Eq.(16) with Eq.(4) and obtaining:

′~Ψr(~Ω) =
1
Vr

∫
r

d~r ~P(z̃) ⊗ ~P(z̃) · ~Ψr(~Ω)

~Ψr(~Ω) = ¯̄PP−1 · ′~Ψr(~Ω) (20)

To close the system we must compute the flux angular mo-
ments of Eq.(7):

Φn
r,p =

∮
d~Ω
4π

An(~Ω) Ψr,p(~Ω) (21)

IV. COMPARISON WITH THE SC METHOD

We present here a comparison between the SC and the Poly-
nomial method. The two methods should be able to give a
similar solution in terms of precision, since the basic idea is the
same. Moreover the spatial approximation in the radial plane
is exactly the same for the two methods. On the other hand
the different approach for the axial flux approximation should
results in a different number of meshes needed for the two
methods, but in a similar result when the axial discretization
is converged.

Disadvantages of the Polynomial method

Before presenting the results we want to underline some im-
portant differences in terms of computational cost between the
two methods. The transmission equation (Eq.(12)) is one of
the most important in the method of characteristics framework.
It is solved during the transport sweep for each 3D chords of
the system. Since the number of 3D chords is easily of the
order of 107 − 108 for classical 3D assemblies, the computa-
tional cost of the transmission equation is a very important
parameter, when analysing solver performances. Moreover,
during the transmission phase the current information is stored

(Eq.(19)), to be later used in the balance equation. Compar-
ing the transmission equation and the current term for the
Polynomial and the SC method we get:

Poly→

Ψ(tout, ~Ω) = Ψ(tin, ~Ω) · e−Σr l + ~P(z̃in) · ~T
~δr(~Ω) =

∑
t‖~Ω
t∩r

[
~P(z̃out)Ψr(tout) − ~P(z̃in)Ψr(tin)

]
(22)

S tep→

Ψr(tout) − Ψr(tin) =

(
1−e−Σr l

Σr

)
·
(
qr(~Ω) − Ψr(tin)

)
δr(~Ω) =

∑
t‖~Ω
t∩r

[
Ψr(tout) − Ψr(tin)

]
(23)

where we can assume for a simplified comparison that the
exponential terms are already computed when the sweep is
performed, thanks to the Chords Classification method [3], as
well as the ~T vector.
Comparing the two sets of Eqs.(22) and (23) we see similar-
ities and differences. They both requires a subtraction and a
quite expensive memory access for the δr term. On the other
hand the number of floating point operations(FLOPS) that they
require is quite different: Eqs.(22) shows that 2 ·Np +1 FLOPS
are required for the polynomial method (3 for the transmission
and 2 for δr). On the other hand the SC method roughly needs
only 1 FLOPS. Supposing a polynomial of second order this
would easily lead to 5 FLOPS against 1 per chords in the SC
method. The computational effort required by the Polynomial
method is therefore clearly higher, as we would expect for a
higher order scheme.

B. Vectorization possibilities

The Polynomial method is well suited for some vectorization
options, that allows to partially compensate for the computa-
tional overhead just described in the above section. Looking
at the set of Eqs. (22) we see that the trajectory sweep must be
performed sequentially, since the entering flux for each chord
is needed. This is a common fact of the MOC. Nevertheless,
some of the operations of Eqs.(22) can be treated in a vecto-
rial manner, in particular those which do not depend on the
entering flux value.
In a first phase the product ~P(zin) · ~T is performed as long as
the trajectory is reconstructed, through the HSS method. Here
the product can be vectorized on the number of subsequent
surfaces of the same kind encountered (mostly vertical since
the axial meshes are quite elongated). To do this the value
of ~P(zin) must be available for each chord of the sequence.
This can be obtained through direct storing and retrieving, or
on-line computing, depending on the chosen option. In both
cases at the end of the HSS ~P(zin) will be available for each
chord of the concerned trajectory.
In a second phase the transmission equation is solved and the
entering fluxes values temporarily stored in some auxiliary
quantities. Here no vectorization is possible. As a result two
vectors are available:

~Ψ f /b =
{
Ψ

f /b
i , i = 1,N(t) + 1

}
(24)

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

where N(t) is the number of chords of a given "t" trajectory
and "f/b" stands for forward and backward directions.
Then, the term ~δr(~Ω) must be computed and cumulated. Us-
ing some additional auxiliary vectors, its computation can be
vectorized. For each chord we should write:

γin
i,p (t) = Pp(z̃in

i)Ψi

γout
i,p (t) = Pp(z̃out

i)Ψi+1 i = 1, N(t)

δ̃i,p = γout
i,p − γ

in
i,p (25)

However it is worth noting that thanks to choice of the polyno-
mial basis (Eq. (3)) for every even moments:

Pp(z̃in
i+1) = Pp(z̃out

i)

Unfortunately this is not true for odd terms. In this case the
only difference arises when a horizontal surface is crossed and
the value of the polynomial basis switches from -1 to +1 or
vice-versa. As a consequence Eqs.(25) becomes:

γi,p = Pp(z̃in
i)Ψi i = 1, N(t) + 1

δ̃i,p = γi+1,p − γi,p f or even terms

δ̃i,p = γi+1,p − si · γi,p f or odd terms

where si a two-bit information stored for each chords, and it is
equal to -1 if the i-th chord crosses a horizontal surface and
equal to +1 otherwise. All these operations can be performed
vectorially, for each chords of the trajectory t.
Finally the cumulation must be performed as is Eq.(22):

δr,p(~Ω) =
∑
t‖~Ω
t∩r

[
Pp(z̃out)Ψr(tout) − Pp(z̃in)Ψr(tin)

]
=

∑
t‖~Ω
t∩r

δ̃i,p

and it is practically implemented as:

δr(i),p(~Ω) = δr(i),p(~Ω) + δ̃i,p (26)

In the last formula r(i) denotes the region of the i-th intersec-
tion. Even if the cumulation phase has only a sum operation,
the memory accesses that it requires is very expensive. Unfor-
tunately, the same region can be intersected more than once
by one trajectory and for a given angle. For this reason vector-
ization of this phase has not be implemented.

Advantages of the Polynomial method

Thanks to the polynomial approximation the number of axial
meshes need is greatly reduced. This lead to very elongated
regions, with a predominance of chords going from vertical to
vertical surfaces. This also mean that there are more chances
for a trajectory to be interrupted by a horizontal plane, which
implies a lower number of 3D chords. This reduction in terms
of total number of chords in comparison with the SC method
depends on the study case, but we observed values around
∼ 10−15%. The second, and more important advantage, lies in
the number of unknowns needed in the two cases. Decreasing
the number of axial plane directly decreases the multi-group
fluxes sizes, as well as the size of a set of working variables

such as qr and δr. Of course all these elements will have
as many components as the chosen polynomial degree. The
memory gain factor will then be:

N step
z

N pol
z · Np

where N step
z and N pol

z are the numbers of axial meshes need
using the SC and in the Polynomial method, respectively. In
addition to decrease the total memory needed, it also has
a direct impact of computational time since this is strongly
influenced by the size of the objects we are working with.

Iterative schemes

A classical iterative scheme, described in Algorithm 1, is used
to converge to the solution. As customary this is divided in
three steps: a initial guess is made for the fission integral
and for the fluxes. Keeping the fission integral constant we
iterate on the flux of each group updating the scattering term.
Another subdivision is made: keeping the scattering from all
the other group to the g groups constant we iterate on the
self-scattering source for the group g. These are generally
called inners iterations. Once the fluxes in the g group are
converged, we update the transfer from others groups (thermal
iterations). Finally when the transfer integral has converged,
the fission source is updated. These iterations are generally
called external. The procedure is repeated until convergence
is reached.
An OpenMP based parallel strategy is implemented to speed-
up the transport sweep phase, which is one of the most time
consuming part. This part is indicated in Algorithm 1 as Par-
alled trajectories sweep. While the sweep of one trajectory
must be sequential, different trajectories can be swept in par-
allel. A series of precautions must be adopted to avoid race
condition and to equally distribute work among threads. The
same strategy presented in presented in [3] for the SC method
is also used in the Polynomial case. Algorithm 2 gives a sim-
plified view of how the parallel sweep is handled and how the
classic sweep sequence is modified to implement the vector-
ization explained in subsection B.. As the algorithm shows,
there are private copies of the δr array for each thread. A cer-
tain amount of trajectories is attributed to each thread(TASK).
For each trajectory, only a part of the operations described
in the Algorithm 2 are performed. In particular, reduction of
the private δr on the shared counterpart δsh

r is operated only
when the basic angle has changed from a trajectory to another.
Moreover, computation of the coefficients for classified chords
T (Eq.(13)) and β is needed only if the basic angle or the 2D
line on which the 3D trajectory lies has changed.
From these considerations we can see how a proper load bal-
ancing technique is important and can help in considering
computational time reductions. The basic idea is to sort trajec-
tories in order to minimize the basic angle change. Trajectories
are then subdivided in TASKS. A greedy algorithm is then used
to equally distribute work between tasks. For the details about
the load balancing techniques used we recall [3][9], since no
changes have been implemented.

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

External iterations:
while the fission term is not converged do

Compute q1,ext
r,p = χg

∑
g′
νg′Σ

g′

f (~r) Φ
1,g′
r,p

qn,ext
r,p = 0 f or n > 1

Thermal iterations:
while Φ

1,g
r,p not converged in each group do

Compute qn,ext
r,p = qn,ext

r,p +
∑
g′,g

Σ
g′→g
s,n (~r) Φ

n,g′
r,p

Internal iterations:
while ~Φ1,g

r not converged in g group do
Compute qn

r,p = qn,ext
r,p = +Σ

g→g
s,n (~r) Φ

n,g
r,p

Mono group solution

Parallel trajectories sweep

Balance (Eqs.(17),(20),(21))
for every region r do

∆ ~Jr(~Ω) =
∆⊥(~Ω)

Vr
~δr(~Ω)

′~Ψr(~Ω) =
1
Σr

[¯̄PP(~Ω) · ~qr(~Ω) − ∆ ~Jr(~Ω) + µ ¯̄C ′~Ψr(~Ω)
]

~Ψr(~Ω) = ¯̄PP−1 · ′~Ψr(~Ω)
~Φ

n,g
r =

∮
d~Ω
4π An(~Ω) ~Ψr(~Ω)

end
end

end
end

Algorithm 1: Iterative scheme

Parallel trajectories sweep:
~δsh

r (~Ω) = 0→ initialize shared current vector
!$OMP PARALLEL
~δr(~Ω) = 0→ initialize private current vector
while Every trajectory is not swept do

ThreadNum= OMP_GET_T HREAD_NUM
Task= GET_T AS K(ThreadNum)
for all trajectories in Task do

if Basic angle has changed then
Reduce on ~δsh

r (~Ω)
~δsh

r (~Ω) = ~δsh
r (~Ω) + ~δr(~Ω)

~δr(~Ω) = 0
end
if 2D line or Basic angle has changed then

Classified coefficient computation
For each class:
Compute ~T → Eq. (13)
Compute β = e−Σr l

end
HSS trajectory reconstruction
for i=1, N(t) do

if classed chord then
Retrieve β, ~T f /b

else
Compute β, ~T f /b

end
Compute ~P(zout)
Store βi, ~Pi+1 = ~P(zout)
Compute and Store:

T̃ f
i = ~Pi · ~T f

T̃ b
i = si · ~Pi+1 · ~T b

end
Trajectory sweep (sequential)
for i=1, N(t) do

Ψ
f /b
i+1 = βiΨ

f /b
i + T̃ f /b

i → Eq.(12)
end
Compute δ̃i,p (vectorial)

for i=1, N(t) do
γ

f
i,p = si · Pi,pΨ

f
i

δ̃
f
i,p = γ

f
i,p − γ

f
i+1,p even terms

δ̃
f
i,p = γ

f
i,p − s f

i+1 · γ
f
i+1,p odd terms

γb
i,p = Pi,pΨb

i

δ̃b
i,p = γb

i+1,p − γ
b
i,p even terms

δ̃b
i,p = γb

i+1,p − sb
i · γ

b
i,p odd terms

end
Cumulate ~δr(~Ω) (sequential)
for i=1, N(t)+1 do

~δr(i)(~Ω) = ~δr(i)(~Ω) + ~̃δ
f /b
i →Eq. (26)

end
end

end
!$OMP END PARALLEL

Algorithm 2: Inners iterative scheme

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

V. RESULTS AND ANALYSIS

Precision and performances of the polynomial method have
been compared with the SC method and with a Monte Carlo
simulation obtained with TRIPOLI4 R© [10]. Also in this case,
the ASTRID assembly presented in Fig.2 has been used for
the calculation. This is the same case presented in [4].
The multi-group cross sections have been self-shielded with
the Subgroup and Tone methods of APOLLO3 R©. The self-
shielding procedure and the 2D-3D equivalence applied is
explained in [9][2][3]. In a few word the self-shielding is
performed only in 2D sections of the domain. The number of
axial planes on which perform a different self-shielding calcu-
lation is a input parameter and can be different in comparison
with the axial meshes needed for the MOC solution. In our
calculation only one self-shielding layer is computed for each
different material. Radially, different zones can be defined in
order to account for the impact of the heterogeneous flux on
the self-shielded cross section, even when the same material is
present. An internal and an external layer are used, as depicted
in Fig.2. A 1968 groups discretization of the energy is used
for the multi-group calculation.
Table I shows two results obtained with converged parameters,
one using the SC and the second with the Polynomial method.
The meaning of this table in only to show that with converged
angular and spatial integration and axial meshes both the SC
and the Polynomial method converge to a similar result, with
a certain discrepancy in comparison with the Monte-Carlo
reference calculation.
Table II shows the results in terms of reactivity and computa-
tional time for different SC and Polynomial calculation with
different axial meshes. Results shows a discrete precision
when compared to the Monte-Carlo simulation, with a error
around +70/80 pcm of ke f f .
The presence of very different materials in the axial direction
imply strong flux gradients, as Fig.4 shows. For this reason
the SC method needs a quite big number of axial meshes to
converge. The Polynomial method on the other side requires
only a few more meshes than the one already present due to the
five different materials. The zone where a subdivision is more
important is the neutronic protection, where the gradients are
very strong (Fig.4) . Thanks to a significant lower amount
of axial meshes needed the Polynomial method also enjoys a
lower number of chords and a very high classification rate.
Thanks to an important classification rate, the expensive trans-
mission coefficients of Eq. (13) can be computed only for
the classes, instead of for the total 3D chords, as explained in
section A., and thanks to a high classification the classes will
be representative of a percentage of the total number of chords
which is referred to in table II as Classification.

VI. CONCLUSIONS

A polynomial axial expansion of the angular fluxes has been
implemented for the 3D Method of Characteristics in the TDT
module of APOLLO3 R©. Results show that the Polynomial and
the SC methods converge to a similar solution, discretely close
to the Monte Carlo simulation, in terms of ke f f . Reactions

Method Step Polynomial
(Np=2)

∆r (cm) 0.04 0.04
∆s (cm) 0.2 0.2

Axial meshes 600 19
chords 510.92 M 270.50 M
classes 152.98 M 13.94 M

Classification 53.74 % 94.21 %
Self-shielding Tone: Tone:

Ke f f 1.165749 1.165782
ρ err/T4 (pcm) +50.16 +52.42

TABLE I: First comparison between Step and Polynomial
method. ke f f and reactivity (ρ) error are presented and com-
pared to the Monte-Carlo reference value. M stands for mil-
lions. The Tone self-shielding method hase been used. Since
some discrepancies are present between the SC, the Polyno-
mial and the Monte-Carlo simulation these two calculation
have been run with very strict integration parameters, and with
a better angular quadrature formula in comparison with the
results presented in Tab.II. These two first results do not intend
to compare performances, but they only want to show which
is the results obtained with converged spatial and angular inte-
gration and with a very refined axial meshes.

rates have not been compared yet, but they will.
The tracking size for the Polynomial case, thanks to a lower
amount of meshes, is smaller and the percentage of classified
chords is bigger. The computational cost per chord of the
Polynomial method results higher when compared to the SC
method. Nevertheless results shows that the overall computa-
tional time is lower using the Polynomial method. This rep-
resents a significant advantage when comparing to the results
obtained in [7]. This is due to some performance-enhancing
recently realized in the Polynomial method, mainly focused
on the vectorization of some of the sweep operations that is
not possible in the SC method (see Sec.B.). Moreover the case
presented here is bigger than the one presented in [7] and the
flux gradients are steeper, so the memory gain coming from
the use of a less refined axial mesh strongly advantages the
Polynomial method.
The Polynomial method currently lacks a suitable acceleration
technique, but an adapted version of the DPN acceleration
developed for the SC method is under construction. This
is the reason why the results presented are run without the
acceleration option, even for the SC method.

ACKNOWLEDGMENTS

The authors would like to acknowledge Electricité de France
(EDF) for their long term partnership and support in the de-
velopment of the APOLLO3 R© nuclear reactor analysis code.
We thanks J.F. Vidal, J.M. Palau and P. Archier for having
provided the 3D FBR assembly case that have been used to
benchmark our developments.

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

Method Step Polynomial (Np=2)
∆r (cm) 0.05 0.05
∆s (cm) 1.0 1.0

Axial meshes 57 110 180 257 600 5 6 12
chords 29.57 M 31.88 M 34.93 M 38.29 M 53.24 M 27.31 M 27.35 M 27.61 M
classes 17.07 M 21.12 M 21.80 M 20.33 M 18.16 M 1.90 M 2.28 M 4.56 M

Classification 83.82 % 74.67 % 66.68 % 59.56 % 52.39 % 98.4 % 98.09 % 96.21 %
Self-shielding Tone: Tone:

Ke f f 1.163761 1.165075 1.165412 1.165672 1.165744 1.165584 1.165805 1.165889
ρ err/T4 (pcm) -96.45 +0.44 +25.43 +44.66 +49.72 +37.76 +54.00 +60.30

Time 12 210 s 22 719 s 37 785 s 55 472 s 127 809 s 15 384 s 16 326 s 23 900 s
Self-shielding Sub-Groups: Sub-Groups:

Ke f f 1.164114 1.16543 1.165767 1.166027 1.166094 1.165927 1.166147 1.166243
ρ err/T4 (pcm) -70.54 +26.38 + 51.22 +70.28 +75.42 + 63.01 + 79.27 +86.22

Time 12 575 s 24 031 s 38 454 s 56 500 s 124 470 s 16 174 s 17 316 s 23431 s

TABLE II: Comparison between Step and Polynomial method. ke f f and reactivity (ρ) error are presented and compared to the
Monte-Carlo reference value. Difference in the results caused by the use of the two different self-shielding option available in
APOLLO3 R© are also presented. M stands for millions. The Classification percentage shows the portion of the total number of
chords that can are represented by the classes. In other words, computing the coefficients depending on the optical length for
each class, we will represents a percentage of the total number of chords corresponding to the classification percentage.

REFERENCES

1. D. SCIANNANDRONE, S. SANTANDREA, and
R. SANCHEZ, “Optimized tracking strategies for step
MOC calculations in extruded 3D axial geometries,” An-
nals of Nuclear Energy, 87, 49–60 (2016).

2. D. SCIANNANDRONE, S. SANTANDREA,
R. SANCHEZ, L. LEI-MAO, J. VIDAL, J. PALAU, and
P. ARCHIER, “Coupled fine-group three-dimensional
flux calculation and subgroups method for a fbr hexagonal
assembly with the APOLLO3 R© core physics analysis
code,” Mathematics and Computations, Supercomputing
in Nuclear Applications and Monte Carlo International
Conference, M&C+SNA+MC 2015, 3, October 2016
(2015).

3. D. SCIANNANDRONE, Acceleration and higher order
schemes of a characteristic solver for the solution of the
neutron transport equation in 3D axial geometries, Ph.D.
thesis, Université Paris-Sud (2015).

4. P. ARCHIER, J.-M. PALAU, J. VIDAL, S. SAN-
TANDREA, and D. SCIANNANDRONE, “Validation
of the Newly Implemented 3D TDT-MOC Solver of
APOLLO3 R© Code on a Whole 3D Sfr Heterogeneous
Assembly,” in “PHYSOR,” Sun Valley, Idaho (2016).

5. G. GUNOW, J. TRAMM, B. FORGET, K. SMITH, and
T. HE, “SimpleMOC - A PERFORMANCE ABSTRAC-
TION FOR 3D MOC,” in “ANS MC2015 – Joint Inter-
national Conference on Mathematics and Computation
(M&C), Supercomputing in Nuclear Applications (SNA),
and the Monte Carlo (MC) Method C), Supercomputing in
Nuclear Applications (SNA), and the Monte Carlo (MC)
Method,” Nashville, Tennessee (2015), Mc.

6. G. GUNOW, S. SHANER, B. FORGET, and K. SMITH,
“Reducing 3D MOC Storage Requirements with Axial On-

the-fly Ray Tracing,” in “PHYSOR,” Sun Valley, Idaho
(2016).

7. L. GRAZIANO, S. SANTANDREA, and D. SCIANNAN-
DRONE, “Polynomial axial expansion in the Method of
Characteristics for neutron transport in 3D extruded ge-
ometries,” in “ICRS13-RPSD2016,” Paris (2016).

8. R. SANCHEZ, “Prospects in deterministic three-
dimensional whole-core transport calculations,” Nuclear
Engineering and Technology, 44, 5, 113–150 (2012).

9. S. SANTANDREA, D. SCIANNANDRONE,
R. SANCHEZ, L. LEI-MAO, and L. GRAZIANO,
“A neutron transport characteristics method for 3D
axially extruded geometries coupled with a fine group
self-shielding environment,” Accepted for publication in
Nuclear Science and Engineering (2017).

10. E. BRUN, F. DAMIAN, C. M. DIOP, E. DUMONTEIL,
F. X. HUGOT, C. JOUANNE, Y. K. LEE, F. MAL-
VAGI, A. MAZZOLO, O. PETIT, J. C. TRAMA, T. VI-
SONNEAU, and A. ZOIA, “Tripoli-4 R©, CEA, EDF and
AREVA reference Monte Carlo code,” Annals of Nuclear
Energy, 82, 151–160 (2015).

